Allen B. Tucker / Computing, Vol. 1, Issue 1 (2002), 12—17

5]

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

COMPUTING CURRICULA 2001 AND IDAACS
Allen B. Tucker

Bowdoin College, Brunswick, ME 04011, USA
allen@bowdoin.edu, www.bowdoin.edu/~allen

Abstract: This paper discusses the relationship between recent advances in curricula in computer
science in the US and intelligent data acquisition/advanced computer systems (IDAACS) research and
development. The recent Computing Curricula 2001 Draft Report is used as a primary source of infor-
mation about current developments in curriculum standards in the US.

Keywords: Computer science education, undergraduate curriculum, computer engineering, soft-
ware engineering, intelligent data acquisition, advanced computer systems.

1.INTRODUCTION

Some subject areas in undergraduate computer
science curricula provide strong preparation for
undergraduates who intend to conduct graduate
study or professional work in the various areas of
intelligent data acquisition and advanced computer
systems. This paper examines the connection be-
tween the curricula and IDAACS.

Computing Curricula 2001 [1] is the most re-
cent in a series of models that have guided Ameri-
can colleges and universities’ undergraduate com-
puter science and engineering degree programs for
the last three decades. Earlier models include Cur-
ricula 91 [2], Curriculum 78 [3], and Curriculum
68 [4]. Curricula 2001 is distinguished from ear-
lier models in five important ways:

1. It reflects the enormous technological
changes of the last 10 years.

2. It reflects the major cultural, economic and
pedagogical changes of the last 10 years.

3. It is international in scope.

4. Itreflects the emergence of new subject areas.

5. It proposes separate curriculum models for
the fields of computer science, computer engineer-
ing, software engineering, and information systems.

Curricula 2001 provides a model for designing
undergraduate computer science programs by de-
fining the following fourteen major subject areas
as a basis:

Algorithms and Complexity

* Architecture and Organization

* Computational Science / Numerical Methods

Discrete Structures

Graphics and Visual Computing

* Human-Computer Interaction

* Information Management

* Intelligent Systems

Net-Centric Computing

* Operating Systems

Programming Fundamentals

Programming Languages

Software Engineering

Social and Professional Issues

This paper concentrates on those subject areas
marked with an asterisk (*), since these are the ones
most relevant to the interests of undergraduates
who will pursue graduate study and careers in in-
telligent data acquisition and advanced computer
systems.

By “Intelligent Data Acquisition/Advanced
Computer Systems” (or IDAACS), we mean that
field of research and development that designs and
implements hardware and software systems that
acquire data from sensors and other sources, inter-
pret that data, and use that interpretation to help
control a complex computer or network of com-
puters. Such systems are “intelligent” because they
interpret the raw sensory data before passing it on
as a control. Such systems are “advanced” because
they typically require complex computational in-
terfaces for gathering information from a collec-
tion of heterogeneous devices. They are also ad-
vanced because the computers they control are
highly parallel and complex in their hardware and
software designs.

Examples of IDAACS are abundant. For in-
stance, a bank’s ATM system acquires data from
users at a collection of ATM machines, processes
that data in real time by retrieving relevant infor-
mation from a central database of bank accounts,
and responds to each user in accordance with his/
her request. For another example, an embedded
computer in a commercial airplane is an IDAACS,
gathering atmospheric and navigational data from
a collection of sensors and ground controllers. It
then interprets that data and uses it to help guide

12



Allen B. Tucker / Computing, Vol. 1, Issue 1 (2002), 12-17

the plane or advise the pilot making decisions dur-
ing the flight.

2. COMPUTING CURRICULA 2001:
OVERVIEW

The general direction taken by the ACM/IEEE
Curricula 2001 model [CC2001] reflects the need
to cover a broad range of subjects and programs.
This section summarizes the computer science
body of knowledge and its core topics that are re-
quired for all undergraduate programs, whether
they are IDAACS-related or not. The metric used
here is the “core hour,” which is a single lecture
hour for a subject within a typical 1-semester course
that would have 40 lecture hours overall. To cover
all 14 subject areas listed above, the model pro-
poses 280 = 7 semester courses worth of required
core hours. Here is how that subject matter is dis-
tributed (core hours are given in parentheses along-
side each topic) across these areas.

* Algorithms and Complexity (31 core hours):
This subject area includes some of the basic un-
derlying theory for computer science, and includes
algorithmic analysis (4), algorithmic strategies (6),
fundamental computing algorithms (12), distrib-
uted algorithms (3), and basic computability theory
(6) as required topics. Other topics in this subject
area that are not in the core body of knowledge
(but are usually covered in typical courses) include
the complexity classes P and NP, automata theory,
advanced algorithmic analysis, cryptographic al-
gorithms, geometric algorithms, and parallel algo-
rithms.

* * Architecture and Organization (36 core
hours): This subject area mainly addresses the
design and engineering part of the discipline, and
includes digital logic and digital systems (6), ma-
chine level representation of data (3), assembly
level machine organization (9), memory system
organization and architecture (5), interfacing and
communication (3), functional organization (7),
multiprocessing and alternative architectures (3).
Other topics in this subject area that are not in the
core body of knowledge include performance en-
hancement and architecture for networks and dis-
tributed systems.

e * Computational Science and Numerical
Methods (0 core hours): This subject area is an
emerging part of the discipline and emphasizes the
interconnections between computer science and the
traditional science and engineering disciplines. It
includes topics in numerical analysis, operations
research, modeling and simulation, and high-per-
formance computing.

* Discrete Structures (43 core hours): This sub-
ject area was listed among the mathematics require-
ments in earlier curriculum models. However,
since many computer science departments now
teach this subject themselves, and since there is an
increasing awareness of the need for integration
of these topics within the traditional computer sci-
ence topics, it is now part of the core body of knowl-
edge in computer science. Topics include func-
tions, relations, and sets (6), logic (10), proof tech-
niques (12), counting and combinatorics (5), graphs
and trees (4), and discrete probability (6).

* Graphics and Visual Computing (5 core
hours): This area is the home for topics in com-
puter graphics and visualization technologies.
Required core topics include fundamental tech-
niques in graphics (2), graphic systems (1), and
graphic communication (2). Other topics in this
area that are not in the core include geometric
modeling, basic and advanced rendering, anima-
tion, visualization, virtual reality, and computer
vision.

* * Human-Computer Interaction (6 core hours):
This area includes coverage of the foundations of
human-computer interaction (6), human-centered
software evaluation and design, graphical user-in-
terface design and programming, HCI aspects of
multimedia systems, and HCI aspects of collabo-
ration and communication.

* * Information Management (10 core hours):
This area covers topics in management informa-
tion systems and models (3), database systems (3),
and data modeling (4). Other topics in this area
not included in the core include relational data-
bases, database query languages, relational data-
base design, transaction processing, distributed
databases, physical database design, data mining,
information storage and retrieval, hypertext and
hypermedia, multimedia information and systems
and digital libraries. This area is a renaming and
updating of the area traditionally called “database
and information retrieval,” adding new topics that
have emerged out of the World Wide Web.

* * Intelligent Systems (10 core hours): This
area is a renaming and updating of the traditional
area called “artificial intelligence,” and covers fun-
damental issues in intelligent systems (1), search
and constraint satisfaction (5), and knowledge rep-
resentation and reasoning (4). Other topics in this
area include advanced search, knowledge repre-
sentation and reasoning, agents, natural language
processing, machine learning and neural networks,
Al planning systems, and robotics.

* Net-Centric Computing (15 core hours): This

13



Allen B. Tucker / Computing, Vol. 1, Issue 1 (2002), 12—17

new area was added as a direct result of the emer-
gence of the World Wide Web in the 1990s, and
includes topics like an introduction to net-centric
computing (2), communication and networking (7),
network security (3), and the web as an example
of client-server computing (3). Additional topics
in this area include building web applications, net-
work management, data compression and decom-
pression, multimedia data technologies, and wire-
less and mobile computing.

* * Operating Systems (18 core hours): This area
updates the traditional subject of operating systems,
and the core material includes an Overview of op-
erating systems (2), operating systemprinciples (2),
concurrency (6), scheduling and dispatch (3), and
memory management (5). Additional topics in this
area that would occur ina course on operating sys-
tems include device management, security and pro-
tection, file systems, real-time and embedded sys-
tems, fault tolerance, performance evaluation, and
scripting.

* Programming Fundamentals (54 core hours):
This new area was viewed as an implicit prerequi-
site topic in prior curriculum models, and now it is
explicitly defined via the following core lecture
topics: fundamental programming constructs (9),
algorithms and problem-solving (6), object-ori-
ented programming (10), fundamental data struc-
tures (14), recursion (6), event-driven and concur-
rent programming (4), and using APIs (5).

* Programming Languages (6 core hours): This
area includes an overview of programming lan-
guages (2), fundamental issues in language design
(1), virtual machines (1), and an introduction to
language translation (2). Additional topics in this
area include a detailed study of language transla-
tion systems, type systems, models of execution
control, declaration, modularity, and storage man-
agement, programming language semantics, pro-
gramming paradigms, and language-based con-
structs for parallelism.

* Social and Professional Issues (16 core hours):
This new area was treated not as a subject area in
earlier curriculum models, butas a pervasive theme
that crossed all subject areas. It includes as core
topics a history of computing (1), the social con-
text of computing (3), methods and tools of analy-
sis (2), professional and ethical responsibilities (3),
risks and liabilities of computer-based systems (2),
intellectual property issues (3), and privacy and
civil liberties (2). Additional topics in this area
include computer crime, economics of computing,
and philosophical issues.

* Software Engineering (30 core hours): This

area includes the core topics of software processes
(2), requirements and specifications (6), design (6),
validation (6), software evolution (4), project man-
agement (4), and software tools and environments
(2). Additional topics that round out this area in-
clude component-based computing, formal meth-
ods, software reliability, and specialized systems
development.

Overall, a wider range of subjects is covered
by the Curricula 2001 model thanits predecessors,
due to the rapid emergence of new computing tech-
nologies and research areas. At the same time, each
topic is necessarily covered in far less depth than
in prior curricula. Moreover, this model contains
a significant shift in emphasis away from the theory
and principles, and toward the systems and appli-
cations of the discipline. While undergraduate pro-
grams in computer science will be greatly chal-
lenged to meet the demands of the 215 century, this
new model will provide important guidance for
them to evolve in a contemporary fashion.

3.IDAACS-RELATED SUBJECT MATTER

The relationship between the Curricula 2001
proposal and the curricular needs of IDAACS can
be analyzed in at least two different ways. One
basis for analysis is to evaluate the total number of
core lecture hours in the core body of knowledge
that are relevant to IDAACS. Another basis is to
identify selected courses that have been proposed
in the Curricula 2001 draft report that would be
considered essential core material for students who
plan to pursue IDAACS-related graduate study.

In the first case, we assume that the subject ar-
eas marked with an asterisk in the above descrip-
tion are most closely related to IDAACS. The num-
ber of core lecture hours in these six areas that are
required for an undergraduate curriculum is sum-
marized as follows:

Architecture and Organization 36
Computational Science / Numerical 0
Methods

Human-Computer Interaction 6
Information Management 10
Intelligent Systems 10
Operating Systems 18

This amounts to 80 core hours out of a total of
280 (28%), which is the equivalent of two semes-
ter courses, that are directly related to IDAACS
subjects.

In the second case, we examine four sample
courses that are proposed in the Curricula 2001

14



Allen B. Tucker / Computing, Vol. 1, Issue 1 (2002), 12-17

draft report and seem to be particularly well-suited
for students who intend to pursue ID AACS-related
graduate study or professional careers. Each one
of these courses is a 40 lecture hour course, and
contains some material from the core body of
knowledge described above. The four courses are
titled:

Computer Architecture

Databases

Information Management

Intelligent Systems

Among all the courses proposed by the Cur-
ricula 2001 Draft Report, these four seem to ad-
dress most directly the curricular needs of
IDAACS, as defined above. Together, they pro-
vide a strong foundation for the needs of postgradu-
ate study and research in intelligent data acquisi-
tion and advanced computer systems. Here is a
paraphrasing of these courses as they are described
in the Curricula 2001 report.

Computer Architecture This course introduces
students to the organization and architecture of
computer systems, beginning with the standard von
Neumann model and then moving forward to more
recent architectural concepts. Topics include:

* Digital logic — Fundamental building blocks
(logic gates, flip-flops, counters, registers, PLA);
logic expressions, minimization, sum of product
forms; register transfer notation; physical consid-
erations (gate delays, fan-in, fan-out)

* Data representation: Bits, bytes, and words;
numeric data representation and number bases;
fixed- and floating-point systems; signed and twos-
complement representations; representation of
nonnumeric data (character codes, graphical data);
representation of records and arrays

* Assembly level organization: Basic organiza-
tion of the von Neumann machine; control unit;
instruction fetch, decode, and execution; instruc-
tion sets and types (data manipulation, control, I/
0); assembly/machine language programming; in-
struction formats; addressing modes; subroutine
call and return mechanisms; I/O and interrupts

* Memory systems: Storage systems and their
technology; coding, data compression, and data
integrity; memory hierarchy; main memory orga-
nization and operations; latency, cycle time, band-
width, and interleaving; cache memories (address
mapping, block size, and replacement policy); vir-
tual memory (page table, TLB); fault handling and
reliability

* Interfacing and communication: I/O funda-
mentals: handshaking, buffering, programmed 1/O,

interrupt-driven 1/O; interrupt structures and ac-
knowledgment; external storage, physical organi-
zation, and drives; buses: bus protocols, arbitra-
tion, direct-memory access (DMA); introduction
to networks; multimedia support; raid architectures

* Functional organization: Implementation of
simple datapaths; control unit: hardwired realiza-
tion vs. microprogrammed realization; instruction
pipelining; introduction to instruction-level paral-
lelism (ILP)

* Multiprocessor and alternative architectures:
Introduction to SIMD, MIMD, VLIW, EPIC; sys-
tolic architecture; interconnection networks
(hypercube, shuffle-exchange, mesh, crossbar);
shared memory systems; cache coherence; and
memory consistency

* Performance enhancement: Superscalar archi-
tecture; branch prediction; prefetching; speculative
execution; multithreading; scalability

* Databases This course introduces students to
the concepts and techniques of database systems.
Topics include:

* History and motivation for information sys-
tems; information storage and retrieval; informa-
tion management applications; information capture
and representation; analysis and indexing; search,
retrieval, linking, navigation; information privacy,
integrity, security, and preservation; scalability,
efficiency, and effectiveness

* Database systems: History and motivation;
components of database systems; DBMS functions;
database architecture and data independence

* Data modeling; conceptual models; object-ori-
ented model; relational model

* Relational databases: Mapping conceptual
schema to a relational schema; entity and referen-
tial integrity; relational algebra and relational cal-
culus

* Database query languages: Overview of data-
base languages; SQL; query optimization; 4th-gen-
eration environments; embedding non-procedural
queries in a procedural language; introduction to
Object Query Language

* Relational database design: Database design;
functional dependency; normal forms; multivalued
dependency; join dependency; representation
theory

* Transaction processing: Transactions; failure
and recovery; concurrency control

* Distributed databases: Distributed data stor-
age; distributed query processing; distributed trans-
action model; concurrency control; homogeneous
and heterogeneous solutions; client-server

* Physical database design: Storage and file

15



Allen B. Tucker / Computing, Vol. 1, Issue 1 (2002), 12—17

structure; indexed files; hashed files; signature files;
b-trees; files with dense index; files with variable
length records; database efficiency and tuning

Information Management This course intro-
duces students to the task of organizing large vol-
umes of information of potentially different kinds.
Typically, resolution of the associated problems
depends on the use of an underlying database tech-
nology, often involving networking. This course
addresses the issues involved. Topics include:

* The problems associated with the management
of data resources of potentially different kinds; the
business perspective

* Introduction to databases; the relational model;
illustrations

* Building databases: underlying methodology,
database languages; particular database issues

* Information systems to serve particular pur-
poses, including intranets and extranets; the infor-
mation retrieval problem

* The design and development of information
systems

* Security and control issues

* Evaluation of information systems

* Intelligent Systems This course presents both
the theory and application of intelligent systems,
using robotics and other control-based systems as
a framework for the discussion. Topics include:

* Fundamental issues in intelligent systems: His-
tory of artificial intelligence; philosophical ques-
tions; fundamental definitions; philosophical ques-
tions; modeling the world; the role of heuristics

* Search and constraint satisfaction: Problem
spaces; brute-force search; best-first search; two-
player games; constraint satisfaction

* Knowledge representation and reasoning: Re-
view of propositional and predicate logic; resolu-
tion and theorem proving; nonmonotonic inference;
probabilistic reasoning; bayes theorem

* Agents: Definition of agents; successful ap-
plications and state-of-the-art agent-based systems
; agent architectures; agent theory; software agents,
personal assistants, and information access; believ-
able agents; learning agents; multi-agent systems;
introduction to robotic agents; mobile agents

* Machine learning and neural networks: Defi-
nition and examples of machine learning; super-
vised learning; learning decision trees; learning
neural networks; learning belief networks; the near-
est neighbor algorithm; learning theory; the prob-
lem of overfitting; unsupervised learning; rein-
forcement learning

* Al planning systems: Definition and examples

of planning systems; planning as search; operator-
based planning; propositional planning; extending
planning systems; static world planning systems;
planning and execution; planning and robotics

* Robotics: Overview; configuration space;
planning; sensing; robot programming; navigation
and control

6. ANALYSIS AND CONCLUSIONS

The summary above provides some insights into
the design of Computing Curricula 2001 and its
relationship with the subject matter concerns of
IDAACS. However, this summary does not pre-
tend to be either complete or perfect. The follow-
ing weaknesses are apparent.

First, there are surely topics outside the areas
marked by an asterisk (*) within the core body of
knowledge that are either important or even essen-
tial to the study of intelligent data acquisition and
advanced computer systems. For example, the
study of probability (Discrete Structures) and
event-driven programming (Programming Funda-
mentals) would appear to be essential preparation
for further study in IDAACS.

Second, there are surely may topics that lie
within the subject areas marked by an asterisk (*)
that are not of primary interest to IDAACS. For
example, management information systems (Infor-
mation Management) would appear only to be in-
teresting to persons preparing for a career in man-
agement, rather than IDAACS.

Third, the four specific courses that were pre-
sented above as particularly useful for students
interested in IDAACS do not comprise a complete
list in any sense. For instance, it is very important
that these students study various subjects in math-
ematics, including analysis, algebra, calculus, and
statistics, in order to prepare well for future work
in intelligent data analysis. Moreover, data analy-
sis requires the development and interpretation of
appropriate mathematical and economic models of
real systems, so that a course in mathematical mod-
eling would seem to be essential for this work.

In spite of these shortcomings, this paper has
attempted to present an initial overview of the re-
lationship between a modern curriculum design and
the field if intelligent data analysis and advanced
computer systems. Future efforts to designa more
complete curriculum model for IDAACS may take
into account the information in this discussion, as
well as other information in the Curricula 2001
report itself and other documented sources. Since
the Curricula 2001 report is not yet in its final form,
interested readers should consult the Web site

16



Allen B. Tucker / Computing, Vol. 1, Issue 1 (2002), 12—17

www.computer.org for up-to-date information
about the current version of that report.

7.REFERENCES

[1] Computing Curricula 2001 Draft Report.
ACM/IEEE Joint Curriculum Task Force (Febru-
ary 1, 2001). www.computer.org

[2] A Tucker (ed), B. Barnes, R. Aiken, K.
Barker, K. Bruce, J. Cain, S. Conry, G. Engel, R.
Epstein, D. Lidtke, M. Mulder, J. Rogers, E.
Spafford, and A. Turner, Computing Curricula
1991. ACM/IEEE Joint Curriculum Task Force
(1991).

[3] ACM Curriculum Committee on Computer
Science. Curriculum ’78: Recommendations for the
undergraduate program in computer science.
Communications of the ACM, 22(3):147-166,
March 1979.

[4] ACM Curriculum Committee on Computer
Science. Curriculum ’68: Recommendations for the
undergraduate program in computer science. Com-
munications of the ACM, 11(3):151-197, March
1968.

Allen B. Tucker is the Anne
T. and Robert M. Bass Profes-
sor of Natural Sciences in the
Department of Computer Sci-
ence at Bowdoin College,
where he has taught since
1988. He held similar posi-
tions at Colgate and |
Georgetown Universities. He
earned a BA in mathematics
from Wesleyan University and an MS and PhD in
computer science from Northwestern University.

Professor Tucker is the author or coauthor of
several books and other publications in the areas
of programming languages, natural language pro-
cessing, and computer science education, which
are his current research areas. He has given many
talks, panel discussions, and workshop presenta-
tions in these areas, and has served as a reviewer
for various journals, NSF programs, and curricu-
lum projects. He has also served as a consultant
to several colleges, universities, and other institu-
tions in the areas of computer science curriculum,
software design, programming languages, and
natural language processing applications.

Professor Tucker co-chaired the ACM/IEEE-CS
Joint Curriculum Task Force that developed Com-
puting Curricula 1991, for which he received the
ACM's Outstanding Contribution Award and shared
the IEEE's Meritorious Service Award. He is a co-
author of the 1986 Liberal Arts Model Curriculum
in Computer Science and Editor-in-Chief of the

1997 CRC Handbook of Computer Science and En-
gineering. He received the ACM SIGCSE award
for Outstanding Contributions to Computer Science
Education in February 2001. In Spring 2001, he
was a Fulbright Lecturer at the Ternopil Academy
of National Economy (TANE) in Ukraine. He is a
Fellow of the ACM and has been a member of the
ACM, the IEEE Computer Society, Computer Pro-
fessionals for Social Responsibility, and the Lib-
eral Arts Computer Science (LACS) Consortium.

17



