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Abstract: A common approach to guarantee an acceptable level of fault tolerance in scientific computing is the 
checkpointing. In this strategy: when a task fails, it is allowed to be restarted from the recently checked pointed state 
rather than from the beginning, which reduces the system loss and ensures the reliability. Several systems use the 
checkpointing to ensure the fault tolerance such as HPC, distributed discrete event simulation and Clouds. The literature 
proposes several classifications of checkpointing techniques using different metrics and criteria. In this paper we focus 
on the classification based on abstraction level. In this classification the checkpointing is categorized into two principal 
types: application level and system level. Each of these levels has its advantages and suffers from many problems. The 
difference between our present paper and the others surveys proposed in the literature is that: in this paper we will study 
each level in details. We will also study and analyze some works that propose solutions to solve the problems and 
exceed the limits of each abstraction level. Copyright © Research Institute for Intelligent Computer Systems, 2014. All 
rights reserved. 
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1. INTRODUCTION 

Checkpointing/rollback recovery strategy has 
been an attractive approach for providing fault 
tolerant to distributed applications [2]. Checkpoints 
are periodically saved on stable storage sever and 
the recovery from a processor failure is done by 
restoring the system to the last saved state [3]. So the 
system can avoid the total loss of computations in 
case of the failure. One of the popular systems that 
use the checkpointing to ensure the fault tolerance is 
the distributed discrete event simulation. In this type 
of environment: the simulated system is partitioned 
into a set of sub­systems that are simulated by a set 
of processes that communicate by sending/receiving 
time stamped messages [42]. The state of each 
process in distributed discrete event simulation must 
be saved regularly to ensure a correct rollback in 
case of failures and decrease the system loss. 
However, it is proved that the performance of this 
system is dominated by the efficiency of the used 
checkpointing strategy. Thus, it is important to 
analyze and know more about this fault tolerance 
technique [43].  

The checkpointing strategies can be classified 
according to their synchronization type [2]. 
Coordinated and uncoordinated are two fundamental 

approaches for checkpointing and recovery. There is 
another popular classification based on the 
abstraction level in which the state of a process is 
saved. There are a large number of design choices of 
abstraction level [6]. To understand this, let’s 
consider the typical system stack shown in Fig. 1.  
 

 

Fig. 1 – System stack. 

 

It contains the original user application, which 
may be compiled/linked with user­level libraries. It 
may use system libraries, which resides on top of the 
OS kernel, which executes directly on top of 
hardware. Any of these levels may be modified with 
checkpointing functionality, so it possible to save 
and restore the stack levels above it. Furthermore, it 
is possible to insert new layers between these 
standard layers that enable checkpointing of the 
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layers above, such as the work proposed in [15] 
where Co­ordination Layer is created between the 
system library and the user library to ensure more 
transparency and to ensure also that system library 
will not be modified. The insertion of a new library 
can be necessary if the code of the existing library is 
note available or to ensure more transparency [15]. 

There are many survey papers proposed in the 
literature that study the abstraction level of 
checkpointing [1, 2, 5]. However, in our knowledge, 
none of them (survey) studied the solutions of the 
problems and limitations of each level. Our present 
work summarizes the majority of existing solutions 
of abstraction levels and proposes a comparative 
study between several papers.  

This paper is organized as follows: in section 2, 
we propose a new abstraction level classification 
based on the transparency and we define in details 
each level. In section 3, we use some criteria to 
compare between the application level and the 
system level and we introduce some existing 
solutions for each problem caused by the abstraction 
level. We compare between the papers cited in  
our work in the fourth section. We finish our paper 
by a conclusion. 

 
2. CHECKPOINTING LEVELS 

There are many types of abstraction level 
classification in the literature. In [1], the 
classification is based on the implementation 
techniques. However, the authors in [2] and [5] 
propose other classification that uses the 
transparency as a criterion. In both previous works 
and in many other papers the application­level is 
referred as user­level. For our discussion we will 
distinguish them by their transparency with regard to 
the application program, further classified below. 
Our classification categories the checkpointing 
levels into three different types: application level, 
system level and mixed level (hybrid). Fig. 2 
illustrates the proposed classification. 

 

 

Fig. 2 – Checkpointing level classification. 

2.1. SYSTEM-LEVEL (SLC) 

System­level checkpointing is a technique which 
provides automatic, transparent checkpointing of 
applications at the operating system or middleware 
level. The application is seen as a black­box, and the 
checkpointing mechanism has no knowledge about 
any of its characteristics. Typically, this involves 
capturing the complete process image of the 
application. There are two main approaches of 
checkpointing at system­level: kernel (operating 
system) implementation and hardware 
implementation [2]. The system­level checkpointing 
can be activated by system call, Kernel­mode signal 
handler or Kernel thread. 

 

2.1.1. KERNEL (OPERATING SYSTEM) 
LEVEL (SLC-K) 

In kernel space every data structure relevant to a 
process's state is readily accessible: these include 
registers, memory regions, file descriptors, signal 
state, and more. This accessibility enormously 
simplifies the implementation of checkpoint/restart 
operations, though requires somewhat more 
knowledge of kernel internals. Berkeley Lab 
Checkpoint/Restart (BLCR) proposed in [17] is 
kernel level checkpointing in distributed system. It 
uses the coordinated checkpointing activated by a 
special thread named “Call back thread”. To reduce 
the overhead caused by the checkpointing, BLCR 
focuses on the management of I/O strategies. 
Transparent Incremental Checkpointer at Kernel 
level (TICK) [26] is another system that uses kernel 
level checkpointing. TICK considers the 
transparency as the most important criteria in 
scalable systems so the System­Level is the perfect 
Checkpointing to ensure transparency in grid 
calculations. TICK uses the buffered co­scheduling 
(BCS) [25] to ensure the checkpointing consistency. 
In BCS the messages are buffered and scheduled 
before transmission to omit the late and transit 
messages. ZAP [24] uses the kernel­level 
checkpointing for the migration. It provides a 
virtualization mechanism called Pod (Process 
domain) to cope with the resource consistency, 
resource conflicts, and resource dependencies that 
arise when migrating processes between machines 
with different persistent states. Stdchk proposed in 
[47] uses kernel­level checkpointing and it focuses 
on reducing the storage time by reducing the 
checkpointing size.  

 

2.1.2. HARDWARE LEVEL (SLC-H) 

Checkpointing may be supported by purpose 
designed hardware. As with operating system level 
implementations, this approach can be entirely 
transparent to users. But hardware­level 
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checkpointing is of limited importance precisely 
because it relies on custom hardware. The work 
proposed in [7] uses the checkpointing in the 
hardware level to tolerate faults in reconfigurable 
system. It assumes that each hardware module can 
be modeled by a Finite State Machine (FSM). This 
FSM will be extended to CFSM (checkpointed 
sFSM) by adding a new module related to FSM that 
control the checkpointing time (interval) and the 
placement of the checkpoint file. ReVive [22] 
requires modifications to the directory controllers of 
the machine that intercept the I/O to perform 
memory based distributed parity protection and 
logging in the background. The parity protection is 
used to protect the checkpoint file since it will be 
transferred via a network to others nodes to be 
stored. The logging is used to ensure the atomicity 
of transitions and omitting the modifications in 
memory in case of failure. In Logging buffering, the 
checkpoint value, is copied to a log, while the 
original location is modified and remains part of the 
working state. SafeNet [23] uses the same idea 
proposed in ReVive except that in SafeNet the parity 
protection is not used and the checkpoint files are 
stored only in the main memory. SafeNet uses 
uncoordinated checkpointing with pipelined 
validation rather than coordinated checkpointing 
used in ReVive. These differences justify  
why SafeNet requires more hardware resources  
than Revive.  

 

2.2. APPLICATION-LEVEL (ALC) 

A typical approach to avoid many of the 
complexities of checkpointing is based on taking an 
application centric point of view, and exploiting 
knowledge of the structure and behavior of a given 
application. In this approach the checkpointing is 
initiated, and to some degree managed, from within 
the application [5]. The application programmer 
identifies program points at which all essential state 
can be captured from within the application [21]. A 
common scheme of implementation is to install a 
signal handler for a default signal offered by the 
kernel to automatic­initiate the checkpoint 
operations. The signal handlers are defined at user­
level and invoked by the kernel. This signal can be 
triggered by a timer that periodically interrupts the 
application [1]. The application level can be 
classified according to the transparency for the user. 
It means how much the user is involved in the 
process of checkpointing [2]. 

 

2.2.1. PROGRAMMER LEVEL (ALC-P) 

It is called also manual code insertion. In this 
level the programmer manually inserts the 
checkpointing code in the application code in order 

to save its state and to recover after a fail­stop 
failure. The programmer inserts code at points in the 
application where he wants checkpointing to occur. 
The work introduced in [27] determines when the 
checkpoints are taken by identifying the main 
controlling loops in the benchmarks (usually the 
outer loops associated with major program phases), 
and inserts the checkpointing calls at the top of each 
loop iteration. The main advantage of this approach 
is that semantic information about memory contents 
is available when saving and recovering checkpoint 
data. Using this approach, only the important data 
necessary to recover the application are saved. The 
main drawback is that the programmer has to 
manually insert CPR (CheckPoint Recovery) code to 
save and recover an application state which is a very 
error prone process. Other drawback of this 
approach is the need to have access to the 
application source code. 

 
2.2.2. USER LEVEL (ALC-U) 

A user­level checkpointing is implemented in 
user­space and typically provides transparency by 
virtualizing all system calls into the kernel. Within 
this virtualized environment the checkpointing 
approach is able to capture the state of the entire 
process without being tied to the kernel and without 
modifying the application code, it just inserts the 
checkpointing call in the code using a library that 
will be activated at each execution or by using a 
special process named pre­compiler or compiler. 

 

A. LIBRARY CHECKPOINTING:  

This technique provides support for 
checkpointing through a run­time library. This 
approach is not transparent to the user: the 
checkpoint contents and the places where 
checkpoints should be taken have to be defined by 
the application programmer. Its implementation is 
based on the LD_PRELOAD environment variable 
[1] which installs the signal handlers and loads the 
checkpoint library without recompiling again the 
application. It can be implemented also by the signal 
handler. Fail­safe PVM (Parallel Virtual Machine) 
proposed in [8] implements a checkpointing library 
on top of Unix to support the fault tolerance (user­
level). It uses the coordinated checkpointing 
activated by the daemon process to assure the 
coherence and it replicates the checkpoint files in 
many nodes to ensure their availability.  

DejaVu [16] provides a user­level checkpointing 
by implementing a new library in the system. 
DejaVu is a coordinated checkpointing system, but 
unlike Distributed Snapshots it uses a novel runtime 
mechanism called OLP (On Ligne Protocol) to 
capture the state of communication channels as part 
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of the checkpoint and does not incur the overhead 
associated with flushing the network. The OLP is 
used to implement a loosely coordinated 
checkpointing. In contract to classic approaches of 
user­level checkpointing where the kernel state are 
recreating during the roll back of the system in case 
of failure, the paper [10] proposes to encapsulate the 
kernel state and to store it in order to recreating the 
same kernel state in the rollback phase, so the 
overhead will be decreased. The paper [10] proposes 
also a new system where the process father can 
control its sons and ensures the checkpointing 
service for them which reduces the size of 
checkpointing files.  

The paper [11] describes a user­level 
checkpointing library to checkpoint multithreaded 
programs that use the POSIX threads library. It 
solves the problem of inter­blockage of processes 
that can be occurring in the checkpointing process. 
MTCP introduced in [12] and [13] focuses also on 
the user­level checkpointing in multithreading 
system and it uses coordinated checkpoints in shared 
memory system. DTMC proposed in [18] extends 
MTCP by focusing on the management of sockets 
and it proposes to use a single started thread in the 
rollback process to minimize the checkpoint size. In 
work [14], the user­level library checkpointing is 
used for the migration of threads. In order to reduce 
the time of migration, the paper proposes to 
synchronize between the source and the destination 
before the migration. It uses also the incremental 
checkpoint.  

 

B. PRE-COMPILER CHECKPOINTING:  

To overcome the problem of transparency to the 
user, the pre­compiler checkpointing approach is 
introduced. The basic idea for a program 
transformation tool or pre­compiler is to analyze the 
application source code and determine what program 
variables must be saved at each checkpoint. It also 
adds the appropriate code to the source code to write 
checkpoints and to restart the application from these 
checkpoints [28].  

Compiler based approaches to checkpoint/restart 
fault tolerance are typically composed of two 
components: a pre­compiler, and a runtime support 
library. The pre­compiler is a source­to­source 
compiler that augments an existing application with 
calls into the associated runtime support library in 
order to provide transparent checkpoint/restart 
capabilities. This approach is independent of the 
MPI implementation. It permits us to implement the 
coordination protocol without modifying the 
underlying MPI library, which promotes modularity 
and eliminates the need for access to MPI library 
code which is proprietary on some systems. The 

additional requirement for the programmer is that he 
needs to insert calls to checkpointing functions at 
points in the application where he wants 
checkpointing to occur. The Fig. 3 shows the pre­
compiler architecture. 

 

 

Fig. 3 – Pre-compiler architecture. 

 

Many compilers are proposed in the literature 
such as in [29­34]. In [28], the authors propose a 
CPPC (Controller/Pre­compiler for Portable 
Checkpointing), it focuses on the automatic insertion 
of fault tolerance into long­running message­passing 
applications. It is designed to allow the execution 
restart on different architectures and/or operating 
systems. CPPC supports the checkpointing over 
heterogeneous systems, such as the Grid. It uses 
portable code and protocols, and generates portable 
checkpoint files while avoiding traditional solutions 
(such as process coordination or message­logging) 
by using safe points.  

Safe point checkpoints are taken at the same 
relative code locations by all processes, without 
performing inter­process communications or runtime 
synchronization. To avoid problems caused by 
messages between processes, checkpoints must be 
inserted at points where it is guaranteed that there 
are no in­transit, nor orphan messages. Fig. 4 
illustrates the unsafe zones in the communication 
between three processes P1, P2 and P3 with three 
local checkpoints Ci,j for each. 

Safe point identification and checkpoint insertion 
is automatically performed by the compiler CPPC. 
Among the systems that use the compiler we can cite 
also: [9, 15, 19 20]. The Distributed object migration 
environment (Dome) [9] addresses three major 
issues of distributed parallel programming: ease of 
use, load balancing, and fault tolerance and it uses 
SPMD system (Single Process Multi Data). The 
second and the third issues (load balancing, and fault 
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tolerance) are ensured by the checkpointing 
mechanism. The first issue (ease of use) in Dome is 
ensured by using a compiler that makes the 
checkpointing transparent to user. For the load 
balancing, Dome calculates the load of the processes 
based on execution speed and balances the load by 
redistributing the data in the system. This 
redistribution is assured by the compiler. 

 

 

Fig. 4 – Safe/Unsafe points in three processes. 

 
XCAT3 [20] uses the compiler in the user level 

checkpointing for grid computing. It focuses on the 
problem of checkpoint files availability so it 
proposes to use a federation of Storage services that 
is comprised of a Master Storage service and a set of 
Individual Storage services. XCAT3 exploits the 
blocking coordinated checkpointing to ensure the 
consistent global state. The work presented in [19] 
uses CPPC to implement the CPPC­G (CPPC for 
grid computing) on top of Globus4. CPPC­G 
extends CPPC by adding some others services to 
ensure the fault tolerance in the grid. The CPPC­G is 
charged to submit and monitor the CPPC 
applications. CPPC­G generates also the checkpoint 
files, detects the failures and automatically restarts 
the failed executions. C3 (Cornell Checkpoint (pre­
Compiler) [15] exploits also ALC with a compiler to 
ensure more transparency for the user in scalable 
systems. According to [15], we cannot assume FIFO 
communication in message passing systems (MPI). 
In this case; C3 proposes a new strategy to detect 
consistent global states without FIFO assumption. 

 

2.3. MIXED LEVEL CHECKPOINTING 
(MLC) 

It is clear that neither application level 
checkpointing nor system level checkpointing is 
always an optimal solution to the system in term of 
performances. Efficiency and correctness are 
difficult issues for both approaches. So, 
Mixed­Level Checkpointing (MLC) combines 
aspects of both application and system level 
checkpointing. It can be used to develop 
checkpointing systems that are able to omit all the 
problems of each level type. The great difficulty in 

building MLC systems is separating the state of an 
application into logically consistent sets that can be 
checkpointed using either system or application 
level approaches. This approach was noted in [2] 
without any suggestion or implementation. However 
the paper [4] implements MLC as a system that 
balances between SLC and ALC according to the 
best for the performances. But it does not resolve the 
problem of the distinction between the states that 
must be stored with ALC or ALC. Since MLC in [4] 
balances between SLC and ALC so at any time the 
MLC can use only ALC so the programmer will 
modify the application code to support the 
checkpointing. In this case even the MLC is not 
transparent. For this reason our comparison is 
limited to System­level and Application­level. 

 
3. SLC VERSUS ALC CHECKPOINTING: 

PROBLEMS AND SOLUTIONS 

Obviously, there are problems and advantages in 
the use of each approach. We will try to quantify 
them using a list of metrics. And for each problem, 
we will indicate some solutions cited in the 
literature. 

 
3.1. PROGRAMMER EFFORT 
(TRANSPARENCY) 

This property refers to how the user perceives the 
fault tolerance solution. In application­level 
checkpointing the programmers will have to specify 
what data should be included in the checkpoint, and 
where checkpoints should be taken within the 
application code. So the SLC is more transparent 
then the ALC. Even in the ALC there are different 
transparency degrees for each type (ALC­P, ALC­
U(Lib), ALC­U(Comp)). This can be illustrated in 
Fig. 5. 

 

 

Fig. 5 – Transparency vs Portability  
in abstraction levels. 

 
3.2. PORTABILITY 

Another important aim is to provide portability of 
the checkpoint files and a portable checkpointing 
scheme. We say a checkpointing technique is 
portable if it allows the use of state files to recover 
the state of a failed process on a different machine. 
This attribute goes against the transparency (See 
Fig. 5). To solve the problem of portability in system 
level and even to improve it in application level, 
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some works use the virtual machines to ensure the 
consistency of processes states [8, 12, 17]. The 
second condition for a checkpointer to be portable is 
that all data is stored in a portable format so 
conversions may be made in case they are necessary 
for recovering the process state on a binary 
incompatible machine. Since different architectures 
represent data types in different sizes, a technique to 
convert data from one architecture to another 
meaningful data is needed. We can cite  
three strategies: 
 Machine independent presentation technique: 

the classic example is XDR (External Data 
Representation) [36]. Some newer application­
level schemes have used an XML­based format 
as well [37] or based on HDF5 (Hierarchical 
data forma 5) in CPPC [28]. 

 Lowest/Highest precision in the group [38]: 
means to save all checkpoint data in a precision 
that is higher/lower than that of any of the 
machines within the group. Both of these 
techniques suffer from the disadvantage that a 
conversion is required, even if the checkpoint is 
being restored to the machine on which it was 
taken. In addition, the technique of saving in 
the lowest precision of the group requires 
knowledge of the group members before 
checkpointing takes place. 

 Receiver makes right technique [39]: the 
originator of the data simply checkpoints the 
data in its own precision. This technique has 
been used in [35]. In this case, the receiver is 
charged to ensure that the data conversion takes 
place when necessary. However, data 
conversion issues arise in the case of 
architecture differences. 

 

3.3. CHECKPOINT SIZE 

The size of full checkpoint file of SLC is larger 
than the ALC since the SLC is based on a global 
snapshot of the processor address state, including all 
the dynamic data of the operating system. In case the 
ALC, the programmer can precise exactly the 
needed data for the recovery [7, 17, 22, 23]. In [5] 
the authors prove that the ALC can reduce the 
checkpoints size by 50.7%. 

However there are many techniques used to 
reduce this size of checkpoint file such as restricting 
the checkpointed data necessary for the rollback 
[14, 24]. The incremental checkpointing is also an 
efficacy strategy to decrease the checkpoint size. It 
consists to identify the dirty pages that have been 
modified since the last checkpoint, only the dirty 
pages are saved each checkpoint file. Many 
approaches use the incremental checkpoints 
[14, 16, 44, 47]. The authors in [26] propose 

different strategies of incremental checkpointing 
based on dirty pages such as Bookkeeping and 
Bookkeeping saving. The Word­level memory 
exclusion proposed in CAME [33] tracks every 
Read/Write operation so that both clean and dead 
memory can be excluded from checkpoint file, this 
leads to near optimally small files. However the 
overhead of word­level memory exclusion is too 
large. 

 

3.4. FLEXIBILITY 

In some particular cases, some users may find 
convenient to perform a data­driven or iteration­
based checkpoint, rather than a “blind” time­
triggered checkpoint. For the sake of flexibility and 
functionality, checkpoint/restart mechanisms should 
be accessible from the application programmer. This 
sort of ALC checkpoints can be used for other 
purposes rather than only the fault tolerance. For 
instance, ALS can also be used to perform job­
swapping across different systems, for post­
processing analysis or data­visualization. To 
increase the flexibility in system­level checkpointing 
many techniques of flexible checkpoints intervals 
are proposed in the literature [2]. To improve the 
flexibility in ALC­U, many potential checkpoints are 
placed in the code and among them (potential 
checkpoints) the checkpoint service can select the 
desired checkpoints according to the interval or the 
performances [29­32]. 

 

3.5. EFFICIENCY 

The efficiency is evaluated by the overhead 
added to the application’s execution by the 
checkpointing system. In practice, there are two 
important sources of overhead. The first overhead 
type is incurred in order to maintain information 
about the execution of the application that would be 
used if a checkpoint were taken. This overhead, 
which we call the checkpoint­free overhead, is paid 
whether or not any checkpoints are taken during 
execution and should be kept as small as possible 
using techniques cited in section 3­3.  

The used checkpointing protocols (coordinate, 
uncoordinated and communication induced) can 
infect also the checkpoint­free overhead. The 
technique that causes more overhead is the 
coordinated then the communication induced and 
then the uncoordinated. The last technique used to 
minimize the checkpoint­free overhead is using in 
case of external checkpoint responsible (the 
checkpoint initiator does not participate in the 
application) rather than an interne (the checkpoint 
initiator is one of process of the executed 
application) [26]. The second type of overhead is the 
cost of writing checkpoint data to stable storage 
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whenever a checkpoint is taken, which we call the 
checkpointing cost. This overhead is proportional to 
the size of the checkpoint data. ALC techniques tend 
to incur a checkpoint­free overhead, whereas the 
SLC techniques generally do not. The checkpointing 
cost can be reduced by reducing the amount of data 
in each checkpoint. It can be also reduced by 
controlling the I/O system [48]. In BLCR proposed 
in [17] the I/O manger collects the writes in a buffer 
in order to minimize the I/O calls, this strategy 
reduces the overhead cost by 12%. Storage type 
described in [22] infects the overhead cost: it groups 
schemes into three classes based on were and how 
the checkpoint storage is protected from errors.  

The first type is Safe External Storage where the 
checkpoint is stored in external storage that is 
assumed to be safe. The second storage type is Safe 
Internal Storage where the checkpoint is stored in 
main memory or other internal storage and made 
safe through redundancy across the nodes. And the 
last storage type is Specialized Fault Class where the 
checkpoint storage is not protected with redundancy 
across nodes. However, the system is not expected 
to recover from faults that can damage that storage. 
It is clear that the first type of storage increases the 
overhead compared to the other two types. There is 
another used technique to decrease the checkpoint 
cost called “Copy on write” where the checkpointing 
write is executed in the background of the 
application execution (the checkpoint service elect a 
process to do the checkpointing write and the 
application continue the execution in the same time 
[8, 12, 34]. 

 
3.6. RESTART-ABILITY 

Operating systems like UNIX provides a virtual 
and uniform memory layout in homogeneous 
machines, making easier the restarting of a process 
on a different processor. However, there are some 
state attributes that are kernel­dependent. They 
cannot be saved and carried across different 
processors in a sensible fashion [14]. To assure the 
restart­ability of the checkpointing, the application 
program should not make use of kernel dependent 
attributes. The restart­ability is related to the 
portability so ALC is more easily portable and can 
be restarted on different systems. SLC usually 
restricted to homogeneous hosts. To facilitate this 
restart­ability, the Zap [24] uses the domain file as a 
virtualization that ensures the portability of the 
process and its resources. In [10] the kernel state is 
encapsulated in list of references and information to 
ensure the restart­ability. For the restart­ability in 
case of migration, the work proposed in [14] 
proposes synchronization between the source and 
the destination of the thread; and both 

source/destination store the thread state in the  
virtual address.  

 
3.7. FORCED CHECKPOINTING 
GENERATION 

ALC cannot be generated forcefully, because in 
application level checkpointing, the process state can 
only be saved when checkpoint generation code is 
reached during execution whereas in SLC, it can be 
saved at any moment, since the state is obtained 
directly from the main memory by a separate thread 
or process. The technique of potential checkpoints 
insertion in ALC cannot make the forced 
checkpointing possible but it reduces the time 
between the desired time of forced checkpoints call 
and the execution of the real checkpointing. 

 
3.8. CORRECTNESS 

The correctness is the ability of a checkpointing 
system to ensure that the application produces a 
correct result. Of all of the properties that we have 
listed here, correctness is arguable the most difficult 
to ensure. To solve the problem of correctness in 
SLC and ALC, the Mixed checkpointing level MLC 
is proposed in [4] (section 2.3).  

The paper [27] uses the correctness in application 
level to reduce the checkpoints size. This paper 
investigates definitions of program correctness that 
view correctness from the application’s standpoint 
rather than the architecture’s standpoint. Under 
application­ level correctness, a program’s execution 
is deemed correct as long as the result it produces is 
acceptable to the user. So in case of the soft 
computing (programs that produce inexact and/or 
approximate outputs) it is not necessary to store 
some states called Soft states because they will be 
modified at every re­execution without touching the 
correctness of the application. 

 
4. COMPARISON BETWEEN ALC  

AND SLC 

To resume all the characteristics of both ALC 
and SLC using all the points cited in the previous 
section, we present Table 1 that summarizes the 
differences between the application and the system 
level checkpointing using the criteria cited in section 
3. (Y=Yes and N=No). 

In Table 2 we compare between the different 
techniques used to implement the SLC (section 2.1) 
[1]. The used criteria are: Type, transparency, 
flexibility, Automatic initiation (ho is the 
responsible to initiate the checkpoint call) and if  
it is necessary to stop the application during  
the checkpointing. 
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Table 1. ALC Versus SLC. 
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The system signal is a general purpose signal 
provided by the system but called only by the user to 
perform the checkpointing (automatic initiation) 
which minimizes the transparency and the 
flexibility. Kernel­mode signal handler is based on 
the signaling mechanism offered by the kernel, it is a 
new specific signal added to the kernel for the 
purpose of checkpointing. The advantage of Kernel 
mode is that the checkpoint is initiated by the 
system; but as the previous signal (system call), it is 
hard to control the checkpointing so the flexibility is 
not assured. Applications may be flexibly 
checkpointed by using a specific thread to the 
application's process called Kernel thread. Here a 
kernel thread is created to perform the 
checkpoint/restart activities so the flexibility is 
assured.  

Since the kernel thread is also a different process 
and, especially in a multiprocessor system, it might 
run in parallel with the application that can change 
some data while the kernel thread is saving them. In 
this case a mechanism to stop the application is 
necessary in order to guarantee data consistency. 

The System Call and the Kernel Mode signal 
handler approaches have the advantages of being 
executed behind the process that has to be 
checkpointed. In this way the actual process address 
space is still the same of the process running in user 
mode. Unlike the system and kernel signal that 
required a modification in the code, the kernel thread 
is completely transparent. 

 

Table 2. Comparison between SLC Implementation. 

SLC 
Implementation 

Signal  
System 

Kernel 
System 

Kernel  
Thread 

Type General  
System 

Special  
System 

Special  
Thread 

Transparency N N Y 
Automatic initiation User System User 
Flexibility N N Y 
Stopping 
Application 
When Chekpointing 

N N Y 

 

We propose also a comparison between all the 
cited works in this paper using some criteria 
presented in section 3. The comparison is illustrated 
in Table 3 for the approaches using SLC and Table 4 
for the approaches using ALC. The word CP 
represents the CheckPointing. Table 3 illustrates the 
used abstraction level for each approach, and if the 
transparency or portability is considered (section 3.1 
& section 3.2). In case of BLCR for example, the 
portability is not considered but it uses the virtual 
machines­VM­to improve it. The other criteria are: 
The checkpoints size (section 3.3), the storage type 
(section 3.5), the used implementation (section 2.1), 
the checkpointing technique (section 3.5), the 
checkpointing responsible (section 3.5) and finally 
the system type. Table 4 presents the same criteria 
for ALC. 

 

Table 3. System Level Checkpointing (SLC) Techniques 

Paper Level Transpa-
rency 

Portability CP size Storage 
type 

Implemen-
tation 

CP 
Type 

CP 
respon-
sible 

System 
Type 

SafeNet 
[23] 

SLC­H Yes No Full Safe 
External 

/ Uncoord Internal Shared 
Memory 

ReVive 
[22] 

SLC­H Yes No Full Safe 
internal 

/ Coord Internal Shared 
Memory 

[7] SLC­H Yes No Full 
 

Safe 
internal 

/ Coord 
(T­FIFO) 

Internal Reconfigu
rable 
System 

BLCR 
[17] 

SLC­K Yes No (+VM) Full+ 
compression 

Safe 
external 

Signal handler Coord External 
(Callback 
thread) 

MPI 

TICK 
[26] 

SLC­K Yes No Incremental Safe 
external 

Kernel thread BCS External 
 

MPI 

ZAP 
[24] 

SLC­K Yes No Full Specialized 
Class 

System 
Call 

Coord Internal 
 

Shared 
Memory 

Stdchk 
[47] 

SLC­K Yes No Incremental Safe 
internal 

System 
Call 

Uncoord External 
 

Grid 
computing 
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Table 4. Application Level Checkpointing (ALC) Techniques 

Paper Level Transpa-
rency 

Portability CP size Storage 
type 

Implemen-
tation 

CP 
Type 

CP 
responsible 

System 
Type 

[27] ALC­P No Yes Full 
(hard state) 

Safe 
external 

Signal 
handler 

Safe 
points 

Internal Shared 
Memory 

File­Safe 
[8] 

ALC­U 
(Lib) 

No Yes 
(+VM) 

Full Safe 
Internal 

API 
Interface 

Coord Internal(P) 
/External 
(Rollback) 

MPI 
 

DOME 
[9] 

ALC­U 
(Comp) 

No Yes Full Safe 
Internal 

API 
interface 

Uncoord Internal SPMD 
 

[10] ALC­U 
(Lib) 

No Yes Full Safe 
external 

Signal 
handler 

Coord Internal Shared 
Memory 

[11] ALC­U 
(Lib) 

No 
 

Yes 
 

Full 
 

Safe 
External 

Signal 
Handler 

Coord 
 

Internal 
 

Shared 
memory 

MTCP 
[12] 

ALC­U 
(Lib) 

No Yes 
(+VM) 

Full Safe 
External 

Signal 
handler 

Coord External 
(MTCP 
thread) 

Shared 
memory 

[13] ALC­U 
(Lib) 

No 
 

Yes 
 

Full 
 

Safe 
External 

Signal 
handler 

Coord 
 

External 
 

Shared 
Memory 

DMTCP 
[18] 

ALC­U 
(Lib) 

No Yes 
 

Full 
 

Safe 
External 

LD­
PRELOAD 
 

Coord 
 

External Shared 
Memory 

XCAT3 
[20] 

ALC­U 
(Comp) 

No Yes 
(+XML) 

Full Safe 
External 

Signal 
Handler 

Coord External Grid 
computing 

[14] ALC­U 
(Lib) 

No Yes Incremental Safe 
External 

Signal 
Handler 

Coord Internal Shared 
Memory 

C3[15]  ALC­U  
(Comp)  

No  Yes  Full  Safe  
external  

Signal  
Handler 

Coord Internal  MPI/Shared 
Memory 

DejaVu  
[16]  

ALC­U  
(Lib) 

No  Yes  Incremental  Safe  
External 

LD­
PRELOAD  

loosely  
coord 

External  MPI 
 

CPPC­G  
[19]  

ALC­U  
(Comp)  

No  Yes  
(+HDFS)  

Full+  
Compression  

Safe  
external  

Signal  
handler  

Safe  
Points 

Internal  Grid 
Computing 

[44] ALC­U  
(Lib) 

No Yes 
(VM) 

Incremental Safe  
external 

/ Coord Internal HPC 

[45] ALC­U  
(Lib) 

No Yes 
(VM) 

Incremental Safe  
external 

/ Coord Internal Cloud 

Infiniband 
[46] 

ALC­U  
(Lib) 

No Yes Incremental Safe  
external 

/ Coord/ 
Uncoord 

Internal HPC 

 
5. CONCLUSION 

The classification based on abstraction level 
illustrates the state of process saving. It is 
categorized into two principal levels: application and 
system levels. In this paper we have presented each 
abstraction level in details and we have compared 
between the levels using different criteria cited in 
many papers in the literature. The transparency and 
the portability are two principal criteria of the 
comparison and each of them expresses the contraire 
of the other.  

What is new in this paper is that we have 
summarized the existing solutions for the majority of 
level problems and limits. We presented also some 
comparative studies between different works 
existing in the literature. It is important to note that 
is clear that the checkpointing technique whatever its 
abstraction level is not sufficient to ensure a good 

fault tolerance in a distributed system. So many 
papers propose lately to combine between the 
checkpointing and the replication techniques 
[40, 41]. This hybrid strategy can reduce the fault 
tolerance overload and execution time of the 
application itself since the replication ensures the 
fault tolerance in real time and the checkpointing 
reduces what suppose to be re­executed in case  
of failures. 
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