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Abstract: Regularized restoration is one of the powerful image restoration techniques because it preserves image 
details with a high degree of fidelity in the restored image. The main problem encountered in regularized image 
restoration is the evaluation of the regularization parameter. There are several methods for the evaluation of this 
parameter which require knowledge of the noise variance in the degraded image. After evaluating this parameter, 
regularized restoration is implemented by applying a regularization filter on the degraded image. In this paper, we 
propose a new iterative method for the evaluation of this parameter. This method depends on the maximization of the 
power in the restored image by the coincidence of the passband of the regularization filter with the frequency band in 
which, most of the image power exists. The suggested method doesn’t require a priori knowledge of the noise variance. 
Results show that the estimated value of the regularization parameter leads to a minimum mean square restoration 
error. 
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1. INTRODUCTION 
Digital image restoration is a problem which has 

been extensively treated in the literature [1-12]. The 
main objective of image restoration is to obtain a 
good estimate of the original image from a degraded 
image. Degradations in images have several origins 
such as out of focus blurring, linear motion blurring 
and Gaussian blurring. These types of blurring can 
be modeled as lowpass filters affecting the original 
image [13]. So, the image restoration problem is in 
fact a deconvolution problem. The existence of noise 
in the degraded image increases the difficulty of the 
image restoration process. The problem of 
deconvolution in the presence of noise is classified 
as an ill-posed inverse problem [6].  

This problem has been solved in the literature 
using so many approaches [1-13]. In each approach, 
the mathematical basis on which the solution is 
based differs. In general, the purpose of image 
restoration is to obtain an estimate, which is as close 

as possible to the original image. One of the most 
popular approaches to the problem of image 
restoration is the linear minimum mean square error 
(LMMSE) restoration approach [13]. Rather than 
seeking a solution consistent with minimum 
contamination by noise, the LMMSE approach 
attacks the restoration problem directly and proposes 
a criterion that explicitly evaluates how close the 
restoration is to the original object intensity 
distribution. Despite being an easy solution, 
LMMSE restoration requires some assumptions 
related to the original unknown image and leads to 
some artifacts in flat areas of the restored images.  

Regularization theory, which was basically 
introduced by Tikhonov and Miller has proved to be 
a good candidate for the solution of the image 
restoration problem [5]. There is no guarantee for 
the existence, uniqueness and stability of the 
solution of an inverse ill-posed problem like the 
image restoration problem based on direct inversion. 
So, there is a need for some constraints on the 
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solution. The stabilizing functional approach is one 
of the basic methodologies for the development of 
regularized or constrained solutions. According to 
this approach, an ill-posed problem can be 
formulated as the constrained minimization of a 
certain functional, called the stabilizing functional 
[5].  

For the implementation of regularized image 
restoration, there is a need to know both the 
regularization operator and the regularization 
parameter [1-12]. The rule of the regularization 
operator is to move the small Eigenvalues of the 
image degradation matrix away from zero while 
leaving the large Eigenvalues unchanged. It also 
incorporates prior knowledge about the required 
degree of smoothness of the restored image into the 
restoration process. The regularization parameter 
controls the trade-off between fidelity of the data 
and the smoothness of the solution [5, 6]. Hence, its 
determination is a very important issue. The 
evaluation of the regularization parameter can be 
performed using several techniques but most of 
these techniques are based on the amount of noise in 
the degraded image [6]. 

In this paper, we propose an iterative method for 
the evaluation of the regularization parameter based 
on the maximization of the total power content of 
the restored image. The rest of the paper is 
organized as follows. Section 2 gives the image 
degradation model. Section 3 discusses regularized 
image restoration. Section 4 surveys some existing 
methods for the evaluation of the regularization 
parameter. Section 5 presents the proposed method 
for the evaluation of the regularization parameter. 
Section 6 gives the experimental results. Finally, the 
concluding remarks are given in section 7. 

 
2. IMAGE DEGRADATION MODEL 

Image restoration algorithms are, generally, 
designed to exploit characteristics of an image and 
its degradation. Accurate knowledge of the 
degradation is essential for any image restoration 
algorithm to be a successful algorithm. To obtain 
information about the degradation, we can gather 
information from the degraded image itself. As an 
example, if an image is blurred and we can identify a 
region in the degraded image where the original 
undegraded signal is known, we may be able to 
estimate the blurring function ),( 21 nnh . The 
original image is denoted by ),( 21 nnf , while the 
degraded image is denoted by ),( 21 nng . In the 
presence of noise ),( 21 nnn , this can be represented 
as follows [1-13]: 

),(),(*),(),( 21212121 nnnnnfnnhnng +=  (1) 

If ),( 21 nnf  is assumed to be known in some 
regions, then ),( 21 nng  and ),( 21 nnf  can be used 
in these regions to estimate ),( 21 nnh . This linear 
shift invariant image degradation model can be 
represented in another form as follows [1-13]: 

   nHfg +=    (2) 

where gf  ,  and n  are lexicographic orders by either 
column or row of the M x M image, the degraded 
image and the noise, respectively. The matrix H  is 
the discrete representation of the degradation of 
dimensions M2 x M2. For linear shift invariant 
systems, the matrix H is a block Toeplitz matrix. 
The objective of image restoration is to estimate f  
given the samples of the recorded image g .  

 
3. REGULARIZED IMAGE RESTORATION 

According to the regularization theory, the 
solution of Eq. (2) is obtained by the minimization 
of the cost function [1-12]: 

22 €€)€( fCfHgf λ+−=Ψ   (3) 

where C  is the regularization operator and λ  is 
the regularization parameter. This minimization is 
accomplished by taking the derivative of the cost 
function yielding [1-12]: 

fCCfHgH0
f
f €2)€(2€
)€( tt λ−−==

∂
Ψ∂

 (4) 

Solving for that f€ that provides the minimum of 
the cost function gives [1-12]: 

gAgHCCHHf )()(€ 1 λλ =+= − ttt  (5) 

where 
ttt HCCHHA 1)()( −+= λλ   (6) 

The regularization operator C  incorporates prior 
knowledge about the required degree of smoothness 
of f  into the restoration process. It can be a finite 
difference matrix chosen to minimize the second 
order or higher order difference energy of the 
estimated image [1]. The 2-D Laplacian is the best 
choice for this purpose. The rule of the 
regularization operator C  is to move the small 
Eigenvalues of H  away from zero while leaving the 
large Eigenvalues unchanged. The amount of change 
of these Eigenvalues is dependent on the choice of 
the regularization parameterλ .  

Equation (5) can be written in an equivalent form 
using the Toeplitz to circulant approximation as 
follows [1]: 
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where F(u,v) is the Fourier transform of the original 
image, and G(u,v), ),(€ vuF , H(u,v), C(u,v) and 
N(u,v) are the Fourier transforms of the degraded 
image, the estimate of the original image, the point 
spread function PSF of the blurring operator, the 
regularization operator and the noise, respectively. 
Thus, the transfer function of the regularization filter 
is given by [1]: 

22

*

),(),(
),(),,(

vuCvuH
vuHvuD

λ
λ

+
=        (8) 

If λ=0, this leads to the inverse filter solution defied 
as [1]: 

),(
),(),(

),(
),(),(€

vuH
vuNvuF

vuH
vuGvuF +==  (9) 

In the presence of noise, the restoration problem 
has an ill-posed nature. Thus, severe deteriorations 
are observed in the restored images in the cases of 
low signal to noise ratios if the inverse filter solution 
is used. So, the second term in the denominator of 
Eq. (8) solves the ill-posed problem. This means that 
our problem is how to evaluate the regularization 
parameterλ.. 

 
4. METHODS OF EVALUATING THE 

REGULARIZATION PARAMETER 
The problem of evaluating the regularization 

parameter has been addressed using a diversity of 
techniques [6, 7]. Most of these techniques require 
knowledge of the noise variance of the degraded 
image σ2. In many practical applications, the noise 
variance in the degraded image is not known and its 
estimation may be a tedious problem. We will 
survey some of these methods in the following 
subsections.  

 
4.1. CONSTRAINED LEAST SQUARES 
(CLS) METHOD 

In this method, the parameter λ  is selected such 
that the following equation is satisfied [6]: 

222222
))(()(€ σελλ M===−=− ngHAIfHg  (10) 

Using the constrained least squares method is 
equivalent to assuming that the ith component of the 

error )(€ λfHg −  is Gaussian and 
2

)(€ λfHg −  is 

Chi-square distributed with variance 2σ  and 2M  
degrees of freedom.  

 
4.2 EQUIVALENT DEGREES OF 
FREEDOM (EDF) METHOD 

The notation of the equivalent degrees of 
freedom (EDF) can also be incorporated into the 
evaluation of the regularization parameter [6]. The 
EDF method takes into account the linear 
dependency between the degraded image g  and the 

estimated image )(€ λf . Therefore, 
2

)(€ λfHg −  is 

Chi-square distributed with variance 2σ  and 
))(( λHAI −trace  degrees of freedom. Thus, in 

this case, the constraint equation used for computing 
λ  will be given by [6]: 

[ ])(

))(()(ˆ

2

22

λσ

λλ

HAI

gHAIfHg

−

=−=−

trace
 (11) 

 

4.3 MEAN SQUARE ERROR (MSE) 
METHOD 

Another method for evaluating λ  is obtained by 
directly minimizing the MSE function. The MSE 
function can be written as [6]: 

[ ]
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Since the term 2f  does not depend on λ , the 

minimization of [ ]2)(λeE is equivalent to the 

minimization of [ ])(€2)(€ 2
λλ fff tEE −⎥⎦

⎤
⎢⎣
⎡ . Using 

the Toeplitz to circulant approximation, we get [6]:  
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where ih  and ic  are the Eigenvalues of H  and C , 
respectively, and iF  and iG  are the ith components 
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of the discrete Fourier transforms of f  and g , 
respectively.  

Substituting Eqs. (13), (14) into Eq. (12) and 
letting the derivative of the MSE function equal to 
zero we get: 

 0
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In matrix form, this is equivalent to: 

  ]))(([
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222
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The solution of Eq. (16) leads to an estimate of 
the regularization parameter λ . 

 
4. 4 PREDICTED MEAN SQUARE ERROR 
(PMSE) METHOD 

Another criterion for choosing the regularization 
parameter is based on the minimization of the 
weighted error norm [6]: 

[ ]   )(€)(
22

⎥⎦
⎤

⎢⎣
⎡ −= λλ fHHfHe EE  (17) 

This method is based on the fact that the data 
points, which correspond to large Eigenvalues of H 
are more reliable, and thus they are weighted 
heavier. In matrix form, the regularization parameter 
λ  can be evaluated by solving the following 
equation [6]: 

[ ]
 ])]([[2
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22
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4. 5 SET THEORETIC (ST) METHOD 

In this method, a priori knowledge about f  is 
assumed which restricts the solution to lie in a set 

fQ , that is, fQf ∈ where fQ is an M2 dimensional 
space [6].  

( ){ }       22 E≤= CffQ f
 (19) 

Similarly the noise n  is assumed to belong to a 
set nQ . Since n  must lie in a set, it follows that a 
given observation g  combines with the set nQ to 
define a new set which must contain f , i.e  

( ){ }        22 ε≤−= HfgfQ f/g
  (20) 

Both of the sets fQ and f/gQ contain f  and 
therefore f must lie in their intersection [6]. 

f/gff QQQ I=€ .   (21) 

To make the problem more tractable, ellipsoids 
are used for the sets fQ and nQ . The equation of an 
ellipsoid is given by [6]: 

   ]1)() ≤−−= −
f

1
fff cfGcf:[fQ t(     (22) 

where fc is the center of the ellipsoid and fG  is a 
positive matrix, whose Eigenvalues and Eigen 
vectors determine, respectively, the orientation and 
the length of the axis of fQ . The centers of the 
ellipsoids bounding the intersection of these two 
ellipsoids fQ and f/gQ are given by [23, 24]: 

     .€
21

1

2221 gHCCHHf
tt

εε
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E
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⎥
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where 121 =+ pp  and 0, 21 ≥pp . Figure (1) 
gives a geometric interpretation of the set theoretic 
approach. For 21 pp = , the regularization parameter 
is given by [6]: 

  )/( 2Eελ =    (24) 

 

 
 
 
 
 
 
 
 

Fig. 1 – Geometric interpretation for the set theoretic approach using ellipsoids 

 

 22 E=Cf  

 fQ
 f/gQ   €fQ

 22 ε=− gHf
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5. THE SUGGESTED METHOD FOR 
EVALUATING THE REGULARIZATION 

PARAMETER 
The different methods mentioned above for 

evaluating the regularization parameter yield 
different estimates of λ . The regularization 
parameter λ dictates, in general, the level of 
smoothness in the restored image. Thus, if two 
different regularization parameters aλ and bλ  are 
used in restoring a degraded image with ba λλ > , 

the resulting restored image )(€
af λ  will be 

smoother than )(€
bf λ  [6]. The smoothness criterion 

doesn’t reveal any thing about the MSE of the 
solution. 

Based on the smoothness criterion, the 
smoothness of the solutions obtained using the 
different methods of evaluation differs according to 
the value of λ  obtained with each method. Some 
methods yield over smoothed estimates of the 
restored images while others yield under smoothed 
estimates [6]. Accordingly, a unified approach is 
needed to estimate the regularization parameterλ . 
We will now present the proposed method for 
evaluating the regularization parameter that can 
achieve minimum mean square restoration error. 

The regularized image restoration filter transfer 
function is expressed in Eq. (8). It is clear from this 
equation that the parameter λ  controls the passband 
of this restoration filter. This is illustrated in Figs (2) 
to (6). Figure (2) illustrates the frequency response 
of a lowpass blurring operator ),( vuH . Figure (3) 
illustrates the frequency response of the inverse 
filter. It is clear that the inverse filter has 
singularities at certain frequencies. In Figs. (4) to 
(6), the effect of regularization is illustrated with a 
regularization parameter λ=0.1, 0.01 and 0.001, 
respectively. It is clear that the regularized filter has 
a bandpass nature and the parameter λ controls the 
location of the passband in the frequency domain. 

In general, most images to be restored using this 
regularized restoration filter have their spatial 
frequencies concentrated near the low frequency 
region of the spectrum. When the filter passband 
coincides with the spectral region at which the 
frequency contents of the image to be restored lie, 
good restoration results are obtained due to the 
preservation of all frequency contents of the restored 
image. The noise frequency components, which 
extend to infinite frequencies lie outside the filter 
passband and thus are reduced. 

 
Fig. 2 – Low pass filter frequency response 

 
Fig. 3 – Inverse Filter frequency response 

 
Fig. 4 – Regularized Filter frequency response λ=0.1 

 
Fig. 5 – Regularized Filter frequency response λ=0.01 
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Fig. 6 – Regularized Filter frequency response λ=0.001 

The suggested method for the evaluation of the 
regularization parameter is based on the above-
mentioned concept as illustrated in Fig. (7). In this 

method, an initial value for the regularization 
parameter is assumed and the restoration process is 
performed on the degraded image ),( 21 nng  using 
the regularized filter ),,( λvuD . The power 
spectrum of the restored image is estimated and then 
the total power in the restored image is calculated. 
This process is repeated iteratively by updating the 
regularization parameter value until a maximum 
value of the total power is obtained in the restored 
image. The value of λ  which yields this maximum 
total power is the best estimate of λ  expected to 
yield minimum mean square error in the restored 
image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 – Block diagram of the suggested method for the evaluation of the regularization parameter 

 
The auto-correlation function of the restored 

image ),(' 21 nng is evaluated using the following 
relation: 

∑∑
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where w  is an arbitrary window length. 
The power spectrum of the restored image 
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An integration process, which may be 
approximated using a summation process, is 
performed over the whole spectrum to evaluate the 
total power in the restored image ),(' 21 nng . The 
approximation of this integration process is 
performed as follows: 

∑∑
− −

=
1 1

'2 ),(1 N

u

N

v
gt vuP

N
P   (27) 

When this total power is maximized, the restored 
image ),(' 21 nng  can be considered the best 

estimate of the image ),(€
21 nnf . If the power is not 

maximum, the regularization parameter is updated 
and the process is repeated.  

 
6. SIMULATION RESULTS 

The suggested method for evaluating the 
regularization parameter is tested in this section for 
two different images with different spatial activities; 
the Cameraman and the Mandrill images illustrated 
in Figs. (8) and (9), respectively. The steps of the 
proposed method illustrated in Fig. (7) are applied 
on both the degraded Cameraman and Mandrill 
images. 

 
Fig. 8 – Original Cameraman image 

 
Fig. 9 – Original Mandrill image 

The restoration process is performed in the 
presence of additive noise and a blurring operator of 
size 5x5 with an SNR=40 dB. The variations of the 
total power and MSE in the restored images with the 
value of the regularization parameter are plotted in 
Figs. (10) and (12), respectively, for the Cameraman 
image and in Figs. (11) and (13), respectively, for 
the Mandrill image. It is clear that the minimum 
MSE coincides with the maximum power for the 
Cameraman image, which is mainly an image of low 
frequency nature. This means that the proposed 
algorithm have succeeded in evaluating the best 
value of the regularization parameter.  

 
Fig. 10 – Pt versus λ for restoring the Cameraman 

image degraded by 5X5 operator SNR=40 dB 

 
Fig. 11 – Pt versus λ for restoring the Mandrill image 

degraded by 5X5 operator SNR=40 dB 

 
Fig. 12 – MSE versus λ for restoring the Cameraman 

image degraded by 5X5 operator SNR=40 dB 
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Fig. 13 – MSE versus λ for restoring the Mandrill 

image degraded by 5X5 operator SNR=40 dB 

For the Mandrill image which is of a high 
frequency nature, the MSE reaches its minimum 
value with the maximum value of the total power in 
the restored image and keeps this minimum value 
for a long range of λ . This means that a wide range 
of λ  can be used for the restoration of images 
containing much high frequency details.  

 
7. CONCLUSIONS 

This paper has presented a new iterative method 
for the evaluation of the regularization parameter in 
regularized image restoration. This method has 
succeeded in evaluating the value of the 
regularization parameter which can maximize the 
power in the restored image without knowledge of 
the noise variance in the degraded image. The 
proposed method can be used in the restoration of 
images containing either low or high frequencies. 
For the restoration of images with low frequencies, a 
single value of the regularization parameter can be 
used, while for the restoration of images with high 
frequencies, a wide margin for the regularization 
parameter can be used. 
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