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Abstract: An associative memory (AM) is a special kind of neural network that allows associating an output pattern 
with an input pattern. Some problems require associating several output patterns with a unique pattern. Classical 
associative and neural models cannot solve this simple task and less if these patterns are complex images, for example 
faces. In this paper a network of AMs to recall a collection of patterns is proposed. The accuracy of the proposal is 
tested with two benchmarks. One is composed by 20 objects and the other is composed by 20 images of 15 different 
people faces. First the all, the benchmarks are split into several collections and then this collections are used to train 
the network of AMs. During training an image of a collection is associated with the rest of the images belonging to the 
same collection. Once trained the network we expected to recover a collection of images by using as an input pattern 
any image belonging to the collection. 
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1. INTRODUCTION 
An associative memory AM is a special kind of 

neural network that allows recalling one output 
pattern given an input pattern as a key that might be 
altered by some kind of noise (additive, subtractive 
or mixed). Several models of AMs are described in 
[1], [2], [3], [4], [5], [6], [7] and [8]. Most common 
application of these models is as a filter. In general, 
these models have several constraints which limit 
their applicability in complex problems such as 
object and face recognition. In particular, models 
described in [4], [5] and [6] cannot handle with 
mixed noise. Associative model presented in [7] and 
[8] is robust to mixed noise. 

An association between input pattern x  and 
output pattern y  is denoted as ( ),k kx y , where k  is 

the corresponding association. AM W  is 
represented by a matrix whose component ijw  can 
be seen as the synapse of the neural network. 
Operator W  is generated from a finite a priori set of 
know associations, known as the fundamental set of 
association and is represented as: 

( ){ }, 1, ,k k k p=x y K  where p  is the number of 

associations. If 1, ,k k k p= ∀ =x y K  then W  is 
auto-associative, otherwise it is hetero-associative. A 

distorted version of a pattern x  to be restored will 
be denoted as x% . If an AM W  is fed with a distorted 
version of kx  and the output obtained is exactly ky , 
we say that recalling is perfect. 

These models only associate an input pattern with 
a unique output pattern which in some problems 
could be seen as a limitation. Suppose for example 
that instead of recall a face of a person associated to 
an input pattern you want to recall different faces of 
the person, probably took in different stages of his 
life, using the same input pattern, or any pattern 
related to the face. In order to solve these kind 
problems, we will need more than one associative 
memory. We will need a network of associative 
memories because an associative memory only 
recalls an output pattern and not a collection of 
patterns.  

In this paper we present how a network of AMs 
can be used to recall nor just one pattern but several 
of them given an input pattern. Further more we 
shown how the adopted associative model is also 
useful in complex problems such as object and face 
recognition. In this proposal an association between 
input pattern x  and a collection of output pattern Y  
is denoted as, ( ){ }, 1, ,k k k p=x Y K  where p  is 

the number of association, { }1, ,k r=Y y yK  is a 
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collection of output patterns and r  is the number of 
patterns belonging to collection Y . 

The remaining of the paper is organized as 
follows. In sections 2 and 3 the associative model 
used in this research is described. In section 4 the 
proposed network of AMs is presented. In section 5 
the experimental results obtained with the proposal 
are given. In section 6, finally, the conclusions and 
several directions for further research in this 
direction are presented. 

 
2. DYNAMIC ASSOCIATIVE MODEL 
The brain is not a huge fixed neural network, as 

had been previously thought, but a dynamic, 
changing neural network that adapts continuously to 
meet the demands of communication and 
computational needs [9]. This fact suggests that 
some connections of the brain could change in 
response to some input stimuli. 

Humans, in general, do not have problems to 
recognize patterns even if these are altered by noise. 
Several parts of the brain interact together in the 
process of learning and recalling a pattern. For 
example, when we read a word the information 
enters the eye and the word is transformed into 
electrical impulses. Then electrical signals are 
passed through the brain to the visual cortex, where 
information about space, orientation, form and color 
is analyzed. After that, specific information about 
the patterns passes on the other areas of the cortex 
that integrate visual and auditory information. From 
here information passes through the arcuate 
fasiculus, a path that connects a large network of 
interacting brain areas; paths of this pathway 
connect language areas with other areas involving in 
cognition, association and meaning, for details see 
[10] and [11].  

Based upon the above example we have defined 
in our model several interacting areas, one per 
association we would like the memory to learn. Also 
we have integrated the capability to adjust synapses 
in response to an input stimulus.  

As we could appreciate from the previous 
example, before an input pattern is learned or 
processed by the brain, it is hypothesized that it is 
transformed and codified by the brain. In our model, 
this process is simulated using the following 
procedure recently introduced in [7]: 

Procedure 1. Transform the fundamental set of 
associations into codified patterns and de-codifier 
patterns: 

Input: FS Fundamental set of associations: 

{1. Make d const=  and make ( ) ( )1 1 1 1, ,=x y x y  

 2. For the remaining couples do { 
    For 2k =  to p { 

  For 1i =  to n { 

    1k k
i ix x d−= + ; 

€k k k
i i ix x x= − ; 1k k

i iy y d−= + ; €k k k
i i iy y y= −   

}}} Output: Set of codified and de-codifying 
patterns. 

 
This procedure allows computing codified 

patterns from input and output patterns denoted by 
x  and y  respectively; €x  and €y  are de-codifying 
patterns. Codified and de-codifying patterns are 
allocated in different interacting areas and d defines 
of much these areas are separated. On the other 
hand, d determines the noise supported by our 
model. In addition a simplified version of kx  
denoted by ks  is obtained as: 

 
( )k k

ks s= =x mid x  (1)

 
where mid operator is defined as ( )1 / 2 nx +=mid x . 

When the brain is stimulated by an input pattern, 
some regions of the brain (interacting areas) are 
stimulated and synapses belonging to those regions 
are modified.  

In our model, we call these regions active regions 
and could be estimated as follows: 

 

( ) ( )
1

arg min
p

ii
ar r s s

=

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

x x  (2)

 
Once computed the codified patterns, the de-

codifying patterns and ks  we can build the 
associative memory. 

Let ( ){ }, 1, ,k k k p=x y K , k n∈x R , k m∈y R  a 

fundamental set of associations (codified patterns). 
Synapses of associative memory W  are defined as:  

 
ij i jw y x= −  (3)

 
After computed the codified patterns, the de-

codifying patterns, the reader can easily corroborate 
that any association can be used to compute the 
synapses of W  without modifying the results. In 
short, building of the associative memory can be 
performed in three stages as: 
1. Transform the fundamental set of association 

into codified and de-codifying patterns by means 
of previously described Procedure 1. 

2. Compute simplified versions of input patterns by 
using equation 1. 

3. Build W  in terms of codified patterns by using 
equation 3. 

As we had already mentioned, synapses could 
change in response to an input stimulus; but which 
synapses should be modified? For example, a head 
injury might cause a brain lesion killing hundred of 
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neurons; this entails some synapses to reconnect 
with others neurons. This reconnection or 
modification of the synapses might cause that 
information allocated on brain will be preserved or 
will be lost, the reader could find more details 
concerning to this topic in [12] and [13]. 

This fact suggests there are synapses that can be 
drastically modified and they do not alter the 
behavior of the associative memory. In the contrary, 
there are synapses that only can be slightly modified 
to do not alter the behavior of the associative 
memory; we call this set of synapses the kernel of 
the associative memory and it is denoted by WK .  

In the model we can find two types of synapses: 
synapses that can be modified and do not alter the 
behavior of the associative memory; and synapses 
belonging to the kernel of the associative memory. 
These last synapses play an important role in 
recalling patterns altered by some kind of noise. 

Let n∈WK R  the kernel of an associative 
memory W . A component of vector WK  is defined 
as:  

 
( ) , 1, ,i ijkw w j m= =mid K  (4)

 
According to the original idea of our proposal, 

synapses that belong to WK  are modified as a 
response to an input stimulus. Input patterns 
stimulate some active regions, interact with these 
regions and then, according to those interactions, the 
corresponding synapses are modified. Synapses 
belonging to WK  are modified according to the 
stimulus generated by the input pattern. This 
adjusting factor is denoted by w∆  and can be 
computed as:  

 
( ) ( ) ( )arw s s∆ = ∆ = −x x x  (5)

 
where ar  is the index of the active region. 

Finally, synapses belonging to WK  are modified 
as:  

 
( )oldw w= ⊕ ∆ −∆W WK K  (6)

 
where operator ⊕  is defined as 

 1, ,ie x e i m⊕ = + ∀ =x K . As you can appreciate, 
modification of WK  in equation 6 depends of the 
previous value of w∆  denoted by oldw∆  obtained 
with the previous input pattern. Once trained the 
AM, when it is used by first time, the value of oldw∆  
is set to zero. 

Once synapses of the associative memory have 

been modified in response to an input pattern, every 
component of vector y  can be recalled by using its 
corresponding input vector x  as:  

 
( ) , 1, ,i ij jy w x j n= + =mid K  (7)

 
In short, pattern y  can be recalled by using its 

corresponding key vector x  or x%  in six stages as 
follows: 
1. Obtain index of the active region ar  by using 

equation 2. 
2. Transform kx  using de-codifying pattern €arx  by 

applying the following transformation: 
€k k ar= +x x x) . 

3. Compute adjust factor ( )w∆ = ∆ x)  by using 
equation 5. 

4. Modify synapses of associative memory W  that 
belong to WK  by using equation 6. 

5. Recall pattern ky)  by using equation 7. 
6. Obtain ky  by transforming ky)  using de-

codifying pattern €ary  by applying 
transformation: €k k ar= −y y y) . 

The formal set of prepositions that support the 
correct functioning of this dynamic model can be 
found in [14]. 

 
3. MODIFIED DAM 

In [15] the authors describe an interesting idea 
for recognizing faces based on the random selection 
of stimulating points (pixels), see figure 1. 

 

 
Fig. 1 – Random selection of stimulation points used to 

train an AM. 

In order to recognize complex images such as 
faces, we add to the DAM model a vector of 
stimulating points SP  where each stimulating point, 
given by ( )isp random n= , is a random number 
between zero and the length of input pattern and 

1, ,i c= K  where c  is the number of stimulating 
points used. To determine the active region we 
allocate in the DAM model an alternative simplified 
version of each pattern kx  given by:  

 
( )

i

k k k
i spss= =ss x x  (8)

 
Once compute these simplified versions we could 
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estimate the active region as follows:  
 

( )
1

arg max( )
p

i
ar r

=
= =x a  (9)

 

where 1
i ib ba a= + , ( )

1
arg min

p
k

i iik
b ss

=
= −⎡ ⎤⎣ ⎦x ss  and 

1, ,i c= K . 
Building phase of the DAM is done as follows: 

1. Let  k
xI  and  k

yI  an association of images and c  
be the number of stimulating points. 

2. Take at random a stimulating point 
, 1, ,isp i c= K . 

3. For each association: 
4. Select filter size and apply it to the stimulating 

points in the images. 
5. Transform the images into a vector ( kx , ky ) by 

means of the standard image scan method. 
6. Train the DAM as in building procedure and 

compute the alternative simplified version of the 
patterns by using equation 8. 

Pattern k
yI  can be recalled by using its 

corresponding key image k
xI  or distorted version k

xI%  
as follows: 
1. Use the same stimulating point, , 1, ,isp i c= K  

and filter size as in building phase. 
2. Apply filter to the stimulating points in the 

images. 
3. Transform the images into a vector by means of 

the standard image scan method 
4. Determine active region using equation 9. 
5. Apply steps from two to six as described in 

recalling procedure. 
 
4. ARCHITECTURE OF THE NETWORK 

Classical AMs (see for example [1], [2], [3], [4], 
[5], [6], [7] and [8]) are able to recover a pattern (an 
image) from a noisy version of it. In their original 
form classical AMs are not useful when image is 
altered by image transformations, such as 
translations, rotations, and so on. 

The network of AMs proposed in this paper is 
robust under some of these transformations. Taking 
advantage of this fact, we can associate different 
versions of an image (rotated, translated and 
deformed) to an image. 

Our task is to propose a network of AMs aimed 
to associate an image with other images belonging to 
the same collection. In order to achieve this, first 
suppose we want to associate images belonging to a 
collection with an image of the same collection 
using an AM. A good solution could be to compute 
the average image of whole images belonging to the 
collection and then associate the average image with 

any image that belongs to the collection. The same 
solution can be applied to other collections. Once 
computed the average images from different 
collections and chosen the images to be associated, 
we can train the AM as was described in section 2. 

Until this point the AM only can recover an 
association between a collection of input patterns X  
and output pattern y  denoted as, 

( ){ }, 1, ,k k k p=X y K where p  is the number of 

association, { }1, ,k r=X x xK  is a collection of input 

patterns and r  is the number of patterns belonging 
to collection X . This means that it can only be 
recovered the associated image using any image 
from a collection. However, we would like to get the 
inverse result; instead of recovering the associated 
image using any image from a collection, we would 
like to recover all the images belonging to the 
collection using any image of the collection. 

To achieve this goal we will train a network of 
AMs built as in previous sections. Each AM will 
associate all the images of a collection with one 
image of this collection. This implies that for 
recovering all images of a given collection, we 
would need r  AMs, where r  is the number of 
images belonging to the collection. The network 
architecture of AMs needed for recovering a 
collection of images is shown in Fig. 2. 

 

 
Fig. 2 – Architecture of a network of AMs for recalling 

a collection of patters using an input pattern. 

In order to train the network of r  AMs, first of 
all we need to know the number of collections we 
want to recover. Training phase is done as follows: 
1. Transform each image into a vector. 
2. Build n  collections of images n

q r×
⎡ ⎤⎣ ⎦CI  where q  

is the number of pixels of each image and r  the 
number of images. 

3. Let [ ]q n×
AI  a matrix of average images. For 

1k =  to n  compute the average image as: 

1

r
k
s

s
k r

==
∑CI

AI      (10) 

4. For 1s =  to r  build an sAM as described in 
Section 4 (building phase). For 1k =  to n  
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k
k=x AI  and k k

s=y CI  
 
Once trained the network of AMs, when is fed 

with any image of a collection, each AM will 
respond with an image that belongs to the collection. 
To recover a collection of images we just operate 
each AM with the input image as described in 
Section 3 (recalling phase).  

Some important to remark is that once the 
collection of associative memories has been 
stimulated by an input pattern, we do not need any 
decision rule to determine the final class. Each 
associative memory will recall the corresponding 
output pattern which belongs to the same collection. 
 

6. EXPERIMENTAL RESULTS 
In this section the accuracy of the proposal is 

tested using two different benchmarks of images, see 
Fig. 3 and Fig. 4. 

 

     

     

     

     
          (a) (b)         (c)          (d)       (e) 

Fig. 3 – (a-e) Collections of images taken from the 
Amsterdam Library of Objects Images (ALOI). 
 

    

    

    

    
          (a) (b)         (c)          (d)       (e) 
Fig. 4. (a-e) Collections of images taken from the Essex 

Collection of facial images. 

 
From the first benchmark 20 complex images 

were grouped into 5 collections composed by 4 
images. After that, we proceeded to train the 
network of AMs as was explained in Section 5. For 
this problem our network is composed of four AMs. 
It is important to say that the number of images 
composing a collection could by any, the only 
restrictions to guaranty perfect and robust recall is 
that patterns (images) satisfy propositions described 

in [14]. 
Once trained the network, five experiments were 

performed to test the accuracy of the proposal. The 
first four experiments use the original DAM and the 
last experiment uses the modified DAM. The first 
experiment consisted on recovering a collection of 
images using any image of the collection in order to 
verify how much robust is the proposal under image 
deformations. Second experiment consisted on 
recovering a collection of images using any image of 
the collection altered by mixed noise in order to 
verify how much robust is the proposal under 
deformations and noisy version of the images. In the 
third experiment each image of the training set was 
rotated (from 0 to 360). We then used them to fed 
the network of AMs in order to verify how much 
robust is the proposal under deformations and 
rotations. Finally for forth and five experiments the 
images of the training set were rotated (from 0 to 
360) and translated, and then used them to fed the 
network of AMs in order to verify how much robust 
is the proposal under deformations, rotations and 
translations. 

The accuracy of the proposal was of 100% in the 
first experiment. The five collections of images 
where perfectly recovered by using any image of the 
collection (20 images), in Table 1 are shown some 
results obtained in this experiment. Remember that 
we train the network of AMs with average images, 
so then; when we fed the network with an image of 
any collection this image could be seen as a 
deformed version of the average images.  

The results provided by our proposal in this 
experiment show that the associative model used to 
train the network of AMs are robust under 
deformations. Something important to say is that if 
we use other associative models for training the 
network of AMs such as morphological or median 
AMs, the collections might not be correctly 
recovered due to they are not robust under this kind 
of transformations or deformations. 

Table 1. Some results obtained for the first 
experiment. As you can appreciate all sets of images 

were perfectly recovered. 

Input 
image 

Image recovered by each AM. 
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The accuracy of the proposal, in the second 
experiment, was of 100%. The five collections of 
images where recovered perfectly by using any 
image of the collection as input, even when these 
images were altered by noise (200 images). As you 
can see in Table 2, despite of the level of noise 
added to the images, the collections were correctly 
recovered. Despite of other associative models are 
robust to this kind of noise, they might not recover 
the all collections due to they are only robust under 
additive, subtractive and mixed noise but not to 
image transformations. 

The accuracy of the proposal, in the third 
experiment, was also of 100%. The five collections 
of images where recovered perfectly even when 
rotated version of the images were used (700 
images), see in Table 3. Some important to say is, to 
our knowledge, neither morphological AMs nor 
other classical models are robust under rotations. 
Due to we used simplified patterns using mid 
operator and due to this operator is invariant to 
rotations the accuracy of the proposal was of 100%. 

 
Table 2. Some results obtained for the second 

experiment. Despite of the noise added to the images, 
all sets of images were again correctly recovered. 

Input 
image 

Image recovered by each AM 

   

   

   

   

   
 

Table 3. Some results obtained for the third 
experiment. Despite of the noise added to the images 
and rotations, all sets of images were again correctly 

recovered. 

Input 
image 

Image recovered by each AM 

  

  

  

  

  

The accuracy of the proposal, in the third 
experiment, was also of 100%. The five collections 
of images where recovered perfectly even when 
rotated version of the images were used (700 
images), see in Table 3. Some important to say is, to 
our knowledge, neither morphological AMs nor 
other classical models are robust under rotations. 
Due to we used simplified patterns using mid 
operator and due to this operator is invariant to 
rotations the accuracy of the proposal was of 100%. 

The accuracy of the proposal, in the fourth 
experiment was of 40%. In this experiment with 700 
images; with some images we recalled a collection, 
but with some other images (when patterns did not 
satisfied the proposition that guarantees robust 
recall) the collections were not recalled, see Table 4. 
However, the results obtained by our proposal are 
acceptable if they are compared with the results 
provided by order associative models (less of 10% 
of accuracy).  

 
Table 4. Some results obtained for the fourth 
experiment. With some images we recalled a 

collection, but with some other images (when patters 
did not satisfied the proposition that guarantees 
robust recall) the collections were not recalled.  

Input 
image 

Image recovered by each AM 

  

  

  

  

  
 
Finally, if we use the modified DAM the 

accuracy increases, in average, to more than 80%. In 
this experiment we selected different numbers of 
stimulation points, as in [15].  

For the second benchmark 300 complex images 
of faces were grouped into 15 collections composed 
by 20 images. After that, we proceeded to train the 
network of AMs as was explained in Section 5. For 
this problem our network was composed of 15 AMs. 

Once trained the network, two experiments were 
performed to test the accuracy of the proposal. The 
first experiment uses the original DAM and the 
second experiment uses the modified DAM. The 
first experiment consisted on recovering a collection 
of faces using any face of the collection in order to 
verify how much robust is the proposal under face 
recognition. In these experiments we did not include 
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noise or affine transformation because of the 
different gesticulations in the faces. 

The accuracy of the proposal using the original 
DAM was of 20%. In this experiment with 300 
images; with some images we recalled a collection, 
but with some other images (when patterns did not 
satisfy the proposition that guarantees robust recall), 
due to the gesticulations and illumination changes, 
the collections were not recalled. 

For the last experiment, using the modified 
DAM, the accuracy increased to more than 95%. 
These results were obtained with more than 100 
stimulating points. 

In general, the accuracy of the proposal with 
different banks of images (altered by noisy and 
rotated) was of 100%. This was due to the input 
patterns (the images) satisfy the propositions 
presented in [14]. If these patterns do not satisfy 
these propositions, as images used in experiment 
four (translated and rotated images), the accuracy of 
the proposal diminish. However, the results provided 
by our proposal using the modified DAM, up-
performed the results provide by the original DAM 
and other associative models. 
 

5. CONCLUSION 
In this paper we have proposed a network of 

AMs. This network is useful for recalling a 
collection of output patterns using an input pattern 
as a key. The network is composed by several 
dynamic associative memories (DAM). This DAM 
is inspired in some aspects of human brain. The 
model, due to plasticity of its synapses and 
functioning, is robust under some transformations as 
rotation, translation and deformations. 

In addition, we describe an algorithm for training 
a network of AMs codifying the images of a 
collection by using an average image. Once 
computed the average images we proceed to training 
the network of AMs. 

The network is capable to recall a collection of 
images (patterns) even if images are altered by noise 
or suffer some deformations and rotations.  

Due to the original DAM present some problems 
with translations and face recognition we modified 
the DAM using a random selection technique. This 
technique allow the DAM up-perform the results 
obtained with the original DAM. 

Through several experiments we have shown the 
efficiency of the proposal. In the first three 
experiments the proposal provided an accuracy of 
100%. Even when the images were altered with 
mixed noise and rotated, the network of AMs 
recovered the corresponding collection. When object 
in images suffer translations or the object are faces, 
the accuracy of the proposal diminished. This is 

because most of the patterns under this 
transformation do not satisfied the propositions that 
guarantee robust recall. By using the modified DAM 
the accuracy of the proposal increases to more than 
80% with translated objects and almost the 100% 
with complex faces. In general, the results provided 
by our proposal up-performed the results provide by 
other associative models. 

The performed experiments could be seen as an 
application in image retrieval problems. We could 
say that we have developed a small system able to 
recover a collection of images (previously 
organized), even in the presence of altered versions 
of the images. 

Nowadays we are working and directed this 
research to solve real problems related with signal 
and image retrieval. We are focusing our efforts to 
propose new associative models able to associate 
and recall images under more complex 
transformations. Furthermore, this new models have 
to work with images of much more complicated 
objects such as flowers, animals, cars, etc. 
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