
Sergey A. Subbotin / International Journal of Computing, 13(3) 2014, 170-175

 170

THE INSTANCE SELECTION METHOD
FOR NEURO-FUZZY MODEL SYNTHESIS

Sergey A. Subbotin

Department of Program Tools, Zaporizhzhya National Technical University, Zhukovskiy str., 64,

Zaporizhzhya, 69063, Ukraine, subbotin@zntu.edu.ua, http://www.csit.narod.ru

Abstract: The problem of automation of neuro-fuzzy model synthesis based on instance set is solved. The method of
instance selection for neuro-fuzzy model synthesis is proposed. The proposed method allows reducing the sample size and
decreasing the requirements to computer resources. The method also performs transformation of the original multi-
dimensional coordinate set to the one-dimensional axis, which is also discretized to improve the data generalization
properties. The software implementing the proposed method is developed. The experiments were conducted to investigate
the proposed method at the real problem solution. Obtained experimental results allow to recommend the proposed method
for practical use. Copyright © Research Institute for Intelligent Computer Systems, 2014. All rights reserved.

Keywords: instance, neuro-fuzzy network, sample selection, data dimensionality reduction.

1. INTRODUCTION

The neuro-fuzzy networks are a paradigm of
computational intelligence widely used for building
of diagnostic and recognizing models [1-3]. The
neuro-fuzzy network usually requires a training set
of observations (instances) to build the model [3].

In practice, a number of problems faced with the
need to process a large amount of available data
which can not be loaded completely to the computer
memory, as well as the fact that time of model
building essentially depends on the training
set volume.

Therefore, the actual problem is to reduce the
volume of processed sample. It can be made through
the allocation of training and test samples of smaller
size from the available initial large sample. Known
sampling methods are based on exhaustive search
[4-7] and random search [5, 6, 8, 9].

The method of full exhaustive search [4]
successively considers all possible subsamples –
combinations of instances of the original sample and
for each such subsample imply building a model or
estimate of the value of a criterion which
characterizes the ability of a subsample replace the
original sample. Such method is applicable only for
the initial sample of small dimension.

Methods of reduced search [5-7] imply cutting
off part of unpromising solutions in the process of
example combinations busting. They allow solving
problems of large dimension compared to exhaustive
search, but they are also slow.

The random search methods [5, 6, 8, 9] consider
a limited number of combinations of instances,
seeking to create new subsamples based on
experience gained during the assessment of previous
subsamples and use random or evolutionary search.
These methods are applicable to samples of higher
dimension, but no guarantee of an acceptable
solution with a limited number of iterations of
the search.

In general, we can conclude that known sampling
methods suggests iterating over a large number of
possible combinations of exemplars. This is for a
large amount of initial sample leads to the so-called
“combinatorial explosion”. These methods also
require a set of criteria to assess the quality of
partitions. Despite the existence of such criteria [10],
in practice, for a large initial sample their use leads
to significant costs of computer time.

The aim of this work was to develop a method
that allows automatically splitting a large initial
sample into training and test samples within the
constraints of computer memory.

2. PROBLEM STATEMENT

Suppose we have an initial sample X = <x, y>
that is a set of S instances describing dependence
y(x), x = {xs}, y={ys}, s = 1, 2, ..., S. The sample is
characterized by a set of N input attributes (features)
{xj}, j = 1, 2, ... , N, where j is a number of feature,
and by output feature y. Each s-th instance can be
represented as <xs, ys>, xs={xs

j}, where xs
j is a value

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Sergey A. Subbotin / International Journal of Computing, 13(3) 2014, 170-175

 171

of j-th input and ys is the output feature of s-th
instance (exemplar) of a sample, ys  {1, 2, ... , K},
where K is a number of classes, K> 1.

Then the problem of the sample size reduction
can be represented as the problem of the formation
(separation) from the original sample X = <x, y> of
sub-sample X*, X*X, with a less volume S*<S, with
the most important properties of the original
sample [3].

Since the class topology preservation is the most
important for automation of diagnostic decisions
making and for tasks of automatic classification the
formed sub-sample must ensure the preservation of
the original sample exemplars located at the
class borders.

3. THE METHOD

OF INSTANCE SELECTION

The most obvious basis for a method of the
significant instance selection from the original data
sample is a cluster analysis [11, 12], followed by
determination of exemplars located on the borders of
the classes [4, 6]. However, this method has a
number of disadvantages.

A first disadvantage of this method is its practical
applicability primarily for small volume samples
because of the need for calculating and storing
matrices of distances between exemplars in a
computer memory. Therefore, for a large sample of
observations we propose to implement a consistent
processing of exemplars such that did not need to
keep distances between all exemplars, and thereby
provide an economy of computer memory using.

A second disadvantage of this method is the
difficulty of determining the exemplars located on
the borders of the classes in a multi-dimensional
feature space. Therefore, to avoid this disadvantage
we propose to replace the multi-dimensional set of
coordinates on a one-dimensional, which is also
discretized to increase the generalizing properties of
the method.

The third disadvantage of the method is the
uncertainty of the number of clusters in the
implementation of cluster analysis.

As a rule, in most tasks the user can not know in
advance the number of clusters, and the automatic
determination of the number of clusters requires a
large number of partition variants sorting out, as
well as a calculating and storing in the memory of
the distance matrix between all exemplars.

To avoid this disadvantage we offer at the
beginning to determine the limitations on the
number of clusters and define the coordinates of
their centers to coat the all areas of the feature space.
Then we propose to perform recognition of
exemplars of the original sample based on a set of

cluster centers by assigning to the cluster centers the
numbers of the classes of closest to them exemplars.
In cases when the collisions (situations when the
center of cluster nearest to the recognized exemplar
belongs to a class different from its) will occur we
will form new clusters, recording at their center
coordinates recognized exemplars that come into
collision with the nearest cluster center.

After that, for the formed cluster set we propose
to perform a join of all of the neighboring clusters
belonging to the same class. This allows, on the one
hand, providing initially a higher level of
generalization of data in comparison with a cluster
analysis with a reduction of the number of clusters,
and, on the other hand, will accelerate the
calculation in comparison with the cluster analysis
with an increasing of the number of clusters.

The considered ideas are at the basis of the
proposed method of sampling.

The stage of initialization: Make original sample
X. Evaluate minimal xj

min and maximal xj
max values

for each j-th feature, j=1, 2, ... , N. Create Q centers
of clusters Сq = {Cq

j}, q=1,2,...,Q, j= 1, 2, ... , N,
where Cq

j is the value of j-th feature for the center of
q-th cluster: xj

minCq
j xj

max. Note that KQ<<S.
In the simplest case each Cq

j may be set as a
random number, but it seems as more convenient for
this the using of a formula:

1

1 2

1 2

1

1

 otherways,

max min

min

max min max

min max min

{ | }, ;

()(),

()

() , ;

(),

S
s s

jq
s

q K

j j j

q q K

j j j

j j j

j j j

x y q q K
S
C rand rand x x

C x C rand rand

x x x K q

x rand x x







 


  


    
    

  





,
(1)

where rand1, rand2 are two different random
numbers: rand1, rand2 [0, 1], Q is set by the user
or automatically choose by the formula:

round

round round

, (ln());

(ln()), (ln()) ,

K K S
Q

S S K

 
 



, (2)

where round is a function of rounding to the
nearest integer.

After that set for each cluster Сq, q=1, 2, ... , Q
the class number: Yq= 0, and also the number of
exemplars in the original sample, that located in the
q-th cluster: Sq=0.

The stage of sample partitioning into clusters.
Looking through original sample for each exemplar
xs, s=1,2, ... , S perform following actions:

– evaluate the distance from exemplar xs to each
cluster center Cq:

Sergey A. Subbotin / International Journal of Computing, 13(3) 2014, 170-175

 172

2

1

(,) (,) ()
N

s q q s s q

j j
j

R x C R C x x C


   , (3)

where q = 1, 2, ...,Q;

– find the number of cluster center nearest to the
exemplar xs:

1 2, ,...,
arg min { (,)}s g

g Q
q R x C


 , (4)

– if the center does not has class label (Yq=0),

then set as its label the class number of exemplar xs:
Yq=ys, Sq=1;

– if the class of exemplar xs and the class of
cluster center Cq are equal (Yq=ys), then set: Sq=Sq+1;

– if the class of exemplar xs and the class of
cluster center Cq are not equal (Yq  ys), then add
new cluster: Q=Q+1, Cq=xs, Yq=ys, Sq=1.

The stage of cluster set reduction. Looking
through the set of formed cluster centers perform
such actions for each q-th cluster, q=1,2, ... , Q:

– if the number of exemplars located in it is equal
to zero (Sq = 0), then delete q-th cluster, and correct
the number of clusters: Q=Q–1, and also renumber
the elements {Yq} and {Sq}, then go to next cluster
processing;

– find distances from the q-th cluster to all
another clusters:





N

j

q
j

g
j

qggq CCCCRCCR
1

2)(),(),(, (5)

where g = 1, 2, ... , Q, g q;

– find the cluster Cp nearest to q-th cluster:

1 2, ,...,
arg min { (,)}q g

g Q
p R C C


 , (6)

– if Yq=Yp, then join q-th and p-th clusters by

the formula:

2

q p

j jq

j

C C
C


 , j =1, 2, ..., N, (7)

or with account their exemplar numbers by
the formula:

pq

p
jp

q
jqq

j
SS

CSCS
C




 , j =1, 2, ..., N, (8)

after that correct the number of clusters: Q=Q–1, and
also renumber elements {Yq} and {Sq}, than go to
next cluster processing.

The stage of collision resolution and cluster
addition: Set Sq=0. Looking through the original
sample for each exemplar xs, s=1, 2, ... , S make
such actions:

– evaluate distances from it to centers of
each cluster:





N

j

q
j

s
j

sqqs CxxCRCxR
1

2)(),(),(, (9)

where q = 1, 2, ... , Q;

– find the number of cluster center closest to
exemplar xs:

1 2, ,...,
arg min { (,)}s g

g Q
q R x C


 , (10)

– if it belongs to the same class that exemplar xs

(Yq=ys), then set as a coordinate of an exemplar on
the generalized axe: xs

*=q, ys
*=Yq, Sq=Sq+1;

– if the class of exemplar xs and the class of
nearest to it cluster Cq does not equal (Yq  ys), then
add new cluster: Q=Q+1, Cq=xs, Yq=ys, Sq=1, and set
as a coordinate of an exemplar on the generalized
axe: xs

*=q, ys
*=Yq.

The stage of evaluation of individual feature
informativeness: At the beginning let renumber
exemplars {<xs

*, y
s
*>} on the generalized axe in the

order of increase of value of x*. Than sequentially
process exemplars on the generalized axe
xs

*, s=1,2, ... , S:
– find minimal and maximal values of each

feature in the original feature space for exemplars
with equal coordinates on the generalized axe
separately for each class:

1 2

min,

* *, ,..,
min { | , }q p p s p

j jp S
x x y q x x


   , (11)

1 2

max,

* *, ,..,
max { | , }q p p s p

j jp S
x x y q x x


   , (12)

– for each j-th feature, j =1,2, ... , N, evaluate the

number of exemplars of each q-th class
q

jS and the

number of exemplars of other classes
q

jS , that

located by j-th feature in the interval of its values for
q-th class in the original feature space for specific
coordinate on at the generalized axe:


 
















S

s

S

sp
psps

q
j

p
j

q
j

q
j

s
j

q
jq

j xxqyqy

xxxxxx
S

1 ****

max,min,max,min,

,,

,,
1 , (13)


 
















S

s

S

sp
psps

q
j

p
j

q
j

q
j

s
j

q
jq

j xxqyqy

xxxxxx
S

1 1 ****

max,min,max,min,

,,

,,
1 , (14)

Sergey A. Subbotin / International Journal of Computing, 13(3) 2014, 170-175

 173

After that for each j-th feature, j=1, 2, ... , N:
– evaluate weight (individual evaluation of

informativeness) of j-th feature for q-th cluster,
q= 1, 2, ... , Q:














 







;0,

;0,1

q
j

q
j

q
j

q
j

q
j S

S

S

S

w , (15)

– define weight (individual evaluation of

informativeness) of j-th feature for all set of clusters:

1 2, ,...,
max { }q

j jq K
w w


 , (16)

or
}{max

}{max

,...,2,1
,...,2,1

,...,2,1

q
j

Nj
Kq

q
j

Kq

j
w

w
w





 , (17)

or
}{max

1

,...,2,1
,...,2,1

1

q
j

Nj
Kq

K

q

q
j

j
w

w
K

w







 , (18)

The stage of sample partitioning on training and

test samples include such actions:
– create the initial training X* and test X' samples:

X*= , X'= ;
– find all exemplars in the initial feature space

with equal coordinates on the generalized axe but
different class numbers and put them into a formed
training set X*:

1

* *

* *
{ , | , , , }

S
p p p p p s p s

p
X x y x y X x x y y


      , (18)

where s=1, 2, ... , S;
– find all exemplars in the initial feature space

with equal coordinates on the generalized axe and
equal class numbers and put into a formed training
set one of them, which is more closely located to the
center of corresponding cluster:

,,**  qq yxXX , (20)

where },|),({minarg
,...,2,1

sppgp

Qg
yxCxRq 


,





N

j

q
j

s
jj

sq
w

qs
w CxwxCRCxR

1

2)(),(),(,

},,,|,{ **
*

1

spsppppp
S

p

s yyxxXyxyx 

 ,

s=1, 2, ... , S;

– move the rest of exemplars to the test set:
X' = X \ X*.

The developed sampling method allows selecting
training and testing samples from the large volume
original sample. It performs a small number of
passes through the original sample and does not
require downloading it to a computer memory and
storage in the memory of matrix of distances
between exemplars of the original sample.

The additional result of the method is a set of
formed cluster centers of coordinates, which can be
used to define the subsequent construction of
diagnostic and recognition models.

The received individual estimates of feature
informativeness also allow considering the proposed
method not only as a method of sampling, but also as a
method of feature informativeness evaluation. The use
of feature informativeness estimates is possible in the
methods of feature selection, as well as in some
methods of diagnostic and recognition model building.

4. THE COMPLEXITY ANALYSIS
OF INSTANCE SELECTION METHOD

To evaluate the temporal and spatial complexity
of the proposed method we will proceed from its
implementation based on a computer with sequential
computations, and the dimension of the memory we
will estimate in the cells containing real numbers.
The estimates of complexity will be giving in so-
called “soft” form, where there is no suppression of
terms of lower order by the terms of large orders.

For the initialization phase the time complexity
will be O(6NS+2Q), and space complexity –
O(NS+NQ+2N+2Q). For the stage of the cluster
formation the time complexity will be
O(2SQN+4SQ), and space complexity – O(NQ). For
the stage of cluster set reduction the time complexity
will be O(Q+2Q2N+Q2+QN), and space complexity
– O(Q2). For the stage of the collision resolution and
cluster adding the time complexity will be
O(SNQ+SQ+5S), and space complexity –
O(NQ+3S). For the stage of feature individual
informativeness evaluation the time complexity will
be O(2SNQ+20NS2+2N+KN+KN2), and space
complexity – O(2NQ+2NQ+NQ+N). For the stage of
original sample partitioning to the training and test
samples the time complexity will be
O(4S2+4S2+4QN+Q), and space complexity –
O(2S+2S+Q).

However, we do not take into account the amount
of memory for the generated training and test
samples that can be stored in RAM or in the external
computer memory. Obviously that the total amount
of memory for storing the generated samples do not
exceed the dimension of the original sample NS.

The total time complexity of all stages of the
method is O(6NS+4Q+5SQN+5SQ+5S+2Q2N+

Sergey A. Subbotin / International Journal of Computing, 13(3) 2014, 170-175

 174

+Q2+5QN+20NS2+2N+KN+KN2+8S2), and space
complexity – O(NS+8NQ+3N+3Q+Q2+7S).

To simplify the analytical assessments we will
take relations of parameters that are reasonable from
a practical point of view: n=NS, K=2, N  0,25S 

2 n , Q0,25S0,0625N0,125 n .

As a result, taking into account the assumptions
and rounding we get concerning to problem input
dimensionality n the complexity estimations of the
proposed method: temporal is

O(162,0625 n n +148,25n +56 n) and space is

O(3,015625n+68 n).

5. EXPERIMENTS AND RESULTS

To verify the practical applicability of the
proposed method it was implemented as a program.
Program implementing proposed method was used
to solve practical problems of diagnosis and pattern
recognition [13–15].

The characteristics of the original samples for the
problem solution as well as the results of
experiments on the proposed method investigation
are given in the Table 1. Here ntr. is a dimension of
the generated training set.

Table 1. Characteristics of the original samples and
the results of experiments on the formation of samples

Problem N S K n ntr../ n
Prediction of increase
the surface strength of
the blades of gas tur-
bine engines (with the
discrete output) [13]

12 59 2 708 0,39

Automatic vehicle
classification on the
image (by the original
and constructed featu-
res) [14]

4122 1062 3 4377564 0,23

Recognition of cul-
tural and weed agri-
cultural plants [15]

256 3226 2 825856 0,12

The data set for task of prediction of the surface
strength increase of the gas turbine engines blades
were collected on the Motors Sich JSC air engine
building plant and characterized by the blade
material and the hardening process parameters.
After the blade hardening the hardening coefficient
for each item were obtained. It reflects the
increasing of blade surface strength. The blades
were separated on classes according to their
hardening coefficients [13].

The data set for task of automatic vehicle
classification on the image (by the original and
constructed features) were collected on Italian
autostrade and consists from 64x64 pixel gray scale
images of vehicles, which were used for constructive

features (image moments, characteristics of
symmetry etc.) computing. Each image was
manually associated with corresponding vehicle type
(car, truck and bus) [14].

The data set for the task of plant recognition was
consists from spectral characteristics of agricultural
plants and mostly typical weeds and also provides a
plant class [15].

The conducted experiments confirmed the
efficiency of the proposed method and software
implementing it.

For each data set the proposed method selects a
subsample, for which dimension reduction ratios ntr/ n
is shown in table. As it can be seen from the table, the
proposed method significantly reduces the dimension
of the training data and saves this time on the
subsequent model construction, and enhances the
generalizing properties of the synthesized models with
respect to the dimension of the original data samples.

The formed subsamples were used for model
building using feed-forward artificial neural
networks trained by the Levenberg-Marquardt
method [2]. Each network was trained separately on
the full original and on the reduced training sets.
After the training models were tested by recognition
the whole initial data set. The results of model
testing shows that error of a model built on a
reduced sample did not differ significantly from the
error of a model built on the entire original sample
(difference of errors was estimated on average 3%,
and errors were errors were acceptable for
problems). This demonstrates the effectiveness of
the proposed method for sampling.

The dimension of the original sample and the
complexity of the class separation in corresponding
problem limit the effectiveness of the proposed
method. Obviously, the higher the complexity of the
separation of classes, the more instances of the
original sample need to be included in the formed
subsample. On the other hand, the greater the
original sample, the more redundant examples it
may contain, and, accordingly, the greater the effect
of the proposed method using. Conversely, the
smaller the original sample, the less of the redundant
instances it contains, and the less the effect of the
proposed method.

The developed method for sampling also defines
the individual evaluation of feature informativeness.
As a result dimensionality reduction of training
samples and model complexity synthesized on their
base can be achieved.

5. CONCLUSION

The problem of autonomously partitioning the
original sample into training and test samples that
create instances of diagnostic and recognizing
models have been addressed in the paper.

Sergey A. Subbotin / International Journal of Computing, 13(3) 2014, 170-175

 175

The scientific novelty of the new method
preserves, in a generated sub-sample, the most
important topological properties of the original
sample without the need to load the original sample
into computer memory. As a consequence, multiple
passes over the original sample is not required. This
significantly reduces the sample size, and decreases
the requirements for computer resources.

The practical significance of the presented results
is the determination of estimates of temporal and
spatial complexities, the software implementation of
the sampling method, and experiments performed on
real problems to demonstrate the capability of the
proposed method. The results of experiments allow
recommending the proposed method for use
in practice.

Further research could be directed towards the
development of effective implementation of the
proposed method for multi-processor (multi-core)
computers working in parallel mode.

6. REFERENCES

[1] D. Ruan, Intelligent hybrid systems: fuzzy logic,
neural networks, and genetic algorithms,
Springer, Berlin, 2012, 354 p.

[2] S. Sumathi, S. Paneerselvam, Computational
intelligence paradigms: theory & applications
using MATLAB, CRC Press, Boca Raton,
2010, 851 p.

[3] S. Subbotin, An. Oleinik, E. Gofman,
S. Zaitsev, Al. Oleynik, Intelligent information
technologies of automated diagnosis and
pattern recognition systems design, Smith
Company Ltd., Kharkov, 2012, 318 p.
(in Russian).

[4] A. Chaudhuri, H. Stenger, Survey sampling
theory and methods, Chapman & Hall, New
York, 2005, 416 p.

[5] S. Subbotin, Methods of sampling based on
exhaustive and evolutionary search. Automatic
Control and Computer Sciences, (47) (2013),
pp. 113-121.

[6] P. Lavrakas, Encyclopedia of survey research
methods, Sage Publications, Thousand Oaks,
2008, 1072 p.

[7] H. Bernard, Social research methods:
qualitative and quantitative approaches, Sage
Publications, Thousand Oaks, 2006, 659 p.

[8] S. Ghosh, Multivariate analysis, design of
experiments, and survey sampling, Marcel
Dekker Inc., New York, 1999, 698 p.

[9] M. Plutowski, Selecting training exemplars for
neural network learning, PhD Thesis in
computer science and engineering, University
of California, San Diego, 1994, 135 p.

[10] S. Subbotin, The training set quality measures
for neural network learning, Optical Memory
and Neural Networks (Information Optics),
(19) 2 (2010), pp. 126-139.

[11] B. Everitt, Cluster Analysis, John Wiley & Sons
Ltd., Chichester, 2011, 346 p.

[12] J. Abonyi, B. Feil, Cluster analysis for data
mining and system identification, Birkhäuser,
Basel, 2007, 303 p.

[13] A. Boguslaev, Al. Oleinik, An. Oleinik,
D. Pavlenko, S. Subbotin, Progressive
technologies of modeling, optimization and
intelligent automation of aviation engine
lifecycle stages, Motor Sich JSC, Zaporozhye,
2009, 468 p. (in Russian).

[14] S. Subbotin, K. Boichenko, Automatic system
of vehicle detection and recognition on the
image, Software Products and Systems, (1)
(2010), pp. 114-116. (in Russian).

[15] V. Dubrovin, S. Subbotin, S. Morshchavka,
D. Piza, The plant recognition on remote
sensing results by the feed-forward neural
networks, Intelligent engineering systems
through artificial neural networks. Vol. 10 –
Smart engineering systems design: neural
networks, fuzzy logic, evolutionary
programming, data mining, and complex
systems, ASME Press, New York, 2000,
pp. 697-702.

Sergey A. Subbotin, Dr.
hab. Sc. received in Kharkiv
National University of Radio
electronics in 2014, Docent
(Associate Professor) received in
Zaporizhzhya National Technical
University in Ukraine in 2007. He
is laureate of Award of President
of Ukraine (2004), laureate of the
Award of Parliament of Ukraine

(2010), Cabinet of Ministers of Ukraine grant-holder
(2001–2002). He is now Professor of Department of
Program Tools and Deputy Editor-in-Chief of
scientific journal “Radio Electronics, Computer
Science, Control”. His research activities include
computational intelligence, technical diagnosis,
pattern recognition, machine learning.

