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Abstract: Evolution in artificial neural networks (e.g. neuroevolution) searches through the space of behaviours for a 
network that performs well at a given task. Here is presented a neuroevolution system evolving populations of neurons 
that are combined to form the fully connected multilayer feedforward neural network with fixed architecture. In this 
article, the transfer function has been shown to be an important part of architecture of the artificial neural network and 
have significant impact on an artificial neural network’s performance. In order to test the efficiency of described 
method, we applied it to the pattern recognition problem and to the alphabet coding problem. 
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1. NEUROEVOLUTION 

Neuroevolution represents a combination of 
neural networks and evolutionary algorithms 
(e.g. the genetic algorithm) where neural networks 
are the phenotype being evaluated. The genotype is a 
compact representation that can be translated into an 
artificial neural network. Evolution has been 
introduced into artificial neural networks at roughly 
three different levels: connection weights, 
architectures, and learning rules. The evolution of 
connection weights provides a global approach to 
connection weights training, especially when 
gradient information of the error function is difficult 
or costly to obtain. Due to the simplicity and 
generality of the evolution and the fact that gradient-
based training algorithms often have to be run 
multiple times in order to avoid being trapped in a 
poor local optimum, the evolutionary approach is 
quite competitive. The evolution of architectures 
enables artificial neural networks to adapt their 
topologies to different tasks without human 
intervention and thus provides an approach to 
automatic artificial neural network design. 
Simultaneous evolution of artificial neural network 
architectures and connection weights generally 
produces better results. The evolution of learning 
rules in artificial neural networks can be used to 
allow an artificial neural network to adapt its 
learning rule to its environment. In a sense, the 
evolution provides artificial neural network with the 

ability of learning to learn. 
Evolutionary algorithms are the term for different 

approaches as of using the models of evolutionary 
processes, which have nothing common with 
biology. They try to use the conception of driving 
forces of organism’s evolution for optimization 
purposes. Evolutionary algorithms refer to a class of 
population-based stochastic search algorithms that 
are developed from ideas and principles of natural 
evolution. Fogel [1] gives a good introduction to 
various evolutionary algorithms for optimization. 
One important feature of all these algorithms is their 
population-based search strategy. Individuals in a 
population compete and exchange information with 
each other in order to perform certain tasks.  

The choice of the right representation of 
individuals and their fitness create the essence of the 
advantageousness of the evolutionary algorithm, 
which depends on the selection of suitable choice of 
evolutionary algorithm and its appropriate operators. 
Individual within the evolutionary algorithm are 
then the problem solution. If a new solution is better, 
it substitutes the previous one. Optimization will be 
considered here as a synonym for minimization [2]. 
This is not a problem because of going in search the 
function maximum is equivalent to going in search 
of function minimum multiplied by -1.  

Global search procedures such as evolutionary 
algorithms are usually computationally expensive. It 
would be better not to employ evolutionary 



Eva Volna / Computing, 2009, Vol. 8, Issue 1, 16-23 
 

 17

algorithms at all three levels of evolution. It is, 
however, beneficial to introduce global search at 
some levels of evolution, especially when there is 
little prior knowledge available at that level and the 
performance of the artificial neural network is 
required to be high, because the trial-and-error or 
heuristic methods are very ineffective in such 
circumstances. With the increasing power of parallel 
computers, the evolution of large artificial neural 
networks becomes feasible. Not only can such 
evolution discover possible new artificial neural 
network architectures and learning rules, but it also 
offers a way to model the creative process as a result 
of artificial neural network’s adaptation to a 
dynamic environment. 

 
2. EVOLUTION OF NODE TRANSFER 

FUNCTIONS 
The architecture of artificial neural network 

includes its topological structure, i.e., connectivity, 
and the transfer function of each neuron in the 
artificial neural network. Architecture design is 
crucial in the successful application of artificial 
neural networks because the architecture has 
significant impact on a network’s information 
processing capabilities. Up to now, architecture 
design is still very much a human expert’s job. It 
depends heavily on the expert experience and a 
tedious trial-and-error process. There is no 
systematic way to design a near-optimal architecture 
for a given task automatically. Design of the optimal 
artificial neural network architecture can be 
formulated as a search problem in the architecture 
space where each point represents some architecture. 
Given some performance (optimality) criteria about 
architectures (e.g., lowest training error, lowest 
network complexity), the performance level of all 
architectures forms a discrete surface in the space. 
The optimal architecture design is equivalent to 
finding the highest point on this surface. 

The discussion on the evolution of architectures 
so far only deals with the topological structure of 
architecture. The transfer function of each node in 
the architecture has been usually assumed that is 
fixed and predefined by human experts, at least for 
all the nodes in the same layer.  

In principle, transfer functions of different 
neurons in artificial neural networks can be different 
(e.g. hard-limiting threshold function, a Gaussian 
function, sigmoid functions etc.) and decided 
automatically by an evolutionary process, instead of 
assigned by human experts. The decision on how to 
encode transfer functions in chromosome depends 
on how much prior knowledge and computation time 
is available. In general, neurons within a group, like 
a layer, in an artificial neural network tend to have 

the same type of transfer function with possible 
difference in some parameters, while different 
groups of neurons might have different types of 
transfer function. This suggests some kind of 
indirect encoding method, which lets developmental 
rules to specify function parameters if the function 
type can be obtained through evolution, so that more 
compact chromosomal encoding and faster evolution 
can be achieved. Little work has been only done on 
the evolution of node transfer function up to now. 
Mani proposed a modified backpropagation, which 
performs gradient descent search in the weight space 
as well as the transfer function space [3], but 
connectivity of artificial neural networks was fixed. 
Lovel and Tsoi investigated the performance of 
neocognitrons with various S-cell and C-cell transfer 
functions, but did not adopt any adaptive procedure 
to search for an optimal transfer function 
automatically [4]. Stork et al. [5] were the first to 
apply evolutionary algorithms to the evolution of 
both topological structures and node transfer 
functions even though only simple artificial neural 
networks with seven nodes were considered. The 
transfer function was specified in the structural 
genes in their genotypic representation. It was much 
more complex than the usual sigmoid function 
because authors in [5] tried to model biological 
neurons. White and Ligomenides [6] adopted a 
simpler approach to the evolution of both 
topological structures and node transfer functions. 
For each individual (i.e. the artificial neural 
network) in the initial population, 80% nodes in the 
artificial neural network used the sigmoid transfer 
function and 20% nodes used the Gaussian transfer 
function. The evolution was used to decide the 
optimal mixture between these two transfer 
functions automatically. The sigmoid and Gaussian 
transfer function themselves were not evolvable. No 
parameters of the two functions were evolved. Liu 
and Yao [7] used evolutionary programming to 
evolve artificial neural networks with both sigmoidal 
and Gaussian nodes. Rather than fixing the total 
number of nodes and evolve mixture of different 
nodes, their algorithm allowed growth and shrinking 
of the whole artificial neural network by adding or 
deleting a node (either sigmoidal or Gaussian). The 
type of node added or deleted was determined at 
random. Authors in [8, 9, 10] went one step further. 
They evolved topology of artificial neural network, 
node transfer function, as well as connection weights 
for projection neural networks. Sebald and 
Chellapilla [11] used the evolution of node transfer 
function as an example to show the importance of 
evolving representations. Representation and search 
are the two key issues in problem solving. Co-
evolving solutions and their representations may be 
an effective way to tackle some difficult problems 
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where little human expertise is available. In 
principle, the difference in transfer functions could 
be as large as that in the function type, e.g. that 
between a hard limiting threshold function and 
Gaussian function, or as small as that in one of 
parameters of the same type of function, e.g. the 
slope parameter of the sigmoid function. One point 
worth mentioning here is the evolution of both 
connectivity and transfer functions at the same 
time [5] since they constitute a complete 
architecture. Encoding connectivity and transfer 
functions into the same chromosome makes it easier 
to explore nonlinear relations between them. Many 
techniques used in encoding and evolving 
connectivity could equally be used here. 

The evolutionary approaches discussed so far in 
designing artificial neural network architecture 
evolve architectures only, without any connection 
weights. Connection weights have to be learned after 
a near-optimal architecture is found. This is 
especially true if one uses the indirect encoding 
scheme of network architecture. One major problem 
with the evolution of architectures without 
connection weights is noisy fitness evaluation [18]. 
In other words, fitness evaluation is very inaccurate 
and noisy because a phenotype’s (i.e., an artificial 
neural network with a full set of weights) fitness was 
used to approximate its genotype’s (i.e., an artificial 
neural network without any weight information) 
fitness. We want to optimize the genotype so that it 
can perform well regardless of initial connection 
weights, but we can only approximate such 
optimization by examining phenotypes with limited 
sets of initial connection weights of a virtually 
indefinite number of sets. There are two major 
sources of noise [7]:  
• The first source is the random initialization of the 

weights. Different random initial weights may 
produce different training results. Hence, the 
same genotype may have quite different fitness 
due to different random initial weights used in 
training. 

• The second source is the training algorithm. 
Different training algorithms may produce 
different training results even from the same set 
of initial weights. This is especially true for 
multimodal error functions. For example, 
backpropagation may reduce an artificial neural 
network’s error to 0.05 through training, but an 
evolutionary algorithm could reduce the error to 
0.001 due to its global search capability.  
 
In order to reduce such noise, an architecture 

usually has to be trained many times from different 
random initial weights. The average result is then 
used to estimate the genotype’s mean fitness. This 
method increases the computation time for fitness 

evaluation dramatically. It is one of the major 
reasons why only small artificial neural network 
were evolved in this way. In essence, the noise is 
caused by the one-to-many mapping from genotypes 
to phenotypes. It is clear that the evolution of 
architectures without any weight information has 
difficulties in evaluating fitness accurately. One way 
to alleviate this problem is to evolve artificial neural 
network architectures and connection weights 
simultaneously [16, 19]. In this case, each individual 
in a population is a fully specified artificial neural 
network with complete weight information. Since 
there is a one-to-one mapping between a genotype 
and its phenotype, fitness evaluation is accurate. 

 
3. FIXED-TOPOLOGY 
NEUROEVOLUTION 

Fixed-topology methods require a human to 
decide the right topology for a problem and most of 
them optimize connection weights only. Some 
highest performing neuroevolution systems 
(e.g. a system that performs better than any other 
systems on benchmark tasks) realize a more 
parametric evolution. The Symbiotic Adaptive 
Neuro-Evolution algorithm (SANE) [12] deals with 
a population of individual neurons, each of which is 
represented by a numerical vector defining the 
weight of its connections to each of the input and 
output neurons. In addition, there is a population of 
network blueprints consisting of pointers to neurons 
in the population. Individual networks are built out 
of neurons’ subsets that are specified by one of 
blueprints, and the performance of the network as a 
whole is assigned to both the blueprint and to each 
individual neuron contributing to the network. The 
network blueprints are also evolved, with crossover 
recombination between network representations, 
mutations where half of the pointers are changed to 
offspring of the neurons to which they previously 
pointed, and mutations where a small fraction of the 
pointers are set to completely random neurons. 
Similarly, the top performing neurons themselves 
are also recombined and mutated to produce new 
neurons. The Enforced Sub-Population (ESP) [13], 
variant of SANE, is based on the special sort of 
separation. Rather than having one large pool of 
neurons with network blueprints, ESP maintains a 
separate population of neurons for each position in 
the network. Building a network then consists of 
selecting exactly one neuron from each of these 
subpopulations. Since the populations are kept 
separate during the creation of the next generation, 
each population is able to focus on a particular 
function more quickly, and networks are less likely 
to have redundant neurons. Recently, in [14] is 
successfully applied a special evolutionary strategy 
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called Evolution Strategy with Covariance Matrix 
Adaptation (CMA ES) to the evolution of fixed-
topology neural networks. This method keeps track 
of correlations between changes of different weights 
in the network and fitness. Based on this 
information, the CMA-ES changes the covariance 
matrix of the weight mutation distribution so that it 
becomes more biased towards what were so far the 
most promising directions of search. 

In the article, the transfer function has been 
shown to be an important part of architecture of the 
artificial neural network, one has significant impact 
on artificial neural network’s performance. Here is 
presented a neuroevolution system evolving 
populations of neurons that are combined to form 
the fully connected multilayer feedforward neural 
networks with fixed architecture. Neuroevolution 
evolves transfer functions of each neuron in hidden 
and output layers of the network. The system 
maintains diversity in the population, because a 
dominant neural phenotype is likely to end up in the 
same network more than once. As several different 
types of neurons are usually necessary to solve a 
problem, networks with too many copies of the same 
neuron are likely to fail. The dominant phenotype 
then loses fitness and becomes less dominant. The 
system works well because it makes sure neurons 
get the credit they deserve, unlike some other 
neuroevolution techniques, where bad neurons can 
share in a good network or good neurons can be 
brought down by their network. It also works by 
decomposing the task, breaking the search into 
smaller, more manageable parts.  

In the following is described a method of 
automatic search the node transfer function 
architecture in multilayer feedforward neural 
network: First, we must propose neural network 
architecture before the main calculation. We get the 
number of input (m) and output (o) neurons from the 
training set. Next, we have to define the number of 
hidden neurons (h) that is very confounding issue, 
because it is generally more difficult to optimize 
large networks than small ones. Thereafter the 
process of evolutionary algorithms is applied. 
Chromosomes are generated for every individual 
from the initial population as follows, see Fig. 1: 

 
   

individual 1 individual 2 … individual k …
 
 

b1 σ1 … bh σh bh+1 σh+1 … bh+o σh+o
neurons in the hidden layer neurons in the output layer 

  
Fig. 1 – Population of individuals and their 

chromosomes.  

 
 

Symbols bi (i = 1, …,h+o) refers to varies types 
of activation functions [15]: 

• bi = 1, if the activation function is a binary 
sigmoid function:  
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where σ is the steepness parameter, which value is 
set in the initial population randomly, e.g. 
σi ∈ {1,2,3,4,5,6,7}. 

• bi = 2, if the activation function is a binary 
step function with threshold θ :  
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the steepness parameter σi is not define here thus we 
assigned value 0 to it. 

• bi = 3, if the activation function is a Gaussian 
function:  
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the steepness parameter σi is not define here thus we 
assigned value 0 to it. 

• bi = 4, if the activation function is a saturated 
linear function:  
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the steepness parameter σi is not define here thus we 
assigned value 0 to it. 

 
Next, we calculate an error value (E) between the 

desired and the real output after defined partial 
training with genetic algorithms. Adaptation of each 
individual starts with randomly generated weight 
values that are the same for each neural network in 
the given population. On the basis of it is calculated 
a fitness function for every individual as follows: 

 
Fitnessi = Emax - Ei.        (5) 

 
for i = 1, ...,N; where Ei is error for the i-th network 
after a partial adaptation, Emax is a maximal error for 
the given task, Emax = o × pattern (o is number of 
output neurons and pattern is number of patterns), 
N is the number of individuals in the population. 

All of the calculated fitness function values of the 
two consecutive generations are sorted descending 
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and the neural network representation attached to the 
first half creates the new generation. For each fitness 
function is calculated the probability of reproduction 
its existing individual by standard method. One-
point crossover was used to generate two offsprings. 
If the input condition of mutation is fulfilled (e.g. if 
a random number is generated, that is equal to the 
defined constant), one of the individuals is randomly 
chosen. There is randomly replaced one place in its 
genetic representation by a random value from the 
set of permitted values. The process of the 
evolutionary algorithm is ended, if the saturation 
parameter τ1 is greater then define value, i.e. the 
population is composed only from similar types of 
individuals. 

 
4. EXPERIMENTAL TASKS 

In order to test the efficiency of described 
method, we applied it to the pattern recognition 
problem and to the alphabet coding problem that 
exists in cryptography.  

Pattern recognition problem: For coding input 
examples the scheme from Fig. 2 is needed. If in an 
appropriate place the connection exists (e.g. on side 
with number 1, ..., 7), than the input chain 
representation is 1. If a connection does not exist, we 
have 0 in the appropriate place. Input vector contains 
thus seven bits. Output vector has got four bits and 
codes binary values of the input chain number 
representation. 

 
Fig. 2 – Scheme for coded examples to input chain 

of bits. 
 
Neural network was trained to the following 

examples (see Fig. 3): 
 
 

                                                 
1 τ  is equal to a number of the same values at the same 

positions in chromosomes. 

1011111→0000 
0000101→0001 
1110110→0010 
1110101→0011 
0101101→0100 
1111001→0101 
1111011→0110 
1000101→0111 
1111111→1000 
1111101→1001 

 
 

0  1  2 
     

     

3  4  5 
     

     

6  7  8 
     

     

  9   
     

     

  
Fig 3 – The set of patterns (the training set). 
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Table 1. The set of patterns (the training set). 
 

 
THE PLAIN TEXT 

THE 
CIPHER 

TEXT 

Char 
ASCII  
code  

(DEC) 

The chain  
of bits 

The chain  
of bits 

a 97 00001 000010 
b 982 00010 100110 
c 99 00011 001011 
d 100 00100 011010 
e 101 00101 100000 
f 102 00110 001110 
g 103 00111 100101 
h 104 01000 010010 
i 105 01001 001000 
j 106 01010 011110 
k 107 01011 001001 
l 108 01100 010110 

m 109 01101 011000 
n 110 01110 011100 
o 111 01111 101000 
p 112 10000 001010 
q 113 10001 010011 
r 114 10010 010111 
s 115 10011 100111 
t 116 10100 001111 
u 117 10101 010100 
v 118 10110 001100 
w 119 10111 100100 
x 120 11000 011011 
y 121 11001 010001 
z 122 11010 001101 

 
Alphabet coding problem: Neural networks can 

be also used in encryption or decryption algorithms, 
where parameters of adapted neural networks are 
included to cipher keys. Cipher keys must have 
several heavy attributes. The best one is the 
singularity of encryption and cryptanalysis [17]. 
Encryption is a process in which we transform the 
open text (e.g. news) to cipher text according to 
rules. Cryptanalysis of the news is the inverse 
process, in which the receiver of the cipher 
transforms it to the original text. The open text is 
composed from alphabet characters, digits and 
punctuation marks. The cipher text has usually the 
same composition as the open text. We worked [15] 
with multilayer neural networks, which topologies 
were based on the training set (see Table 1). The 

chain of chars of the plain text in a training set is 
equivalent to a binary value that is 96 less than its 
ASCII code. The cipher text is then a random chain 
of bits.  

The initial population in both experiments 
contains 30 three-layer feedforward neural networks. 
Each network architecture is 7 - 7 - 4 for pattern 
recognition problem, and 5 - 5 - 6 for alphabet 
coding problem [15], because both problems are not 
linearly separable and therefore we cannot use 
neural network without hidden layer of neurons. All 
nets are fully connected. We use the genetic 
algorithm with the following parameters: probability 
of mutation is 0.01 and probability of crossover is 
0.5. The saturation parameter τ is 95%. Adaptation 
of each neural network in given population starts 
with randomly generated weight values that are the 
same for each neural network in the population. We 
also used genetic algorithms with the same 
parameters for the partial neural network adaptation, 
where number of generations for a partial adaptation 
was 500. Their chromosome representation is 
described in [16]. 

 
 

0

5

10

15

0 100 200 300 400 500 600 700 800 900

number of epochs

E
binary sigmoid function
Gauss function
binary step function
saturated linear function
best individual

 
(a) 

0

5

10

15

0 100 200 300 400 500 600 700 800 900

E

number of epochs

binary sigmoid function
Gauss function
binary step function
saturated linear function
best individual

 
(b) 

Fig. 4 – The Error function history: (a) pattern 
recognition problem, (b) alphabet coding problem. 

 
History of the error functions is shown in the 

Fig. 4. There are shown average values of error 
functions in the given population. Other numerical 
simulations gave very similar results. The “binary 
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sigmoid function” represents an average value after 
adaptation with the binary sigmoid activation 
function consecutively with all steepness parameters 
σ = {1,2,3,4,5,6,7}. The “binary step function” 
represents an adaptation with the binary step 
activation function (with the threshold θ ), the 
“saturated linear function” represents an adaptation 
with the saturated linear activation function, and 
“Gaussian activation” represents an adaptation with 
the Gaussian activation function. Each of these 
mentioned representations is associated with all 
neurons in given neural network architecture. 
Opposite of this, the “best individual” represents an 
adaptation of the best individual in population, 
which chromosomes are the following, see Fig. 5: 

 
  b1 σ1 b2 σ2 b3 σ3 b4 σ4 b5 σ5 b6 σ6 b7 σ7

1 7 1 5 1 1 1 5 3 0 3 0 1 3 
neurons in the hidden layer 

b8 σ8 b9 σ9 b10 σ10 b11 σ11 
3 0 1 7 1 2 1 6 

neurons in the output layer 

(a) 
 

 b1 σ1 b2 σ2 b3 σ3 b4 σ4 b5 σ5  

1 5 1 7 1 1 3 0 1 5  
neurons in the hidden layer 

 b6 σ6 b7 σ7 b8 σ8 b9 σ9 b10 σ10 b11 σ11  

3 0 1 7 3 0 1 5 1 6 1 2 
neurons in the output layer 

(b)  
Fig. 5 – The “best individual” chromosome in the last 

population: a) pattern recognition problem, (b) alphabet 
coding problem. 

 
5. CONCLUSIONS 

All networks solve the pattern recognition task 
resp. alphabet coding problem in our experiments, 
but artificial neural network with evolving transfer 
functions of each neuron works well, because 
several different types of neurons are usually 
necessary to solve a problem. We can see that the 
proposed technique is really efficient for the 
presented purpose, see the Fig. 3 or Table 1. 
Networks with too many copies of the same neuron 
work usually worse, see the Fig. 4.  

Here, the transfer function is shown to be an 
important part of architecture of the artificial neural 
network and have significant impact on artificial 
neural network’s performance. Transfer functions of 
different neurons can be different and decided 
automatically by an evolutionary process, instead of 
assigned by human experts.  

In general, nodes within a group, like layer, in an 
artificial neural network tend to have the same type 
of transfer function with possible difference in some 

parameters, while different groups of nodes might 
have different types of transfer function. 
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