
Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 158

ABSTRACTION CHECKPOINTING LEVELS:
PROBLEMS AND SOLUTIONS

Bakhta Meroufel, Ghalem Belalem

Department of Computer Science, Faculty of Exact and Applied Sciences

University of Oran, Algeria
e­mail: bakhtasba@gmail.com, ghalem1dz@gmail.com

Abstract: A common approach to guarantee an acceptable level of fault tolerance in scientific computing is the
checkpointing. In this strategy: when a task fails, it is allowed to be restarted from the recently checked pointed state
rather than from the beginning, which reduces the system loss and ensures the reliability. Several systems use the
checkpointing to ensure the fault tolerance such as HPC, distributed discrete event simulation and Clouds. The literature
proposes several classifications of checkpointing techniques using different metrics and criteria. In this paper we focus
on the classification based on abstraction level. In this classification the checkpointing is categorized into two principal
types: application level and system level. Each of these levels has its advantages and suffers from many problems. The
difference between our present paper and the others surveys proposed in the literature is that: in this paper we will study
each level in details. We will also study and analyze some works that propose solutions to solve the problems and
exceed the limits of each abstraction level. Copyright © Research Institute for Intelligent Computer Systems, 2014. All
rights reserved.

Keywords: Checkpointing, abstraction level, system level, application level, compiler, transparency, portability.

1. INTRODUCTION

Checkpointing/rollback recovery strategy has
been an attractive approach for providing fault
tolerant to distributed applications [2]. Checkpoints
are periodically saved on stable storage sever and
the recovery from a processor failure is done by
restoring the system to the last saved state [3]. So the
system can avoid the total loss of computations in
case of the failure. One of the popular systems that
use the checkpointing to ensure the fault tolerance is
the distributed discrete event simulation. In this type
of environment: the simulated system is partitioned
into a set of sub­systems that are simulated by a set
of processes that communicate by sending/receiving
time stamped messages [42]. The state of each
process in distributed discrete event simulation must
be saved regularly to ensure a correct rollback in
case of failures and decrease the system loss.
However, it is proved that the performance of this
system is dominated by the efficiency of the used
checkpointing strategy. Thus, it is important to
analyze and know more about this fault tolerance
technique [43].

The checkpointing strategies can be classified
according to their synchronization type [2].
Coordinated and uncoordinated are two fundamental

approaches for checkpointing and recovery. There is
another popular classification based on the
abstraction level in which the state of a process is
saved. There are a large number of design choices of
abstraction level [6]. To understand this, let’s
consider the typical system stack shown in Fig. 1.

Fig. 1 – System stack.

It contains the original user application, which
may be compiled/linked with user­level libraries. It
may use system libraries, which resides on top of the
OS kernel, which executes directly on top of
hardware. Any of these levels may be modified with
checkpointing functionality, so it possible to save
and restore the stack levels above it. Furthermore, it
is possible to insert new layers between these
standard layers that enable checkpointing of the

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 159

layers above, such as the work proposed in [15]
where Co­ordination Layer is created between the
system library and the user library to ensure more
transparency and to ensure also that system library
will not be modified. The insertion of a new library
can be necessary if the code of the existing library is
note available or to ensure more transparency [15].

There are many survey papers proposed in the
literature that study the abstraction level of
checkpointing [1, 2, 5]. However, in our knowledge,
none of them (survey) studied the solutions of the
problems and limitations of each level. Our present
work summarizes the majority of existing solutions
of abstraction levels and proposes a comparative
study between several papers.

This paper is organized as follows: in section 2,
we propose a new abstraction level classification
based on the transparency and we define in details
each level. In section 3, we use some criteria to
compare between the application level and the
system level and we introduce some existing
solutions for each problem caused by the abstraction
level. We compare between the papers cited in
our work in the fourth section. We finish our paper
by a conclusion.

2. CHECKPOINTING LEVELS

There are many types of abstraction level
classification in the literature. In [1], the
classification is based on the implementation
techniques. However, the authors in [2] and [5]
propose other classification that uses the
transparency as a criterion. In both previous works
and in many other papers the application­level is
referred as user­level. For our discussion we will
distinguish them by their transparency with regard to
the application program, further classified below.
Our classification categories the checkpointing
levels into three different types: application level,
system level and mixed level (hybrid). Fig. 2
illustrates the proposed classification.

Fig. 2 – Checkpointing level classification.

2.1. SYSTEM-LEVEL (SLC)

System­level checkpointing is a technique which
provides automatic, transparent checkpointing of
applications at the operating system or middleware
level. The application is seen as a black­box, and the
checkpointing mechanism has no knowledge about
any of its characteristics. Typically, this involves
capturing the complete process image of the
application. There are two main approaches of
checkpointing at system­level: kernel (operating
system) implementation and hardware
implementation [2]. The system­level checkpointing
can be activated by system call, Kernel­mode signal
handler or Kernel thread.

2.1.1. KERNEL (OPERATING SYSTEM)
LEVEL (SLC-K)

In kernel space every data structure relevant to a
process's state is readily accessible: these include
registers, memory regions, file descriptors, signal
state, and more. This accessibility enormously
simplifies the implementation of checkpoint/restart
operations, though requires somewhat more
knowledge of kernel internals. Berkeley Lab
Checkpoint/Restart (BLCR) proposed in [17] is
kernel level checkpointing in distributed system. It
uses the coordinated checkpointing activated by a
special thread named “Call back thread”. To reduce
the overhead caused by the checkpointing, BLCR
focuses on the management of I/O strategies.
Transparent Incremental Checkpointer at Kernel
level (TICK) [26] is another system that uses kernel
level checkpointing. TICK considers the
transparency as the most important criteria in
scalable systems so the System­Level is the perfect
Checkpointing to ensure transparency in grid
calculations. TICK uses the buffered co­scheduling
(BCS) [25] to ensure the checkpointing consistency.
In BCS the messages are buffered and scheduled
before transmission to omit the late and transit
messages. ZAP [24] uses the kernel­level
checkpointing for the migration. It provides a
virtualization mechanism called Pod (Process
domain) to cope with the resource consistency,
resource conflicts, and resource dependencies that
arise when migrating processes between machines
with different persistent states. Stdchk proposed in
[47] uses kernel­level checkpointing and it focuses
on reducing the storage time by reducing the
checkpointing size.

2.1.2. HARDWARE LEVEL (SLC-H)

Checkpointing may be supported by purpose
designed hardware. As with operating system level
implementations, this approach can be entirely
transparent to users. But hardware­level

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 160

checkpointing is of limited importance precisely
because it relies on custom hardware. The work
proposed in [7] uses the checkpointing in the
hardware level to tolerate faults in reconfigurable
system. It assumes that each hardware module can
be modeled by a Finite State Machine (FSM). This
FSM will be extended to CFSM (checkpointed
sFSM) by adding a new module related to FSM that
control the checkpointing time (interval) and the
placement of the checkpoint file. ReVive [22]
requires modifications to the directory controllers of
the machine that intercept the I/O to perform
memory based distributed parity protection and
logging in the background. The parity protection is
used to protect the checkpoint file since it will be
transferred via a network to others nodes to be
stored. The logging is used to ensure the atomicity
of transitions and omitting the modifications in
memory in case of failure. In Logging buffering, the
checkpoint value, is copied to a log, while the
original location is modified and remains part of the
working state. SafeNet [23] uses the same idea
proposed in ReVive except that in SafeNet the parity
protection is not used and the checkpoint files are
stored only in the main memory. SafeNet uses
uncoordinated checkpointing with pipelined
validation rather than coordinated checkpointing
used in ReVive. These differences justify
why SafeNet requires more hardware resources
than Revive.

2.2. APPLICATION-LEVEL (ALC)

A typical approach to avoid many of the
complexities of checkpointing is based on taking an
application centric point of view, and exploiting
knowledge of the structure and behavior of a given
application. In this approach the checkpointing is
initiated, and to some degree managed, from within
the application [5]. The application programmer
identifies program points at which all essential state
can be captured from within the application [21]. A
common scheme of implementation is to install a
signal handler for a default signal offered by the
kernel to automatic­initiate the checkpoint
operations. The signal handlers are defined at user­
level and invoked by the kernel. This signal can be
triggered by a timer that periodically interrupts the
application [1]. The application level can be
classified according to the transparency for the user.
It means how much the user is involved in the
process of checkpointing [2].

2.2.1. PROGRAMMER LEVEL (ALC-P)

It is called also manual code insertion. In this
level the programmer manually inserts the
checkpointing code in the application code in order

to save its state and to recover after a fail­stop
failure. The programmer inserts code at points in the
application where he wants checkpointing to occur.
The work introduced in [27] determines when the
checkpoints are taken by identifying the main
controlling loops in the benchmarks (usually the
outer loops associated with major program phases),
and inserts the checkpointing calls at the top of each
loop iteration. The main advantage of this approach
is that semantic information about memory contents
is available when saving and recovering checkpoint
data. Using this approach, only the important data
necessary to recover the application are saved. The
main drawback is that the programmer has to
manually insert CPR (CheckPoint Recovery) code to
save and recover an application state which is a very
error prone process. Other drawback of this
approach is the need to have access to the
application source code.

2.2.2. USER LEVEL (ALC-U)

A user­level checkpointing is implemented in
user­space and typically provides transparency by
virtualizing all system calls into the kernel. Within
this virtualized environment the checkpointing
approach is able to capture the state of the entire
process without being tied to the kernel and without
modifying the application code, it just inserts the
checkpointing call in the code using a library that
will be activated at each execution or by using a
special process named pre­compiler or compiler.

A. LIBRARY CHECKPOINTING:

This technique provides support for
checkpointing through a run­time library. This
approach is not transparent to the user: the
checkpoint contents and the places where
checkpoints should be taken have to be defined by
the application programmer. Its implementation is
based on the LD_PRELOAD environment variable
[1] which installs the signal handlers and loads the
checkpoint library without recompiling again the
application. It can be implemented also by the signal
handler. Fail­safe PVM (Parallel Virtual Machine)
proposed in [8] implements a checkpointing library
on top of Unix to support the fault tolerance (user­
level). It uses the coordinated checkpointing
activated by the daemon process to assure the
coherence and it replicates the checkpoint files in
many nodes to ensure their availability.

DejaVu [16] provides a user­level checkpointing
by implementing a new library in the system.
DejaVu is a coordinated checkpointing system, but
unlike Distributed Snapshots it uses a novel runtime
mechanism called OLP (On Ligne Protocol) to
capture the state of communication channels as part

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 161

of the checkpoint and does not incur the overhead
associated with flushing the network. The OLP is
used to implement a loosely coordinated
checkpointing. In contract to classic approaches of
user­level checkpointing where the kernel state are
recreating during the roll back of the system in case
of failure, the paper [10] proposes to encapsulate the
kernel state and to store it in order to recreating the
same kernel state in the rollback phase, so the
overhead will be decreased. The paper [10] proposes
also a new system where the process father can
control its sons and ensures the checkpointing
service for them which reduces the size of
checkpointing files.

The paper [11] describes a user­level
checkpointing library to checkpoint multithreaded
programs that use the POSIX threads library. It
solves the problem of inter­blockage of processes
that can be occurring in the checkpointing process.
MTCP introduced in [12] and [13] focuses also on
the user­level checkpointing in multithreading
system and it uses coordinated checkpoints in shared
memory system. DTMC proposed in [18] extends
MTCP by focusing on the management of sockets
and it proposes to use a single started thread in the
rollback process to minimize the checkpoint size. In
work [14], the user­level library checkpointing is
used for the migration of threads. In order to reduce
the time of migration, the paper proposes to
synchronize between the source and the destination
before the migration. It uses also the incremental
checkpoint.

B. PRE-COMPILER CHECKPOINTING:

To overcome the problem of transparency to the
user, the pre­compiler checkpointing approach is
introduced. The basic idea for a program
transformation tool or pre­compiler is to analyze the
application source code and determine what program
variables must be saved at each checkpoint. It also
adds the appropriate code to the source code to write
checkpoints and to restart the application from these
checkpoints [28].

Compiler based approaches to checkpoint/restart
fault tolerance are typically composed of two
components: a pre­compiler, and a runtime support
library. The pre­compiler is a source­to­source
compiler that augments an existing application with
calls into the associated runtime support library in
order to provide transparent checkpoint/restart
capabilities. This approach is independent of the
MPI implementation. It permits us to implement the
coordination protocol without modifying the
underlying MPI library, which promotes modularity
and eliminates the need for access to MPI library
code which is proprietary on some systems. The

additional requirement for the programmer is that he
needs to insert calls to checkpointing functions at
points in the application where he wants
checkpointing to occur. The Fig. 3 shows the pre­
compiler architecture.

Fig. 3 – Pre-compiler architecture.

Many compilers are proposed in the literature
such as in [29­34]. In [28], the authors propose a
CPPC (Controller/Pre­compiler for Portable
Checkpointing), it focuses on the automatic insertion
of fault tolerance into long­running message­passing
applications. It is designed to allow the execution
restart on different architectures and/or operating
systems. CPPC supports the checkpointing over
heterogeneous systems, such as the Grid. It uses
portable code and protocols, and generates portable
checkpoint files while avoiding traditional solutions
(such as process coordination or message­logging)
by using safe points.

Safe point checkpoints are taken at the same
relative code locations by all processes, without
performing inter­process communications or runtime
synchronization. To avoid problems caused by
messages between processes, checkpoints must be
inserted at points where it is guaranteed that there
are no in­transit, nor orphan messages. Fig. 4
illustrates the unsafe zones in the communication
between three processes P1, P2 and P3 with three
local checkpoints Ci,j for each.

Safe point identification and checkpoint insertion
is automatically performed by the compiler CPPC.
Among the systems that use the compiler we can cite
also: [9, 15, 19 20]. The Distributed object migration
environment (Dome) [9] addresses three major
issues of distributed parallel programming: ease of
use, load balancing, and fault tolerance and it uses
SPMD system (Single Process Multi Data). The
second and the third issues (load balancing, and fault

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 162

tolerance) are ensured by the checkpointing
mechanism. The first issue (ease of use) in Dome is
ensured by using a compiler that makes the
checkpointing transparent to user. For the load
balancing, Dome calculates the load of the processes
based on execution speed and balances the load by
redistributing the data in the system. This
redistribution is assured by the compiler.

Fig. 4 – Safe/Unsafe points in three processes.

XCAT3 [20] uses the compiler in the user level

checkpointing for grid computing. It focuses on the
problem of checkpoint files availability so it
proposes to use a federation of Storage services that
is comprised of a Master Storage service and a set of
Individual Storage services. XCAT3 exploits the
blocking coordinated checkpointing to ensure the
consistent global state. The work presented in [19]
uses CPPC to implement the CPPC­G (CPPC for
grid computing) on top of Globus4. CPPC­G
extends CPPC by adding some others services to
ensure the fault tolerance in the grid. The CPPC­G is
charged to submit and monitor the CPPC
applications. CPPC­G generates also the checkpoint
files, detects the failures and automatically restarts
the failed executions. C3 (Cornell Checkpoint (pre­
Compiler) [15] exploits also ALC with a compiler to
ensure more transparency for the user in scalable
systems. According to [15], we cannot assume FIFO
communication in message passing systems (MPI).
In this case; C3 proposes a new strategy to detect
consistent global states without FIFO assumption.

2.3. MIXED LEVEL CHECKPOINTING
(MLC)

It is clear that neither application level
checkpointing nor system level checkpointing is
always an optimal solution to the system in term of
performances. Efficiency and correctness are
difficult issues for both approaches. So,
Mixed­Level Checkpointing (MLC) combines
aspects of both application and system level
checkpointing. It can be used to develop
checkpointing systems that are able to omit all the
problems of each level type. The great difficulty in

building MLC systems is separating the state of an
application into logically consistent sets that can be
checkpointed using either system or application
level approaches. This approach was noted in [2]
without any suggestion or implementation. However
the paper [4] implements MLC as a system that
balances between SLC and ALC according to the
best for the performances. But it does not resolve the
problem of the distinction between the states that
must be stored with ALC or ALC. Since MLC in [4]
balances between SLC and ALC so at any time the
MLC can use only ALC so the programmer will
modify the application code to support the
checkpointing. In this case even the MLC is not
transparent. For this reason our comparison is
limited to System­level and Application­level.

3. SLC VERSUS ALC CHECKPOINTING:

PROBLEMS AND SOLUTIONS

Obviously, there are problems and advantages in
the use of each approach. We will try to quantify
them using a list of metrics. And for each problem,
we will indicate some solutions cited in the
literature.

3.1. PROGRAMMER EFFORT
(TRANSPARENCY)

This property refers to how the user perceives the
fault tolerance solution. In application­level
checkpointing the programmers will have to specify
what data should be included in the checkpoint, and
where checkpoints should be taken within the
application code. So the SLC is more transparent
then the ALC. Even in the ALC there are different
transparency degrees for each type (ALC­P, ALC­
U(Lib), ALC­U(Comp)). This can be illustrated in
Fig. 5.

Fig. 5 – Transparency vs Portability
in abstraction levels.

3.2. PORTABILITY

Another important aim is to provide portability of
the checkpoint files and a portable checkpointing
scheme. We say a checkpointing technique is
portable if it allows the use of state files to recover
the state of a failed process on a different machine.
This attribute goes against the transparency (See
Fig. 5). To solve the problem of portability in system
level and even to improve it in application level,

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 163

some works use the virtual machines to ensure the
consistency of processes states [8, 12, 17]. The
second condition for a checkpointer to be portable is
that all data is stored in a portable format so
conversions may be made in case they are necessary
for recovering the process state on a binary
incompatible machine. Since different architectures
represent data types in different sizes, a technique to
convert data from one architecture to another
meaningful data is needed. We can cite
three strategies:
 Machine independent presentation technique:

the classic example is XDR (External Data
Representation) [36]. Some newer application­
level schemes have used an XML­based format
as well [37] or based on HDF5 (Hierarchical
data forma 5) in CPPC [28].

 Lowest/Highest precision in the group [38]:
means to save all checkpoint data in a precision
that is higher/lower than that of any of the
machines within the group. Both of these
techniques suffer from the disadvantage that a
conversion is required, even if the checkpoint is
being restored to the machine on which it was
taken. In addition, the technique of saving in
the lowest precision of the group requires
knowledge of the group members before
checkpointing takes place.

 Receiver makes right technique [39]: the
originator of the data simply checkpoints the
data in its own precision. This technique has
been used in [35]. In this case, the receiver is
charged to ensure that the data conversion takes
place when necessary. However, data
conversion issues arise in the case of
architecture differences.

3.3. CHECKPOINT SIZE

The size of full checkpoint file of SLC is larger
than the ALC since the SLC is based on a global
snapshot of the processor address state, including all
the dynamic data of the operating system. In case the
ALC, the programmer can precise exactly the
needed data for the recovery [7, 17, 22, 23]. In [5]
the authors prove that the ALC can reduce the
checkpoints size by 50.7%.

However there are many techniques used to
reduce this size of checkpoint file such as restricting
the checkpointed data necessary for the rollback
[14, 24]. The incremental checkpointing is also an
efficacy strategy to decrease the checkpoint size. It
consists to identify the dirty pages that have been
modified since the last checkpoint, only the dirty
pages are saved each checkpoint file. Many
approaches use the incremental checkpoints
[14, 16, 44, 47]. The authors in [26] propose

different strategies of incremental checkpointing
based on dirty pages such as Bookkeeping and
Bookkeeping saving. The Word­level memory
exclusion proposed in CAME [33] tracks every
Read/Write operation so that both clean and dead
memory can be excluded from checkpoint file, this
leads to near optimally small files. However the
overhead of word­level memory exclusion is too
large.

3.4. FLEXIBILITY

In some particular cases, some users may find
convenient to perform a data­driven or iteration­
based checkpoint, rather than a “blind” time­
triggered checkpoint. For the sake of flexibility and
functionality, checkpoint/restart mechanisms should
be accessible from the application programmer. This
sort of ALC checkpoints can be used for other
purposes rather than only the fault tolerance. For
instance, ALS can also be used to perform job­
swapping across different systems, for post­
processing analysis or data­visualization. To
increase the flexibility in system­level checkpointing
many techniques of flexible checkpoints intervals
are proposed in the literature [2]. To improve the
flexibility in ALC­U, many potential checkpoints are
placed in the code and among them (potential
checkpoints) the checkpoint service can select the
desired checkpoints according to the interval or the
performances [29­32].

3.5. EFFICIENCY

The efficiency is evaluated by the overhead
added to the application’s execution by the
checkpointing system. In practice, there are two
important sources of overhead. The first overhead
type is incurred in order to maintain information
about the execution of the application that would be
used if a checkpoint were taken. This overhead,
which we call the checkpoint­free overhead, is paid
whether or not any checkpoints are taken during
execution and should be kept as small as possible
using techniques cited in section 3­3.

The used checkpointing protocols (coordinate,
uncoordinated and communication induced) can
infect also the checkpoint­free overhead. The
technique that causes more overhead is the
coordinated then the communication induced and
then the uncoordinated. The last technique used to
minimize the checkpoint­free overhead is using in
case of external checkpoint responsible (the
checkpoint initiator does not participate in the
application) rather than an interne (the checkpoint
initiator is one of process of the executed
application) [26]. The second type of overhead is the
cost of writing checkpoint data to stable storage

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 164

whenever a checkpoint is taken, which we call the
checkpointing cost. This overhead is proportional to
the size of the checkpoint data. ALC techniques tend
to incur a checkpoint­free overhead, whereas the
SLC techniques generally do not. The checkpointing
cost can be reduced by reducing the amount of data
in each checkpoint. It can be also reduced by
controlling the I/O system [48]. In BLCR proposed
in [17] the I/O manger collects the writes in a buffer
in order to minimize the I/O calls, this strategy
reduces the overhead cost by 12%. Storage type
described in [22] infects the overhead cost: it groups
schemes into three classes based on were and how
the checkpoint storage is protected from errors.

The first type is Safe External Storage where the
checkpoint is stored in external storage that is
assumed to be safe. The second storage type is Safe
Internal Storage where the checkpoint is stored in
main memory or other internal storage and made
safe through redundancy across the nodes. And the
last storage type is Specialized Fault Class where the
checkpoint storage is not protected with redundancy
across nodes. However, the system is not expected
to recover from faults that can damage that storage.
It is clear that the first type of storage increases the
overhead compared to the other two types. There is
another used technique to decrease the checkpoint
cost called “Copy on write” where the checkpointing
write is executed in the background of the
application execution (the checkpoint service elect a
process to do the checkpointing write and the
application continue the execution in the same time
[8, 12, 34].

3.6. RESTART-ABILITY

Operating systems like UNIX provides a virtual
and uniform memory layout in homogeneous
machines, making easier the restarting of a process
on a different processor. However, there are some
state attributes that are kernel­dependent. They
cannot be saved and carried across different
processors in a sensible fashion [14]. To assure the
restart­ability of the checkpointing, the application
program should not make use of kernel dependent
attributes. The restart­ability is related to the
portability so ALC is more easily portable and can
be restarted on different systems. SLC usually
restricted to homogeneous hosts. To facilitate this
restart­ability, the Zap [24] uses the domain file as a
virtualization that ensures the portability of the
process and its resources. In [10] the kernel state is
encapsulated in list of references and information to
ensure the restart­ability. For the restart­ability in
case of migration, the work proposed in [14]
proposes synchronization between the source and
the destination of the thread; and both

source/destination store the thread state in the
virtual address.

3.7. FORCED CHECKPOINTING
GENERATION

ALC cannot be generated forcefully, because in
application level checkpointing, the process state can
only be saved when checkpoint generation code is
reached during execution whereas in SLC, it can be
saved at any moment, since the state is obtained
directly from the main memory by a separate thread
or process. The technique of potential checkpoints
insertion in ALC cannot make the forced
checkpointing possible but it reduces the time
between the desired time of forced checkpoints call
and the execution of the real checkpointing.

3.8. CORRECTNESS

The correctness is the ability of a checkpointing
system to ensure that the application produces a
correct result. Of all of the properties that we have
listed here, correctness is arguable the most difficult
to ensure. To solve the problem of correctness in
SLC and ALC, the Mixed checkpointing level MLC
is proposed in [4] (section 2.3).

The paper [27] uses the correctness in application
level to reduce the checkpoints size. This paper
investigates definitions of program correctness that
view correctness from the application’s standpoint
rather than the architecture’s standpoint. Under
application­ level correctness, a program’s execution
is deemed correct as long as the result it produces is
acceptable to the user. So in case of the soft
computing (programs that produce inexact and/or
approximate outputs) it is not necessary to store
some states called Soft states because they will be
modified at every re­execution without touching the
correctness of the application.

4. COMPARISON BETWEEN ALC

AND SLC

To resume all the characteristics of both ALC
and SLC using all the points cited in the previous
section, we present Table 1 that summarizes the
differences between the application and the system
level checkpointing using the criteria cited in section
3. (Y=Yes and N=No).

In Table 2 we compare between the different
techniques used to implement the SLC (section 2.1)
[1]. The used criteria are: Type, transparency,
flexibility, Automatic initiation (ho is the
responsible to initiate the checkpoint call) and if
it is necessary to stop the application during
the checkpointing.

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 165

Table 1. ALC Versus SLC.
L

ev
el

T
ra

n
sp

ar
en

cy
 [

4]

P
or

ta
b

il
it

y
[5

]

C
P

 S
iz

e
[5

]

C
or

re
ct

n
es

s
[1

]

F
le

xi
b

il
it

y
[2

]

F
or

ce
d

 C
P

 [
6]

E
ff

ic
ie

n
cy

 [
2]

R
es

ta
rt

ab
il

it
y

[5
]

S
ca

la
b

il
it

y
[3

]

S
L

C

Y N High N N Y N Difficult N

A
L

C

N Y Low N Y N Y Easy Y

The system signal is a general purpose signal
provided by the system but called only by the user to
perform the checkpointing (automatic initiation)
which minimizes the transparency and the
flexibility. Kernel­mode signal handler is based on
the signaling mechanism offered by the kernel, it is a
new specific signal added to the kernel for the
purpose of checkpointing. The advantage of Kernel
mode is that the checkpoint is initiated by the
system; but as the previous signal (system call), it is
hard to control the checkpointing so the flexibility is
not assured. Applications may be flexibly
checkpointed by using a specific thread to the
application's process called Kernel thread. Here a
kernel thread is created to perform the
checkpoint/restart activities so the flexibility is
assured.

Since the kernel thread is also a different process
and, especially in a multiprocessor system, it might
run in parallel with the application that can change
some data while the kernel thread is saving them. In
this case a mechanism to stop the application is
necessary in order to guarantee data consistency.

The System Call and the Kernel Mode signal
handler approaches have the advantages of being
executed behind the process that has to be
checkpointed. In this way the actual process address
space is still the same of the process running in user
mode. Unlike the system and kernel signal that
required a modification in the code, the kernel thread
is completely transparent.

Table 2. Comparison between SLC Implementation.

SLC
Implementation

Signal
System

Kernel
System

Kernel
Thread

Type General
System

Special
System

Special
Thread

Transparency N N Y
Automatic initiation User System User
Flexibility N N Y
Stopping
Application
When Chekpointing

N N Y

We propose also a comparison between all the
cited works in this paper using some criteria
presented in section 3. The comparison is illustrated
in Table 3 for the approaches using SLC and Table 4
for the approaches using ALC. The word CP
represents the CheckPointing. Table 3 illustrates the
used abstraction level for each approach, and if the
transparency or portability is considered (section 3.1
& section 3.2). In case of BLCR for example, the
portability is not considered but it uses the virtual
machines­VM­to improve it. The other criteria are:
The checkpoints size (section 3.3), the storage type
(section 3.5), the used implementation (section 2.1),
the checkpointing technique (section 3.5), the
checkpointing responsible (section 3.5) and finally
the system type. Table 4 presents the same criteria
for ALC.

Table 3. System Level Checkpointing (SLC) Techniques

Paper Level Transpa-
rency

Portability CP size Storage
type

Implemen-
tation

CP
Type

CP
respon-
sible

System
Type

SafeNet
[23]

SLC­H Yes No Full Safe
External

/ Uncoord Internal Shared
Memory

ReVive
[22]

SLC­H Yes No Full Safe
internal

/ Coord Internal Shared
Memory

[7] SLC­H Yes No Full

Safe
internal

/ Coord
(T­FIFO)

Internal Reconfigu
rable
System

BLCR
[17]

SLC­K Yes No (+VM) Full+
compression

Safe
external

Signal handler Coord External
(Callback
thread)

MPI

TICK
[26]

SLC­K Yes No Incremental Safe
external

Kernel thread BCS External

MPI

ZAP
[24]

SLC­K Yes No Full Specialized
Class

System
Call

Coord Internal

Shared
Memory

Stdchk
[47]

SLC­K Yes No Incremental Safe
internal

System
Call

Uncoord External

Grid
computing

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 166

Table 4. Application Level Checkpointing (ALC) Techniques

Paper Level Transpa-
rency

Portability CP size Storage
type

Implemen-
tation

CP
Type

CP
responsible

System
Type

[27] ALC­P No Yes Full
(hard state)

Safe
external

Signal
handler

Safe
points

Internal Shared
Memory

File­Safe
[8]

ALC­U
(Lib)

No Yes
(+VM)

Full Safe
Internal

API
Interface

Coord Internal(P)
/External
(Rollback)

MPI

DOME
[9]

ALC­U
(Comp)

No Yes Full Safe
Internal

API
interface

Uncoord Internal SPMD

[10] ALC­U
(Lib)

No Yes Full Safe
external

Signal
handler

Coord Internal Shared
Memory

[11] ALC­U
(Lib)

No

Yes

Full

Safe
External

Signal
Handler

Coord

Internal

Shared
memory

MTCP
[12]

ALC­U
(Lib)

No Yes
(+VM)

Full Safe
External

Signal
handler

Coord External
(MTCP
thread)

Shared
memory

[13] ALC­U
(Lib)

No

Yes

Full

Safe
External

Signal
handler

Coord

External

Shared
Memory

DMTCP
[18]

ALC­U
(Lib)

No Yes

Full

Safe
External

LD­
PRELOAD

Coord

External Shared
Memory

XCAT3
[20]

ALC­U
(Comp)

No Yes
(+XML)

Full Safe
External

Signal
Handler

Coord External Grid
computing

[14] ALC­U
(Lib)

No Yes Incremental Safe
External

Signal
Handler

Coord Internal Shared
Memory

C3[15] ALC­U
(Comp)

No Yes Full Safe
external

Signal
Handler

Coord Internal MPI/Shared
Memory

DejaVu
[16]

ALC­U
(Lib)

No Yes Incremental Safe
External

LD­
PRELOAD

loosely
coord

External MPI

CPPC­G
[19]

ALC­U
(Comp)

No Yes
(+HDFS)

Full+
Compression

Safe
external

Signal
handler

Safe
Points

Internal Grid
Computing

[44] ALC­U
(Lib)

No Yes
(VM)

Incremental Safe
external

/ Coord Internal HPC

[45] ALC­U
(Lib)

No Yes
(VM)

Incremental Safe
external

/ Coord Internal Cloud

Infiniband
[46]

ALC­U
(Lib)

No Yes Incremental Safe
external

/ Coord/
Uncoord

Internal HPC

5. CONCLUSION

The classification based on abstraction level
illustrates the state of process saving. It is
categorized into two principal levels: application and
system levels. In this paper we have presented each
abstraction level in details and we have compared
between the levels using different criteria cited in
many papers in the literature. The transparency and
the portability are two principal criteria of the
comparison and each of them expresses the contraire
of the other.

What is new in this paper is that we have
summarized the existing solutions for the majority of
level problems and limits. We presented also some
comparative studies between different works
existing in the literature. It is important to note that
is clear that the checkpointing technique whatever its
abstraction level is not sufficient to ensure a good

fault tolerance in a distributed system. So many
papers propose lately to combine between the
checkpointing and the replication techniques
[40, 41]. This hybrid strategy can reduce the fault
tolerance overload and execution time of the
application itself since the replication ensures the
fault tolerance in real time and the checkpointing
reduces what suppose to be re­executed in case
of failures.

6. REFERENCES

[1] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa
and S. Jiang, Current practice and direction
forward in checkpoint/restart implementation
for fault tolerance, in Proceedings of the 19th
International Parallel and Distributed
Processing Symposium (IPDPS 2005), Denver,
CO, USA, (April 3­8, 2005).

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 167

[2] S. Siva Sathya, K. Syam Babu, Survey of fault
tolerant techniques for grid, Computer Science
Review, (4) 2 (2010), pp. 101–120.

[3] R. Garg and A. Kumar Singh, Fault tolerance in
grid computing: state of the art and open issues,
International Journal of Computer Science and
Engineering Survey, (2) 1 (2011), pp. 88–97.

[4] G. Bronevetsky, R. Fernandes, D. Marques,
K. Pingali and P. Stodghill, Recent advances in
checkpoint/recovery systems, in Proceedings of
the Next Generation Systems Program
Workshop (IPDPS 2006), Rhodes Island,
Greece, (April 25­29, 2006).

[5] L. M. Silva, J. G. Silva, System­level versus
user­defined checkpointing, in Proceedings of
the 17th IEEE Symposium on Reliable
Distributed Systems, West Lafayette, Indiana,
(October 20­23, 1998), pp. 68–74.

[6] V. Fontes, B. Schulze, M. Dutra and F. Porto,
Checkpointing­based rollback recovery for
parallel applications on the InteGrade Grid
Middleware, in Proceeding of the 2nd Workshop
on Middleware for Grid Computing, Toronto,
Ontario, Canada, (October 18­22, 2004).

[7] D. Koch, C. Haubelt and J. Teich, Efficient
hardware checkpointing, concepts, overhead
analysis, and implementation, in Proceedings
of the 15th ACM/SIGDA International
Symposium on Field-Programmable Gate
Arrays (FPGA 2007), Monterey, CA, (February
18­20, 2007), pp. 188–196.

[8] J. Leon, A. L. Fisher, and P. Steenkiste, Fail­
safe PVM: a portable package for distributed
programming with transparent recovery,
Technical report in Carnegie Mellon
University, February 1993.

[9] J. N. C. Arabe, A. Beguelin, B. Lowekamp,
E. Seligman, M. Starkey, and P. Stephan,
DOME: parallel programming in a distributed
computing environment, in Proceeding of the
10th International Parallel Processing
Symposium (IPPS-96), Honolulu, Hawaii,
(April 15­19, 1996), pp. 218–224.

[10] P. Tullmann, J. Lepreau, B. Ford, M. Hibler,
User­level checkpointing through exportable
kernel state, in Proceeding of the International
Workshop on Object Oriented Operating
System, Seattle, Washington (October
27­28, 1996).

[11] W. R. Dieter, J. E. Lumpp, A user­level
checkpointing library for POSIX threads
programs, in Proceedings of the Twenty-Ninth
Annual International Symposium on Fault-
Tolerant Computing (FTCS’99), Madison,
Wisconsin, (June 15­18, 1999), pp. 224–227.

[12] M. Rieker, J. Ansel, and G. Cooperman,
Transparent user­level checkpointing for the

native posix thread library for Linux, in
Proceeding of the PDPTA’2006, Las
Vegas, Nevada, USA, (June 26­29, 2006),
pp. 492–498.

[13] W. R. Dieter, J. E. Lumpp, User­level
checkpointing for Linux: threads programs, in
Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference,
Boston, Massachusetts, USA, (June 25­30,
2001), pp. 81–92.

[14] H. Abdel­Shafi, E. Speight, and J. K. Bennett,
Efficient user­level thread migration and
checkpointing on Windows NT clusters, in
Proceedings of the 3rd USENIX Windows
NT Symposium, Seattle, Washington,
(July 12­15, 1999).

[15] G. Bronevetsky, D. Marques, K. Pingali, and
P. Stodghill, C3: A system for automating
application­level checkpointing of MPI
programs, in Proceeding of the 16th
International Workshop Languages and
Compilers for Parallel Computing
(LCPC 2003), College Station, TX, USA,
(October 2­4, 2003), Lecture Notes in
Computer Science, Springer, Vol. 2958, 2004,
pp. 357–373.

[16] J. F. Ruscio, M. A. Heffner, S. Varadarajan,
DejaVu: transparent user­level checkpointing,
migration, and recovery for distributed systems,
in Proceedings of the IEEE International
Parallel and Distributed Processing
Symposium, IPDPS’07, Long Beach,
California, USA, (March 26­30, 2007),
pp. 1–10.

[17] P. H. Hargrove and J. C. Duell, Berkeley lab
checkpoint/ restart (BLCR) for Linux clusters,
in Proceedings of SciDAC, 2006, Denver, CO,
(June 25­30, 2006).

[18] J. Ansel, K. Arya, and G. Cooperman,
DMTCP: transparent checkpointing for cluster
computations and the desktop, in Proceedings
of the 23rd IEEE International Parallel and
Distributed Processing Symposium
(IPDPS’09), Rome, Italy, (May 25, 2009),
pp. 1–12.

[19] G. Rodriguez, X. C. Pardo, M. J. Martin,
P. Gonzalez, Performance evaluation of an
application­level checkpointing solution on
grids, Future Generation Computer Systems,
(26) 7 (2010), pp. 1012–1023.

[20] S. Krishnan, D. Gannon, Checkpoint and restart
for distributed components in Xcat3, in
Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing,
Pittsburgh, USA, (November 8, 2004),
pp. 281–288.

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 168

[21] J. P. Walters, V. Chaudhary, Application­level
checkpointing techniques for parallel programs,
in Proceedings of the Third International
Conference on Distributed Computing and
Internet Technology (ICDCIT’06),
Bhubaneswar, India, (December 20­23, 2006),
pp. 221–234.

[22] M. Prvulovic, Z. Zhang, and J. Torrellas,
ReVive: Cost­effective architectural support for
rollback recovery in shared­memory
multiprocessors, in Proceedings of 29th
International Symposium on Computer
Architecture (ISCA 2002), Anchorage, AK,
USA (May 25­29, 2002), pp. 111–122.

[23] D. J. Sorin, M. M. K. Martin, M. D. Hill, and
D. A. Wood, SafetyNet: improving the
availability of shared memory multiprocessors
with global checkpoint/recovery, in
Proceedings of 29th International Symposium
on Computer Architecture (ISCA’2002),
Anchorage, AK, USA, (May 25­29, 2002),
pp. 123­134.

[24] S. Osman, D. Subhraveti, G. Su, and J. Nieh,
The design and implementation of zap: a
system for migrating computing environments,
in Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation
(OSDI 2002), Boston, Massachusetts, USA,
(December 9­11, 2002).

[25] F. Petrini, K. Davis and J. C. Sancho, System­
level fault­tolerance in large­scale parallel
machines with buffered coscheduling, in
Proceedings of the 18th International Parallel
and Distributed Processing Symposium
(IPDPS 2004), Santa Fe, New Mexico, USA,
(April 26­30, 2004).

[26] R. Gioiosa, J.C. Sancho, S. Jiang and F. Petrini,
Transparent, incremental checkpointing at
kernel level: a foundation for fault tolerance for
parallel computers, in Proceedings of the
ACM/IEEE SC2005 Conference on High
Performance Networking and Computing,
Seattle, WA, USA, (November 12­18, 2005).

[27] X. Li, D. Yeung, Exploiting application­level
correctness for low­cost fault tolerance,
Journal of Instruction-Level Parallelism, (10),
(2008), pp. 1–18.

[28] G. Rodriguez, M. Martin, P. Gonzalez,
J. Tourio, R. Doallo, CPPC: a compiler­assisted
tool for portable checkpointing of message­
passing applications, Journal Concurrency and
Computation: Practice and Experience, (22) 6
(2010), pp. 749–766.

[29] C. Li, E. Stewart, W. Fuchs, Compiler­assisted
full checkpointing, Journal Software-Practice
and Experience, (24) 10 (1994), pp. 871–886.

[30] J. Long, W. K. Fuchs and J. A. Abraham,
Compiler­assisted static checkpoint insertion,
in Proceedings of the Twenty-Second Annual
International Symposium on Fault-Tolerant
Computing (FTCS-22), Boston, Massachusetts,
USA, (July 8­10, 1992), pp. 58­65.

[31] G. Rodriguez, M. J. Martin, P. Gonzalez,
J. Tourino, A heuristic approach for the
automatic insertion of checkpoints in message­
passing codes, Journal of
Universal Computer Science, (15) 14 (2009),
pp. 2894–2911.

[32] A. N. Norman, S.­E. Choi and C. Lin,
Compiler­generated staggered checkpointing,
in Proceedings of the 7th Workshop on
Languages, Compilers, and Run-time Support
for Scalable Systems (LCR’04), Houston,
Texas, (October 21­23, 2004), pp. 1­8.

[33] J. Plank, M. Beck, G. Kingsley, Compiler­
assisted memory exclusion for fast
checkpointing, IEEE Technical Committee on
Operating Systems and Application
Environments, (7) 4 (1995), pp. 10–14.

[34] G. Bronevetsky, D. Marques, K. Pingali,
S. A. MacKee and R. Rugina, Compiler­
enhanced incremental checkpointing for
OpenMP applications, in Proceedings of the
23rd IEEE International Symposium on Parallel
and Distributed Processing (IPDPS 2009),
Rome, Italy, (May 23­29, 2009), pp. 1–12.

[35] H. Jiang, V. Chaudhary, J. Walters, Data
conversion for process/thread migration and
checkpointing, in Proceedings of the 32nd
International Conference on Parallel
Processing (ICPP 2003), Kaohsiung, Taiwan,
(October 6­9, 2003).

[36] B. Lyon, Sun external data representation
specification, Technical report RFC-1832, SUN
Microsystems, Inc., Mountain View, 1984.

[37] S. Krishnan, D. Gannon, Checkpoint and restart
for distributed components in XCAT3, in
Proceedings of the 5th International Workshop
on Grid Computing (GRID’2004), Pittsburgh,
PA, USA, (November 8, 2004), pp. 281­288.

[38] B. Ramkumar, V. Strumpen, Portable
checkpointing for heterogeneous architectures,
in Proceedings of the Twenty Seventh Annual
International Symposium on Fault-Tolerant
Computing, (FTCS-27), Seattle, Washington,
USA, (June 24­27, 1997), pp. 58­67.

[39] H. Zhou, A. Geist, Receiver makes right data
conversion in PVM, in Proceedings of the
IEEE Fourteenth Annual International Phoenix
Conference on Computers and
Communications, Scottsdale, Arizona, USA,
(March 28­31, 1995), pp. 458­464.

Bakhta Meroufel, Ghalem Belalem / International Journal of Computing, 13(3) 2014, 158-169

 169

[40] D. Sun, G. Chang, C. Miao, X. Wang,
Analyzing, modeling and evaluating dynamic
adaptive fault tolerance strategies in cloud
computing environments, The Journal of
Supercomputing, (66) 1 (2013), pp. 193–228.

[41] U. Song, J. Gil, S. Hong, Checkpoint sharing­
based replication scheme in desktop grid
computing, in Proceedings of the International
Conference on Embedded and Multimedia
Computing Technology and Service, Gwangju,
Korea, (September 6­8, 2012), Lecture Notes in
Electrical Engineering, Vol. 181, 2012,
pp. 477–484.

[42] Y.­B. Lin, Design issues for optimistic
distributed discrete event simulation, Journal of
Parallel and Distributed Computing, (62) 3
(2002), pp. 327–335.

[43] L. F. Perrone, F. P. Wieland, J. Liu,
B. G. Lawson, D. M. Nicol, and R. M.
Fujimoto, Incremental checkpointing with
application to distributed discrete event
simulation, in Proceedings of the Winter
Simulation Conference (WSC 2006), Monterey,
California, USA, (December 3­6, 2006),
pp. 1004–1011.

[44] K. B. Ferreira, Rolf Riesen, Patrick Bridges,
Dorian Arnold, Ron Brightwell, Accelerating
incremental checkpointing for extreme­scale
computing, Journal of Future Generation
Computer Systems, (30) 1 (2014), pp. 66­77.

[45] H. Li, L. Pang, Z. Wang, Two­level
incremental checkpoint recovery scheme for
reducing system total overheads, PLoS ONE,
(9) 8 (2014), Article ID e104591.

[46] K. Sato, A. Moody, K. Mohror, T. Gamblin,
B. R. de Supinski, N. Maruyama, and
S. Matsuoka, A User­level infiniband­based file
system and checkpoint strategy for burst
buffers, in Proceedings of the 14th IEEE/ACM
International Symposium on Cluster, Cloud
and Grid Computing (CCGrid 2014), Chivago,
IL, (26­29 May 2014), pp. 21­30.

[47] S. Al­Kiswany, M. Ripeanu, S. S. Vazhkudai,
A. Gharaibeh, stdchk: a checkpoint storage
system for desktop grid computing, in
Proceedings of the 28th International
Conference on Distributed Computing Systems,
2008, pp. 613­624.

[48] Z. Wang, X. Shi, H. Jin, S. Wu, Y. Chen,
Iteration based collective I/O strategy for
parallel I/O systems, in Proceedings of the 14th
IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid),
2014, pp. 287­294.

Bakhta Meroufel is a PhD
candidate in the
Department of computer
Science in the Faculty of
exact and applied sciences
at the University of Oran in
Algeria.

She received her M.S.
degree in 2011 from the
University of Oran, Algeria.

Her research interests are: distributed system,
grid computing, cloud computing, fault tolerance,
replication strategies and multi-agents systems.

Ghalem Belalem: Graduated
from department of computer
science, Faculty of Sciences,
University of Oran, Algeria,
where he received PhD
degree in computer science in
2007. He is now a research
fellow of management of
replicas in data replicas in
data grid.

His current research interests are distributed
system; grid computing, could computing and data
grid placement of replicas, consistency, fault
tolerance, economic models, energy, Big data, and
improved performance in large scale systems and
mobile environment.

