
Eva Volna / Computing, 2009, Vol. 8, Issue 1, 16-23

 16

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Scientific

Journal of Computing

FORMING EVOLUTIONARY DESIGN OF NEURAL NETWORKS
WITH DIFFERENT NODES

Eva Volna

University of Ostrava,

30th Dubna st. 22,
701 03 Ostrava, Czech Republic

e-mail: eva.volna@osu.cz, http://www.osu.cz

Abstract: Evolution in artificial neural networks (e.g. neuroevolution) searches through the space of behaviours for a
network that performs well at a given task. Here is presented a neuroevolution system evolving populations of neurons
that are combined to form the fully connected multilayer feedforward neural network with fixed architecture. In this
article, the transfer function has been shown to be an important part of architecture of the artificial neural network and
have significant impact on an artificial neural network’s performance. In order to test the efficiency of described
method, we applied it to the pattern recognition problem and to the alphabet coding problem.

Keywords: Neuroevolution, multilayer feedforward network, pattern recognition problem, alphabet coding problem.

1. NEUROEVOLUTION

Neuroevolution represents a combination of
neural networks and evolutionary algorithms
(e.g. the genetic algorithm) where neural networks
are the phenotype being evaluated. The genotype is a
compact representation that can be translated into an
artificial neural network. Evolution has been
introduced into artificial neural networks at roughly
three different levels: connection weights,
architectures, and learning rules. The evolution of
connection weights provides a global approach to
connection weights training, especially when
gradient information of the error function is difficult
or costly to obtain. Due to the simplicity and
generality of the evolution and the fact that gradient-
based training algorithms often have to be run
multiple times in order to avoid being trapped in a
poor local optimum, the evolutionary approach is
quite competitive. The evolution of architectures
enables artificial neural networks to adapt their
topologies to different tasks without human
intervention and thus provides an approach to
automatic artificial neural network design.
Simultaneous evolution of artificial neural network
architectures and connection weights generally
produces better results. The evolution of learning
rules in artificial neural networks can be used to
allow an artificial neural network to adapt its
learning rule to its environment. In a sense, the
evolution provides artificial neural network with the

ability of learning to learn.
Evolutionary algorithms are the term for different

approaches as of using the models of evolutionary
processes, which have nothing common with
biology. They try to use the conception of driving
forces of organism’s evolution for optimization
purposes. Evolutionary algorithms refer to a class of
population-based stochastic search algorithms that
are developed from ideas and principles of natural
evolution. Fogel [1] gives a good introduction to
various evolutionary algorithms for optimization.
One important feature of all these algorithms is their
population-based search strategy. Individuals in a
population compete and exchange information with
each other in order to perform certain tasks.

The choice of the right representation of
individuals and their fitness create the essence of the
advantageousness of the evolutionary algorithm,
which depends on the selection of suitable choice of
evolutionary algorithm and its appropriate operators.
Individual within the evolutionary algorithm are
then the problem solution. If a new solution is better,
it substitutes the previous one. Optimization will be
considered here as a synonym for minimization [2].
This is not a problem because of going in search the
function maximum is equivalent to going in search
of function minimum multiplied by -1.

Global search procedures such as evolutionary
algorithms are usually computationally expensive. It
would be better not to employ evolutionary

Eva Volna / Computing, 2009, Vol. 8, Issue 1, 16-23

 17

algorithms at all three levels of evolution. It is,
however, beneficial to introduce global search at
some levels of evolution, especially when there is
little prior knowledge available at that level and the
performance of the artificial neural network is
required to be high, because the trial-and-error or
heuristic methods are very ineffective in such
circumstances. With the increasing power of parallel
computers, the evolution of large artificial neural
networks becomes feasible. Not only can such
evolution discover possible new artificial neural
network architectures and learning rules, but it also
offers a way to model the creative process as a result
of artificial neural network’s adaptation to a
dynamic environment.

2. EVOLUTION OF NODE TRANSFER

FUNCTIONS
The architecture of artificial neural network

includes its topological structure, i.e., connectivity,
and the transfer function of each neuron in the
artificial neural network. Architecture design is
crucial in the successful application of artificial
neural networks because the architecture has
significant impact on a network’s information
processing capabilities. Up to now, architecture
design is still very much a human expert’s job. It
depends heavily on the expert experience and a
tedious trial-and-error process. There is no
systematic way to design a near-optimal architecture
for a given task automatically. Design of the optimal
artificial neural network architecture can be
formulated as a search problem in the architecture
space where each point represents some architecture.
Given some performance (optimality) criteria about
architectures (e.g., lowest training error, lowest
network complexity), the performance level of all
architectures forms a discrete surface in the space.
The optimal architecture design is equivalent to
finding the highest point on this surface.

The discussion on the evolution of architectures
so far only deals with the topological structure of
architecture. The transfer function of each node in
the architecture has been usually assumed that is
fixed and predefined by human experts, at least for
all the nodes in the same layer.

In principle, transfer functions of different
neurons in artificial neural networks can be different
(e.g. hard-limiting threshold function, a Gaussian
function, sigmoid functions etc.) and decided
automatically by an evolutionary process, instead of
assigned by human experts. The decision on how to
encode transfer functions in chromosome depends
on how much prior knowledge and computation time
is available. In general, neurons within a group, like
a layer, in an artificial neural network tend to have

the same type of transfer function with possible
difference in some parameters, while different
groups of neurons might have different types of
transfer function. This suggests some kind of
indirect encoding method, which lets developmental
rules to specify function parameters if the function
type can be obtained through evolution, so that more
compact chromosomal encoding and faster evolution
can be achieved. Little work has been only done on
the evolution of node transfer function up to now.
Mani proposed a modified backpropagation, which
performs gradient descent search in the weight space
as well as the transfer function space [3], but
connectivity of artificial neural networks was fixed.
Lovel and Tsoi investigated the performance of
neocognitrons with various S-cell and C-cell transfer
functions, but did not adopt any adaptive procedure
to search for an optimal transfer function
automatically [4]. Stork et al. [5] were the first to
apply evolutionary algorithms to the evolution of
both topological structures and node transfer
functions even though only simple artificial neural
networks with seven nodes were considered. The
transfer function was specified in the structural
genes in their genotypic representation. It was much
more complex than the usual sigmoid function
because authors in [5] tried to model biological
neurons. White and Ligomenides [6] adopted a
simpler approach to the evolution of both
topological structures and node transfer functions.
For each individual (i.e. the artificial neural
network) in the initial population, 80% nodes in the
artificial neural network used the sigmoid transfer
function and 20% nodes used the Gaussian transfer
function. The evolution was used to decide the
optimal mixture between these two transfer
functions automatically. The sigmoid and Gaussian
transfer function themselves were not evolvable. No
parameters of the two functions were evolved. Liu
and Yao [7] used evolutionary programming to
evolve artificial neural networks with both sigmoidal
and Gaussian nodes. Rather than fixing the total
number of nodes and evolve mixture of different
nodes, their algorithm allowed growth and shrinking
of the whole artificial neural network by adding or
deleting a node (either sigmoidal or Gaussian). The
type of node added or deleted was determined at
random. Authors in [8, 9, 10] went one step further.
They evolved topology of artificial neural network,
node transfer function, as well as connection weights
for projection neural networks. Sebald and
Chellapilla [11] used the evolution of node transfer
function as an example to show the importance of
evolving representations. Representation and search
are the two key issues in problem solving. Co-
evolving solutions and their representations may be
an effective way to tackle some difficult problems

Eva Volna / Computing, 2009, Vol. 8, Issue 1, 16-23

 18

where little human expertise is available. In
principle, the difference in transfer functions could
be as large as that in the function type, e.g. that
between a hard limiting threshold function and
Gaussian function, or as small as that in one of
parameters of the same type of function, e.g. the
slope parameter of the sigmoid function. One point
worth mentioning here is the evolution of both
connectivity and transfer functions at the same
time [5] since they constitute a complete
architecture. Encoding connectivity and transfer
functions into the same chromosome makes it easier
to explore nonlinear relations between them. Many
techniques used in encoding and evolving
connectivity could equally be used here.

The evolutionary approaches discussed so far in
designing artificial neural network architecture
evolve architectures only, without any connection
weights. Connection weights have to be learned after
a near-optimal architecture is found. This is
especially true if one uses the indirect encoding
scheme of network architecture. One major problem
with the evolution of architectures without
connection weights is noisy fitness evaluation [18].
In other words, fitness evaluation is very inaccurate
and noisy because a phenotype’s (i.e., an artificial
neural network with a full set of weights) fitness was
used to approximate its genotype’s (i.e., an artificial
neural network without any weight information)
fitness. We want to optimize the genotype so that it
can perform well regardless of initial connection
weights, but we can only approximate such
optimization by examining phenotypes with limited
sets of initial connection weights of a virtually
indefinite number of sets. There are two major
sources of noise [7]:
• The first source is the random initialization of the

weights. Different random initial weights may
produce different training results. Hence, the
same genotype may have quite different fitness
due to different random initial weights used in
training.

• The second source is the training algorithm.
Different training algorithms may produce
different training results even from the same set
of initial weights. This is especially true for
multimodal error functions. For example,
backpropagation may reduce an artificial neural
network’s error to 0.05 through training, but an
evolutionary algorithm could reduce the error to
0.001 due to its global search capability.

In order to reduce such noise, an architecture

usually has to be trained many times from different
random initial weights. The average result is then
used to estimate the genotype’s mean fitness. This
method increases the computation time for fitness

evaluation dramatically. It is one of the major
reasons why only small artificial neural network
were evolved in this way. In essence, the noise is
caused by the one-to-many mapping from genotypes
to phenotypes. It is clear that the evolution of
architectures without any weight information has
difficulties in evaluating fitness accurately. One way
to alleviate this problem is to evolve artificial neural
network architectures and connection weights
simultaneously [16, 19]. In this case, each individual
in a population is a fully specified artificial neural
network with complete weight information. Since
there is a one-to-one mapping between a genotype
and its phenotype, fitness evaluation is accurate.

3. FIXED-TOPOLOGY
NEUROEVOLUTION

Fixed-topology methods require a human to
decide the right topology for a problem and most of
them optimize connection weights only. Some
highest performing neuroevolution systems
(e.g. a system that performs better than any other
systems on benchmark tasks) realize a more
parametric evolution. The Symbiotic Adaptive
Neuro-Evolution algorithm (SANE) [12] deals with
a population of individual neurons, each of which is
represented by a numerical vector defining the
weight of its connections to each of the input and
output neurons. In addition, there is a population of
network blueprints consisting of pointers to neurons
in the population. Individual networks are built out
of neurons’ subsets that are specified by one of
blueprints, and the performance of the network as a
whole is assigned to both the blueprint and to each
individual neuron contributing to the network. The
network blueprints are also evolved, with crossover
recombination between network representations,
mutations where half of the pointers are changed to
offspring of the neurons to which they previously
pointed, and mutations where a small fraction of the
pointers are set to completely random neurons.
Similarly, the top performing neurons themselves
are also recombined and mutated to produce new
neurons. The Enforced Sub-Population (ESP) [13],
variant of SANE, is based on the special sort of
separation. Rather than having one large pool of
neurons with network blueprints, ESP maintains a
separate population of neurons for each position in
the network. Building a network then consists of
selecting exactly one neuron from each of these
subpopulations. Since the populations are kept
separate during the creation of the next generation,
each population is able to focus on a particular
function more quickly, and networks are less likely
to have redundant neurons. Recently, in [14] is
successfully applied a special evolutionary strategy

Eva Volna / Computing, 2009, Vol. 8, Issue 1, 16-23

 19

called Evolution Strategy with Covariance Matrix
Adaptation (CMA ES) to the evolution of fixed-
topology neural networks. This method keeps track
of correlations between changes of different weights
in the network and fitness. Based on this
information, the CMA-ES changes the covariance
matrix of the weight mutation distribution so that it
becomes more biased towards what were so far the
most promising directions of search.

In the article, the transfer function has been
shown to be an important part of architecture of the
artificial neural network, one has significant impact
on artificial neural network’s performance. Here is
presented a neuroevolution system evolving
populations of neurons that are combined to form
the fully connected multilayer feedforward neural
networks with fixed architecture. Neuroevolution
evolves transfer functions of each neuron in hidden
and output layers of the network. The system
maintains diversity in the population, because a
dominant neural phenotype is likely to end up in the
same network more than once. As several different
types of neurons are usually necessary to solve a
problem, networks with too many copies of the same
neuron are likely to fail. The dominant phenotype
then loses fitness and becomes less dominant. The
system works well because it makes sure neurons
get the credit they deserve, unlike some other
neuroevolution techniques, where bad neurons can
share in a good network or good neurons can be
brought down by their network. It also works by
decomposing the task, breaking the search into
smaller, more manageable parts.

In the following is described a method of
automatic search the node transfer function
architecture in multilayer feedforward neural
network: First, we must propose neural network
architecture before the main calculation. We get the
number of input (m) and output (o) neurons from the
training set. Next, we have to define the number of
hidden neurons (h) that is very confounding issue,
because it is generally more difficult to optimize
large networks than small ones. Thereafter the
process of evolutionary algorithms is applied.
Chromosomes are generated for every individual
from the initial population as follows, see Fig. 1:

individual 1 individual 2 … individual k …

b1 σ1 … bh σh bh+1 σh+1 … bh+o σh+o
neurons in the hidden layer neurons in the output layer

Fig. 1 – Population of individuals and their

chromosomes.

Symbols bi (i = 1, …,h+o) refers to varies types
of activation functions [15]:

• bi = 1, if the activation function is a binary
sigmoid function:

() ()x
xf

σ−+
=

exp1
1

 (1)

where σ is the steepness parameter, which value is
set in the initial population randomly, e.g.
σi ∈ {1,2,3,4,5,6,7}.

• bi = 2, if the activation function is a binary
step function with threshold θ :

()
⎩
⎨
⎧

<
≥

=
θ
θ

xif
xif

xf
0
1

 (2)

the steepness parameter σi is not define here thus we
assigned value 0 to it.

• bi = 3, if the activation function is a Gaussian
function:

() ()2exp xxf −= (3)

the steepness parameter σi is not define here thus we
assigned value 0 to it.

• bi = 4, if the activation function is a saturated
linear function:

()
⎪
⎩

⎪
⎨

⎧

>
≤≤

<
=

11
10

00

xif
xifx

xif
xf (4)

the steepness parameter σi is not define here thus we
assigned value 0 to it.

Next, we calculate an error value (E) between the

desired and the real output after defined partial
training with genetic algorithms. Adaptation of each
individual starts with randomly generated weight
values that are the same for each neural network in
the given population. On the basis of it is calculated
a fitness function for every individual as follows:

Fitnessi = Emax - Ei. (5)

for i = 1, ...,N; where Ei is error for the i-th network
after a partial adaptation, Emax is a maximal error for
the given task, Emax = o × pattern (o is number of
output neurons and pattern is number of patterns),
N is the number of individuals in the population.

All of the calculated fitness function values of the
two consecutive generations are sorted descending

Eva Volna / Computing, 2009, Vol. 8, Issue 1, 16-23

 20

and the neural network representation attached to the
first half creates the new generation. For each fitness
function is calculated the probability of reproduction
its existing individual by standard method. One-
point crossover was used to generate two offsprings.
If the input condition of mutation is fulfilled (e.g. if
a random number is generated, that is equal to the
defined constant), one of the individuals is randomly
chosen. There is randomly replaced one place in its
genetic representation by a random value from the
set of permitted values. The process of the
evolutionary algorithm is ended, if the saturation
parameter τ1 is greater then define value, i.e. the
population is composed only from similar types of
individuals.

4. EXPERIMENTAL TASKS

In order to test the efficiency of described
method, we applied it to the pattern recognition
problem and to the alphabet coding problem that
exists in cryptography.

Pattern recognition problem: For coding input
examples the scheme from Fig. 2 is needed. If in an
appropriate place the connection exists (e.g. on side
with number 1, ..., 7), than the input chain
representation is 1. If a connection does not exist, we
have 0 in the appropriate place. Input vector contains
thus seven bits. Output vector has got four bits and
codes binary values of the input chain number
representation.

Fig. 2 – Scheme for coded examples to input chain

of bits.

Neural network was trained to the following

examples (see Fig. 3):

1 τ is equal to a number of the same values at the same

positions in chromosomes.

1011111→0000
0000101→0001
1110110→0010
1110101→0011
0101101→0100
1111001→0101
1111011→0110
1000101→0111
1111111→1000
1111101→1001

0 1 2

3 4 5

6 7 8

 9

Fig 3 – The set of patterns (the training set).

1 2 3 4 5 6 7

 1
5

7 6

4

2

3

Eva Volna / Computing, 2009, Vol. 8, Issue 1, 16-23

 21

Table 1. The set of patterns (the training set).

THE PLAIN TEXT

THE
CIPHER

TEXT

Char
ASCII
code

(DEC)

The chain
of bits

The chain
of bits

a 97 00001 000010
b 982 00010 100110
c 99 00011 001011
d 100 00100 011010
e 101 00101 100000
f 102 00110 001110
g 103 00111 100101
h 104 01000 010010
i 105 01001 001000
j 106 01010 011110
k 107 01011 001001
l 108 01100 010110

m 109 01101 011000
n 110 01110 011100
o 111 01111 101000
p 112 10000 001010
q 113 10001 010011
r 114 10010 010111
s 115 10011 100111
t 116 10100 001111
u 117 10101 010100
v 118 10110 001100
w 119 10111 100100
x 120 11000 011011
y 121 11001 010001
z 122 11010 001101

Alphabet coding problem: Neural networks can

be also used in encryption or decryption algorithms,
where parameters of adapted neural networks are
included to cipher keys. Cipher keys must have
several heavy attributes. The best one is the
singularity of encryption and cryptanalysis [17].
Encryption is a process in which we transform the
open text (e.g. news) to cipher text according to
rules. Cryptanalysis of the news is the inverse
process, in which the receiver of the cipher
transforms it to the original text. The open text is
composed from alphabet characters, digits and
punctuation marks. The cipher text has usually the
same composition as the open text. We worked [15]
with multilayer neural networks, which topologies
were based on the training set (see Table 1). The

chain of chars of the plain text in a training set is
equivalent to a binary value that is 96 less than its
ASCII code. The cipher text is then a random chain
of bits.

The initial population in both experiments
contains 30 three-layer feedforward neural networks.
Each network architecture is 7 - 7 - 4 for pattern
recognition problem, and 5 - 5 - 6 for alphabet
coding problem [15], because both problems are not
linearly separable and therefore we cannot use
neural network without hidden layer of neurons. All
nets are fully connected. We use the genetic
algorithm with the following parameters: probability
of mutation is 0.01 and probability of crossover is
0.5. The saturation parameter τ is 95%. Adaptation
of each neural network in given population starts
with randomly generated weight values that are the
same for each neural network in the population. We
also used genetic algorithms with the same
parameters for the partial neural network adaptation,
where number of generations for a partial adaptation
was 500. Their chromosome representation is
described in [16].

0

5

10

15

0 100 200 300 400 500 600 700 800 900

number of epochs

E
binary sigmoid function
Gauss function
binary step function
saturated linear function
best individual

(a)

0

5

10

15

0 100 200 300 400 500 600 700 800 900

E

number of epochs

binary sigmoid function
Gauss function
binary step function
saturated linear function
best individual

(b)

Fig. 4 – The Error function history: (a) pattern
recognition problem, (b) alphabet coding problem.

History of the error functions is shown in the

Fig. 4. There are shown average values of error
functions in the given population. Other numerical
simulations gave very similar results. The “binary

Eva Volna / Computing, 2009, Vol. 8, Issue 1, 16-23

 22

sigmoid function” represents an average value after
adaptation with the binary sigmoid activation
function consecutively with all steepness parameters
σ = {1,2,3,4,5,6,7}. The “binary step function”
represents an adaptation with the binary step
activation function (with the threshold θ), the
“saturated linear function” represents an adaptation
with the saturated linear activation function, and
“Gaussian activation” represents an adaptation with
the Gaussian activation function. Each of these
mentioned representations is associated with all
neurons in given neural network architecture.
Opposite of this, the “best individual” represents an
adaptation of the best individual in population,
which chromosomes are the following, see Fig. 5:

 b1 σ1 b2 σ2 b3 σ3 b4 σ4 b5 σ5 b6 σ6 b7 σ7

1 7 1 5 1 1 1 5 3 0 3 0 1 3
neurons in the hidden layer

b8 σ8 b9 σ9 b10 σ10 b11 σ11
3 0 1 7 1 2 1 6

neurons in the output layer

(a)

 b1 σ1 b2 σ2 b3 σ3 b4 σ4 b5 σ5

1 5 1 7 1 1 3 0 1 5
neurons in the hidden layer

 b6 σ6 b7 σ7 b8 σ8 b9 σ9 b10 σ10 b11 σ11

3 0 1 7 3 0 1 5 1 6 1 2
neurons in the output layer

(b)
Fig. 5 – The “best individual” chromosome in the last

population: a) pattern recognition problem, (b) alphabet
coding problem.

5. CONCLUSIONS

All networks solve the pattern recognition task
resp. alphabet coding problem in our experiments,
but artificial neural network with evolving transfer
functions of each neuron works well, because
several different types of neurons are usually
necessary to solve a problem. We can see that the
proposed technique is really efficient for the
presented purpose, see the Fig. 3 or Table 1.
Networks with too many copies of the same neuron
work usually worse, see the Fig. 4.

Here, the transfer function is shown to be an
important part of architecture of the artificial neural
network and have significant impact on artificial
neural network’s performance. Transfer functions of
different neurons can be different and decided
automatically by an evolutionary process, instead of
assigned by human experts.

In general, nodes within a group, like layer, in an
artificial neural network tend to have the same type
of transfer function with possible difference in some

parameters, while different groups of nodes might
have different types of transfer function.

6. REFERENCES
[1] D. B. Fogel. Evolutionary Computation:

Toward a New Philosophy of Machine
Intelligence. IEEE Press. New York, 1995.

[2] P. Hammerstein, E. H. Hagen, A.V. Herz, M.H.
Herzel. Robustness: A key to evolutionary
design. Biol. Theory 1(1) 90–93, 2006.

[3] G. Mani. Learning by gradient descent in
function space. Proc. of the IEEE Int. Conf.
“System, Man, and Cybernetics”, Los Angeles,
CA, 1990, pp. 242–247.

[4] D. R. Lovell. A. C. Tsoi. The Performance of
the Neocognitron with Various S-Cell and C-
Cell Transfer Functions, Intell. Machines Lab.,
Dep. Elect. Eng., Univ. Queensland, Tech.
Rep., Apr. 1992.

[5] D. G. Stork. S. Walker. M. Burns. B. Jackson.
Preadaptation in neural circuits. Proc. Int. Joint
Conf. “Neural Networks”, vol. I, Washington,
DC, 1990, pp. 202–205.

[6] D. White. P. Ligomenides. GANNet: A genetic
algorithm for optimizing topology and weights
in neural network design. Proc. Int. Workshop
“Artificial Neural Networks (IWANN’93)”,
Lecture Notes in Computer Science, vol. 686.
Berlin, Germany: Springer-Verlag, 1993,
pp. 322–327.

[7] Y.Liu. X. Yao. Evolutionary design of artificial
neural networks with different nodes. Proc.
1996 IEEE Int. Conf. “Evolutionary
Computation (ICEC’96)”, Nagoya, Japan,
pp. 670–675.

[8] A. Abraham. Meta learning evolutionary
artificial neural networks. Neurocomputing,
vol. (56) 1-38, 2004.

[9] F. H. F. Leung, H. K. Lam, S. H. Ling, P. K. S.
Tam. Tuning of the structure and parameters of
a neural network using an improved genetic
algorithm. IEEE Transactions on Neural
Neworks. Vol. 14 (1) 79- 88, 2003.

[10] P. Palmes, S. Usui. Robustness, Evolvability
and Optimality in Evolutionary Neural
Networks”. Biosystems, vol. 82 (2) 168-188,
2005.

[11] A. V. Sebald, K. Chellapilla. On making
problems evolutionarily friendly, part I:
Evolving the most convenient representations.
In V. W. Porto. N.Saravanan, D. Waagen. A. E.
Eiben. (Eds.) Evolutionary Programming VII:
Proc. 7th Annu Conf. “Evolutionary
Programming”, vol. 1447 of Lecture Notes in
Computer Science, Berlin, Germany: Springer-
Verlag, 1998, pp. 271–280.

Eva Volna / Computing, 2009, Vol. 8, Issue 1, 16-23

 23

[12] R. Miikkulainen. Evolving neural networks. In
Proceedings of the 2007 GECCO Conference
Companion on Genetic and Evolutionary
Computation GECCO '07. ACM, New York,
NY, 2007, pp. 3415-3434.

[13] F. J. Gomez. R. Miikkulainen. Active guidance
for a finless rocket through neuroevolution.
Proceedings of the Conference “Genetic and
Evolutionary Computation (GECCO-2003)”.
Berlin: Springer Verlag. 2003.

[14] C. Igel. Neuroevolution for reinforcement
learning using evolution strategies. In R. Sarker
R.Reynolds. H. Abbass. K. C. Tan. B. McKay.
D. Essam. T.Gedeon (eds.) “Congress on
Evolutionary Computation 2003 (CEC 2003)”
Piscataway, NJ: IEEE Press. 2003. pp. 2588–
2595.

[15] E. Volna. Forming neural network design
through evolution“.. In K. Madani (ed.).
Proceedings of the 3th International Workshop
on “Artificial Neural Networks and Intelligent
Information Processing (ANNIIP 2007)”. In
conjunction with ICINCO 2007. Angers,
France 2007, pp. 13-20.

[16] Volná, E. “Learning algorithm which learns
both architectures and weights of feedforward
neural networks“. Neural Network World. Int.
Journal on Neural & Mass-Parallel Comp. and
Inf. Systems. 8 (6): 653-664, 1998.

[17] S. Garfinger. PGP: Pretty Good Privacy.
Computer Press, Praha 1998.

[18] E. Cantu-Paz. Adaptive sampling for noisy
problems. In Genetic and Evolutionary
Computation Conference, pages 947--958,
Springer 2004.

[19] P. A., Castillo, J.J. Merelo, M. G. Arenas, and
G. Romero. Comparing evolutionary hybrid
systems for design and optimization of
multilayer perceptron structure along training
parameters. In Information Sciences, Vol 177
(14) 2884-2905, 2007.

Eva Volna graduated at the
Slovak Technical University in
Bratislava and defended PhD.
thesis with title “Modular
Neural Networks”.

She has been working as
an assistant professor at the
Department of Computer
Science, University of Ostrava
(Czech Republic) from 1992.

Her interests include
artificial intelligence, artificial neural networks,
evolutionary algorithms, and cognitive science.

She is author of 37 publications - 9 articles in
reviewed journals, 28 articles in proceedings of
international and national conferences, 8 teaching
texts and 3 graduation theses.

