
Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

 324

VECTOR CLOCK TRACING AND MODEL BASED PARTITIONING
FOR DISTRIBUTED EMBEDDED SYSTEMS

Robert Hoettger, Burkhard Igel, Erik Kamsties

University of Applied Sciences and Arts

Pimes Research Institute
Fachhochschule Dortmund,

Sonnenstr. 96, 44139 Dortmund, Germany
robert.hoettger@fh-dortmund.de, igel@fh-dortmund.de, erik.kamsties@fh-dortmund.de

Abstract: Tracking, partitioning and tracing in modern dynamic high performance computing systems are three of the
most innovative and important development aspects for performance optimization purposes and state-of-the-art
advanced quality. This paper discusses these three aspects with respect to distributed systems and proposes new
mechanisms for an advanced utilization of software in this domain.

We present a specific tracking mechanism via vector clocks for model and code partitioning purposes and the
determination of causality relations. Further, a tracing approach for an effective analysis and thereby utilization of code
and the corresponding architecture is introduced. The combination of both approaches leads to a high degree of
parallelism and a fine-grained structure of execution units, that further traced, supports a precise analysis of
synchronous and asynchronous system’s behavior as well as an optimal load balancing. The mechanisms are introduced
with respect to a model based control engineering tool and event diagrams. Copyright © Research Institute for
Intelligent Computer Systems, 2013. All rights reserved.

Keywords: partitioning; event tracing; vector clocks; control engineering; distributed systems; virtual time.

1. INTRODUCTION

The modern digital computing era involves
increasing amounts and relations of stored data as
well as more complex computation platforms,
architectures, tools and frameworks. A common,
mandatory and important aspect is the prevention of
computation- and storage overheads i.e. the efficient
use of soft- and hardware. Especially the modern
distributed system domain reveals a more complex
determination of causality relations due to the use of
replicas, unreliable hardware, large scales of data and
commoditized machines. The increasing number of
requirements, functions, safety issues or assistance
demands call for a significant increase of computing
power accompanied by the request for reduction of
energy and costs. To handle these requirements the
multicore processor technology starts to permeate
electronic control units (ECUs) in cars for example.
Existing applications cannot realize immediate benefit
from these multicore ECUs, because they are not
designed to run on such architectures.

The Itea 2 project 09013 AMALTHEA1 is a state
of the art research project in the automotive industry

1 Itea 2 09013 AMALTHEA, BMBF funded.

that addresses building a model-driven platform for
this new generation of development environments,
which supports the development of multicore
systems, takes product line engineering into account
and produces AUTOSAR [1] compatible software.
Tracing and partitioning are two of the challenges to
be met with respect to timing constraints. This paper
presents a novel approach for both partitioning and
tracing and further supports the determination of
causality relations among events in a distributed
system. Multicore systems in this case are one
example for distributed systems.

Partitioning in context directed acyclic graphs that
occur in most computing applications, influence
system performance. The more efficient the
partitioning process forms computation sets
distributed among computation units i.e. processors,
the more the systems benefits from time issues,
energy demands or high performance real time
applications. These aspects are common topics of
interest in almost all areas of science and technology.

Forming computation sets mostly concerns the
division of processes into subprocesses whereas
each subprocess consists of computational load [2].
In terms of graph theory these subprocesses are

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

 325

denoted as nodes. A node often reveals uni directed
communication with one or multiple other nodes,
such that a directed transition between them denotes
dependency as shown in Fig. 1.

Fig. 1 – Node dependency.

Node B depends on a result of Node A and

thereby depends on Node A. In case Node B is
assigned to a different computation unit i.e.
processor, the system must preserve the given
ordering of both nodes. Otherwise Node B may be
started without Node A being finished resulting in
Node B termination violation. Such order may be
preserved via inter process activation, client / server
calls, OS-events (Node A (set) and Node B (wait))
or Semaphores.

The paper is organized as follows. The next
section introduces related work on tracking,
partitioning and tracing. Afterwards the concrete
usage of vector clocks is described with respect to a
model driven control engineering example, that is
adapted to several different partitions and load
balance approaches. The following section
introduces tracing as a more comprehensive
approach for performance and partitioning
optimization purposes. Finally, the novel approach is
analyzed according to benefits, ease of use and
industrial relevance. Corresponding contents are
published with respect to [3].

2. RELATED WORK

Innovation according to virtual time, tracing and
partitioning stretches over years of development and
huge amounts of different mechanisms and
algorithms addressing the increasing number of
requirements and constraints emerging from
all kinds of political, entertainment, safety or
energy demands.

Tracking, initially used in technical and
theoretical computing, considers causality relations
and the determination of event orderings in
distributed systems with the help of logical
clocks [4]. Extending this mechanism in order to
gain information about the program’s global state
and possible concurrency, vector clocks can be
used [5, 6]. Newer approaches focus on applying the
exposed mechanisms to models, transferring models
to mathematical equations [7] or introduce graphical
editors, model checkers, code generators, simulators
or dynamic systems and algorithms [8]. All these
mechanisms basically address the derivation of

timing characteristics for causality relations and
thereby ensure logical and temporal correctness
within communication, synchronization and
computational flows actively by applying the certain
mechanisms to a system.

Partitioning is a significant approach for an
efficient assignment of runnables to tasks in order to
utilize parallel computing. The generic PCAM
(Partitioning, Communication, Agglomeration and
Mapping) approach by Foster et al. [9] forms the
basis for most common partition approaches. It
focuses on providing benefits like improving cost-
performance ratio, availability via avoiding
redundancy, computing power and understanding of
a program’s behavior due to more detailed
information about the problem structure. Partitioning
is a division of independent parts in order to solve
them in parallel. Therefore, small tasks must be
defined, that utilize processors in an optimal way
and avoid duplicate data and calculation. The
smaller the partitions get, the more flexible and
potential the parallelism is. Foster [9] further
introduces domain decomposition and functional
decomposition. In domain decomposition, data
associated with a problem is divided into small parts
with approximately equal size. Afterwards,
computation is partitioned by associating the
operations with the data on which it operates. The
focus within functional decomposition lies on the
computation that is to be performed instead of the
data that is manipulated by the computation. The
computation is divided into disjoint tasks, with a
subsequent data requirement analysis. In case the
data requirements are disjoint, the partition is
complete, otherwise considerable communication is
required to avoid data replication.

Tracing addresses revealing a program’s
execution according to more complex problems,
errors, ineffective patterns and a lot more issues by
considering way more parameters like architecture
properties, scheduling paradigms, signals, runnables,
processes, or threads and corresponding timing
properties depending on the used trace format.
Though, tracing only passively applies optimization
and efficiency on a system, as specific trace format’s
APIs are used to generate trace files that can be read
by specific tools. These tools mostly reveal the
system’s behavior in a timeline diagram and users
are supposed to react and improve systems
according to conflicts and ineffective patterns.

3. PARTITIONING

The following sections propose a novel approach
for distributing execution units, emerging from both
model elements i.e. data flow systems and vector
clock traces as a result of specific code extensions.

Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

 326

The mechanism is based upon a transformation to
a data flow graph (directed acyclic graph) and a
subsequent partitioning for either a dynamic number
or a fixed number of processes. The final result leads
to an optimal utilization of parallel resources.

3.1. DATA FLOW PARALLELISM

Typical data flow systems provide a fine grained
early degree of parallelism. Having a data flow
system like Fig. 2, delay blocks encapsulate
calculation dependencies providing distributed
calculations due to their output being not directly
dependent of their input.

Fig. 2 – Data flow diagram.

The data flow diagram shown in Fig. 2 is derived

via the frequency response:

�(�) =
����1 + ����2 ∙ ��� + ����3 ∙ ���

1 + ����4 ∙ ��� + ����5 ∙ ���
 (1)

In the first step i.e. calculation cycle, Ramp and

Delay1 to Delay4 can be calculated in parallel by
either different runnables, tasks or cores. The second
step contains all blocks connected to the
encapsulated blocks of the first step i.e. Gain1 to
Gain5. The fact that the subsequent components
hold more than one input i.e. dependencies of
previous components, Sum3, Sum2, Sum1 and Scope
must be executed subsequently after the first two
calculation cycles (see data flow graph Fig. 3). Such
calculation cycles may be also known as sequential
code segments (SCS) [10].

Fig. 3 – Typical DFG with nodes (blocks)
and transitions.

3.2. DATA FLOW GRAPH

A data flow graph (DFG) displays nodes
(execution units, algorithms, calculations, functions,
events, blocks, etc.) connected to other nodes via
transitions or edges sequentially (often from left to
the right) and is convenient for the exploration of
parallelism due to its asynchronous nature. It can be
both created via modeled block diagrams (control
engineering) or via vector clocks augmented code
(described in Section III-C) and can be transformed
to a table based structure revealing mandatory
sequential orderings, dependencies (horizontally,
indicated by arrows) and concurrency (vertically).
Any DFG usually exposes a directed acyclic graph
structure such that DFG(N,T,R,S) is defined by N
nodes (execution units), T transitions, R root nodes
and S sink nodes with no directed cycles. Any node
n  N lies at least within one path from a root node
r  R to a sink node s  S. Any transition t  T
between two nodes n1 and n2 represents data
dependency between the two nodes and implies
mandatory sequential ordering such that the
execution of n1 precedes n2 in time. Hence n1 and n2
shall not be mapped to different processes or
processing units as they can not be calculated
in parallel.

A node n may possess multiple in- and out-
transitions and transitions must always cross one or
more sequential code segments (SCS). A low level
DFG can be seen in Fig. 3 exposing the
data flow model of Fig. 2, featuring
R = (Delay1, Delay2, Delay3, Delay4, Ramp),
S = (Scope), #T = 13 and #N = 14. Such DFGs can be
automatically created from any block diagrams such
as in the Damos environment [11]. A critical path
leading from a root r to a sink s provides the maximal
number of sequential nodes and represents the
minimal runtime of a program. There may exist
several critical paths in a DFG. One possible critical
path in Fig. 3 starts at Delay4 and ends at Scope (the
other critical path in this example starts at Delay2 and
ends with Scope). Any usual control engineering
based blockdiagram can be transformed into a DFG
via forming SCSs with the help of delay calculation
encapsulation and depth first search calculations. A
DFG is mandatory for an optimal partitioning,
respectively efficient utilization of distributed
resources as described in Section III-D. The process
of finding the critical path starts with identifying the
root and checking all dependent nodes, whether one
or more nodes provide the distance of the root 1 to
the farthest sink. Afterwards for all selected nodes
that provide that distance, the process is repeated
regarding the selected node’s sink distance 1 until the
sink is found. This methodology identifies at least one

Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

 327

critical path via a helping function, that calculates a
node’s distance to the farthest sink.

3.3. VECTOR CLOCK AUGMENTED
EXECUTABLE CODE

Any program code can be partitioned to one or
more processes or initially execution units featuring
dependencies. Most common programs use message
passing techniques and data transfer between
functions, objects and similar execution units for
communication. In case such a program is not
related to a modeled system (like described in
Section 3.1), one can extend any program’s code,
adding vector clock API calls at specific points for
both creating vector clock traces and use validation
mechanisms for tracking data updates and determine
causal dependency relations among transactions.
Data updates thereby support synchronizing events
in a totally decentralized way. Especially modern
transactional systems using partial replication and
scalable distributed multiversioning such as NoSQL
data grids like BigTable, Amazon Dynamo or
Cassandra require multiversion based update
mechanisms [12]. A simple vector clock trace in
combination with the executable code can be used in
order to create an unpartitioned DFG on the one
hand as well as a partitioned message passing based
event diagram on the other hand. Such an event
diagram is shown in Fig. 4 as an example, featuring
three processes and several communicating events.

Fig. 4 – Typical event diagram with three processes.

It is assumed, that processes communicate

through message passing in a classic asynchronous
way such that messages consume a specific delay.
The three processes show parallelism, whereas the
determination of causality relations (provided by the
vector clocks) respectively the knowledge of the
precise time related occurrence of events and their
communication is mandatory to avoid conflicts and
preserve the program’s semantics. The mentioned
mechanism for causality relation determination of
events was introduced by [5] and [6] simultaneously

via comparing vector clocks using the
following rules:

 �� → ��	�����	���[�] < ���[�] (2)

and vice versa:

���[�] < ���[�]	�����	�� → �� (3)

Here, �� and �� define two different events with
corresponding vector clock arrays 	��� and ���, →
defines the “happened before” relation and �, �
define two transactional processes.

A generated vector clock trace already references
a specific number of processes and can be used in
order to assign the code segments to different
processes i.e. to perform the partitioning. A vector
clock trace can be extended as described in Section
4. Without a vector clock trace, the described DFG
is a central activity for partitioning and load
balancing. A DFG can be created via identifying
nodes (execution units) and transitions
(dependencies).

In order to gain a partitioned event diagram (see
Fig. 4) from an unpartitioned DFG (see Fig. 3), all
execution units need to be assigned to processes.
This can be dynamically performed assuming a
static predefined number of processes. Each API call
then assigns the execution units chronologically to a
process with respect to their communication.
Assuming execution unit a with transactions to b and
m (Fig. 4), m could be assigned to process2 or
process3. Process2 is chosen if execution unit l at
process2 finished. If l is not finished, process3 is
chosen if execution unit v finished. If both processes
are performing calculations (execution units l and v)
at execution unit m assignment time, the event will
be assigned to the process, that notifies its
availability first. The vector clock mechanism
thereby ensures the correct replication of the actual
behavior i.e. the call sequence in a distributed
system. This mechanism is important especially for
distributed systems consisting of multiple
commoditized systems, meeting the necessity of a
global time for causal ordering determination e.g.
managing consistency in the Amazon Dynamo
architecture [13]. The actual DFG for the event
diagram in Fig. 4 is shown in Fig. 5. The DFG
reveals an optimal parallelism of three processes,
providing a complete system calculation consisting
of 15 nodes in six SCSs (steps) and five cross
process communications indicated by
dashed arrows.

The proposed executable code trace generation
extension provides causality relation determination
as well as the DFG- and event diagram partitioning

Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

 328

approaches for an efficient parallelism support via
trace analysis.

Fig. 5 – Event diagram correspondent DFG.

3.4. DFG PARTITIONING

Besides the use of the vector clock API call
augmented executable code for program partitioning
and distribution, data flow systems can utilize
similar mechanisms in order take advantage of
parallelism. Data flow diagrams (Fig. 2) can be
transformed to data flow graphs (DFG, Fig. 3) as
described in Section 3.2 in order to apply a specific
partitioning mechanism for assigning nodes to
runnables or processes. The DFG’s number of SCSs
defines the minimal number of steps (sequential
executions) and the number of rows defines the
maximal number of processes, whereas the number
of occupied rows varies from SCS to SCS and the
maximal process number refers to the SCS with the
maximal row count. Fig. 6 displays the event
diagram with regard to the data flow example shown
in Section 3.1 i.e. Fig. 2 and Fig. 3 partitioned to
four processes. Here, the maximum number of
sequential nodes is bound to process1 by six nodes.

Fig. 6 – Data flow correspondent event diagram
with four processes.

Fig. 7 displays the same program, but mapped

into three processes. Here, the maximum number of
SCS is increased to seven due to the fact that
process3 can not calculate Delay1 at the third SCS
because of Delay1’s adjacent nodes to the sink. The
partitioning algorithm always assigns nodes to a
process according to the SCS and the node’s
adjacent nodes to the sink. Assigning nodes to
process3, the algorithm only detects Gain2 for SCS
three (fourth last SCS to sink), due to Delay1 (being
the only unassigned node besides Gain2) revealing
four adjacent nodes to sink and only nodes with
maximal three adjacent nodes to the sink are
considered. In this case the partitioning algorithm
stretches processes in order to assign the unassigned

nodes, i.e. inserting a new SCS at the corresponding
SCS step beginning with with first process that is a
new SCS preliminary to Sum3 in the example
shown in 7.

Fig. 7 – Data flow correspondent event diagram
with three processes.

Having the nodes assigned to two processes, the

result looks like Fig. 8. Here, the maximum number
of SCS rises to eight due to two stretch operations
caused by Delay1 and Gain2.

Fig. 8 – Data flow correspondent event diagram
with two processes.

The example shows, that a critical path described

in 3.2 with exactly one node from each SCS
connected via transitions initially forms the first
process. The partitioning algorithm is supposed to
determine the critical path, that provides the least
cost instensive calculation, for forming the first
process. Hence it uses multiple optimization criteria
i.e. minimal runtime, minimal cross process
communication and the precise parallelism degree
(number of processes constraint). In order to form
additional processes, already assigned events are
ignored and the farthest node from a sink is
identified and assigned to another process via a
depth first search (DFS). According to the following
node assignments to each SCS at a process, firstly
adjacent nodes (that provide a transition to the

Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

 329

preceding assigned node) and secondly any other
nodes according to the specific SCS are considered.
In case neither a adjacent nor a node for the specific
SCS can be found, nodes from subsequent SCSs are
taken into account. In case the number of processes
is restricted by the user and the mechanism obtains
unassigned nodes, the partitioning algorithm is able
to stretch processes and insert unassigned nodes at
specific SCS steps in order to finally assign all
nodes. These assignment are processed with regard
to the node’s dependencies and execution cycles,
such that no order constraint is violated.

The previously described methodology has been
implemented in an approach called local graph
partitioning (LGP). The basic idea of LGP is the
assumption of at least one critical path within a
directed acyclic graph. This path represents a
sequential ordering that does not benefit from being
distributed or calculated in parallel due to each node
depending on previously calculated results. Mapping
such a critical path to different calculation units
would result in an increased calculation time due to
overheads produced by synchronization and
communication between the calculation units.
Consequently the critical path is assigned to the first
ProcessPrototype and all side paths, branches,
sources and sinks of the graph are calculated parallel
to that critical path in other ProcessPrototypes. The
amount of ProcessPrototypes, respectively the
number of actual parallel calculations, can either be
maximized automatically by the implementation or
specifically defined by the user. The partitioning is
able to identify the maximal number of nodes to be
calculated in parallel and creates ProcessPrototypes
correspondingly. Furthermore, in case the user
defines a specific number of threads, the partitioning
is able to stretch threads by inserting nodes at a
specific time slice between already assigned nodes
according to their distances to the farthest sink in
order to meet the user’s thread constraint. The LGP
mechanism shall be outlined by the following
pseudo code.

Initially, in lines 1 and 2, two sets are built,
containing unassigned nodes and all tasks.
Afterwards the critical path is determined, assigned
to the first task and all critical path nodes are
removed from the list containing the unassigned
nodes (U). The subsequent for loop (line 4) performs
the node to ProcessPrototype (task) assignment such
that other ProcessPrototypes contain graph branches
beginning with the runnable (node) that provides the
greatest distance to the critical path’s sink. In case
the number of ProcessPrototypes has been
automatically calculated, this assignment will cover
all occurring runnables. The second for loop (line 8)
assigns a node from the list that contains the
unassigned nodes (U) to each time slice parallel to

the critical path with respect to not violating any
order constraint. The subsequent while loop (line 24)
performs the node insertion process, that is activated
in case the user restricted the number of tasks to a
smaller value compared with the automatically
generated value. In other words, the loop will only
be executed in case there remain unassigned nodes
after the prior node to task assignment. The user’s
task number restriction causes each task to execute
more nodes such that the overall execution time will
be greater than the critical path’s execution time.
This stretching (execution time increase) is defined
by the stepincrease value (see Listing 1 lines 25-28).
The stepincrease value is calculated by the number
of unassigned nodes divided by the number of tasks
and incremented in case the division did not result in
an integer value. This ensures that all unassigned
nodes can be evenly distributed among the tasks.
E.g. if there are three tasks and five unassigned
nodes, the tasks one and two will be extended by
two nodes (5=3 = 1+1 = 2) and task three by
one node.

Listing 1. Pseudocode for partitioning algorithm

A feature that is not mentioned in the pseudo

code is the recognition of CPC (Cross Process
Communication). For instance if a runnable A
provides a RunnablePrecedence to a runnable B and
the runnables are assigned to different
ProcessPrototypes, specific model elements have to
be created as described in the introduction
(section I) i.e. synchronization events and
sequencing constraints.

Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

 330

Finally the LGP aprroach provides all system’s
runnables distributed among several
ProcessPrototypes (user defined or automatically
generated) as well as explicit CPC model elements,
that can be combined and transmitted to a mapping
plugin [14] for further information augmentation and
finally to a code generator in order to apply the
partitioning to the software and run it in parallel on a
multicore system. The partitioning mechanism
processes runnables (nodes) with respect to their
dependencies (orderings) and execution cycles and
utilizes multicore architectures by efficient
parallelism and load balancing such that execution
times and energy consumption can be lowered and
high performance application development can
be facilitated.

3.5. PARTITIONING EVALUATION

In [10] two several similar approaches to DFG
partitioning are introduced with respect to node’s
earliest and latest initial times respectively node’s
runtime or calculation cycles. However the
particular number of processes constraint is not
considered i.e. merging untreated nodes into existing
processes. Due to strictly forming and not changing
the critical path, the partitioning in [10] is ineffective
according to calculation intense multiple propagated
nodes in combination with a process amount
constraint. Hence the proposed DFG partitioning in
this paper benefits from parallel constraint
consideration. Fig. 9 shows a) a DFG and
correspondingly in b) a pipeline partitioning, in
c) the partitioning from [10] and in d) the proposed
partitioning of this paper for two processes
(indicated by the lower row as process1 and the
upper row as process2). The dashed arrows indicate
process wide communication. The pipeline
partitioning features most cross process
communication due to not considering any
dependencies. The c) partitioning features the
critical path in process1 but increases the overall
SCSs due to not being capable of stretching a
process. The presented partitioning approach of this
paper is shown in d) and provides both a low SCSs
amount as well as low cross process communication.
The presented partitioning reveals a simple structure
whereas industrial applications feature much bigger
DFGs such that the partitioning provides more
significant benefits for parallelism.

Several literature emphasizes on reducing
communication overhead like the region partitioning
approach [15] or min-cut partitions [16] or
distinguishing between control-, data- and
dependence transitions [17] via specific complex
mechanisms whereas the presented approach of this
paper focuses on simplicity and an efficient

automatic load balancing for practical issues in early
development phases.

Fig. 9 – Comparison of DFG partitioning.

4. PERFORMANCE OPTIMIZATION

THROUGH TRACING

The next step after the efficient and causal
correct partitioning, is addressing and revealing
more convoluted problems like race conditions,
errors, ineffective patterns and dynamic behaviors
by considering system parameters like architecture
properties, scheduling paradigms, signals, runnables,
processes or threads and corresponding timing
properties. This can be handled by storing relevant
system activities during execution of a physical or
simulated system by using a extended trace API, that
specifies the trace format. An additional program is
supposed to read and analyze the trace data, that has
been recorded during the system’s execution.

The AMALTHEA project takes advantage of two
major types of evaluation applied to the trace data,
the metric calculation and the Gantt visualization.
The metric calculation determines response times of
a task or the duration of event chains for instance.
All these metrics have in common that certain
actions of specific entities are required for
calculation. The response time of a task for example
requires the actions activated and terminated from
the related task. Another example is an event chain
which consists of a write access of a task A and a
read access of task B. This case requires the
collection of both tasks’ related events.

The evaluation types require both dynamic
system behavior exploration and dynamic system
behavior comparison. The dynamic system behavior
exploration allows the determination of system
characteristics during execution of the system by
tracing system environment or system parts
interaction. It provides system behavior, resource
consumption, safety related activities and the
generation of the system’s model. The dynamic
system behavior comparison provides quantifying

Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

 331

differences between modeled and physical systems
at different development phases (architectural
design, functional design, implementation,
verification) in order to improve the abstract
modeled system.

A vector clock extended trace intensely improves
handling simulation, inferential performance and
error analysis due to abstraction via virtual time and
no need of global clocks respectively the timestamp.
Furthermore, tracing execution time for software
elements facilitates the partitioning activity by
detecting relevant execution time differences for the
same SCS. Knowledge about execution times for all
nodes improves the load balancing via assigning
appropriate nodes to empty time slots at different
SCSs (before a cross process synchronization or data
exchange for instance). Besides vector clocks the
new trace approach features various information like
the timestamp, its resolution, a configuration section
for comments, optional parameters, creator and
format version, the event type, a trace merge field, a
memory access field, a memory protection usage
field, the recording’s precision, the unique event
identifier, an instance field and provides pre-
defining the data set to be logged.

Having all this information, one can gain
absolute knowledge about a system’s execution
respectively use key information in order to
evaluate, improve, and optimize a system. This
especially concerns performance analysis according
to preserving the temporal and spacial relationships
of events, gaining information about using limited
resources more efficiently or increasing scalability
for bigger simulations. Vector clocks in this context
facilitate causality relation determination and
constitute a way of replacing expensive timer
modules as well as combined with the described
trace data, provide the detection of inadequate states
during runtime in contrast to debugging, that stops
the system at specific breakpoints.

5. CONCLUSION

The proposed new partitioning mechanism
combined with both the tracking and the tracing
approach, provide a fine grained parallelism bound
to a causal correct and optimized software
development, focusing on efficiency and optimized
performance for modern distributed systems.

The novel tracing approach helps users to reveal
errors, problems and conflicts, improve system’s
performance, utilize limited resources more
efficiently and facilitate development processes in a
wide field of software domains. Compared to most
commonly used trace formats, the described
approach meets modern demands, constraints and
requirements of distributed systems according to

hard- and software issues such as memory accesses,
cores, frequency or semaphores and timing metrics.

The comparison of various partitioning
approaches reveals, that the proposed mechanism is
capable of constraints and still preserves minimal
runtime (number of SCSs) and minimal cross
process communication in order to utilize parallel
resources optimally. Various adaptions such as
communication and computation cycle handling
influences the mechanism and enables minimizing
synchronization costs or waiting periods.

Applying the promising concepts to a program,
the user benefits from an automatic partitioning and
the assignment of execution units to any number of
processes resulting in an optimal load balancing
across processes and a trace, providing all necessary
information for commonly used analysis or
evaluation tools.

ACKNOWLEDGEMENT

The authors would like to thank Robert Preis for
fruitful discussions according to the partitioning
mechanism as well as the Amalthea consortium for a
great exchange of different experience, knowledge
and expertise focus.

6. REFERENCES

[1] Autosar – automotive open system architecture,
January 2013, http://www.autosar.org.

[2] R. Preis, Analysis and Design of Efficient
Graph Partitioning Methods, Ph.D.
dissertation, University Paderborn, 2000.

[3] R. Hoettger, B. Igel, and E. Kamsties, A novel
partitioning and tracing approach for
distributed systems based on vector clocks,
Proceedings of the IEEE 7th International
Conference on Intelligent Data Acquisition and
Advanced Computing Systems, IDAACS’2013,
Berlin, 12-14 September 2013, pp. 670–675.

[4] L. Lamport, Time, clocks and the ordering of
events in a distributed system, Communications
of the ACM, (21) 7 (1978), pp. 558–565.

[5] F. Mattern, Virtual time and global states of
distributed systems, Parallel and Distributed
Algorithms, M. Cosnard et al. (editors), North-
Holland, 1989, pp. 215–226.

[6] C. J. Fidge, Timestamps in message-passing
systems that preserve the partial ordering,
Proceedings of the 11th Australian Computer
Science Conference, 1988, Vol. 10, pp. 56–66.

[7] A. Benveniste and G. Berry, The synchronous
approach to reactive and real-time systems,
Proceedings of the IEEE, (79) 9 (1991),
pp. 1270-1282.

[8] Paulo Sérgio Almeida, Carlos Baquero, Victor
Fonte, Interval tree clocks: A logical clock for

Robert Hoettger, Burkhard Igel, Erik Kamsties / International Journal of Computing, 12(4) 2013, 324-332

 332

dynamic systems, Proceedings of the 12th
International Conference on Principles of
Distributed Systems OPODIS'08, Luxor, Egypt,
Lecture Notes in Computer Science, Vol. 5401,
2008, pp. 259-274.

[9] I. Foster, Designing and Building Parallel
Programs: Concepts and Tools for Parallel
Software Engineering, Addison Wesley, 1995.

[10] A. Nadgir and H. Haridas, Data flow
partitioning schemes, 2003.

[11] Dataflow-oriented modeling with damos,
March 2013, http://www.eclipse.org/proposals/
tools.damos/.

[12] S. Peluso, P. Romano, F. Quagila, and
L. Rodrigues, When scalability meets
consistency: Genuine update-serializable partial
replication, Proceedings of the IEEE
International Conference on Distributed
Computing Systems, 2012, pp. 455–464.

[13] G. DeCandia, D. Hastorun, M. Jampani, et al.,
Dynamo: Amazon’s highly available key-value
store, Proceedings of twenty-first ACM
SIGOPS symposium on Operating Systems
Principles, 2007, pp. 205–220.

[14] L. Krawczyk and E. Kamsties, Hardware
models for automated partitioning and mapping
in multi-core systems, Proceedings of the IEEE
7th International Conference on Intelligent
Data Acquisition and Advanced Computing
Systems, IDAACS’2013, Berlin, 12-14
September 2013, Vol. 2, pp. 721–726.

[15] Y. Fong Lee, B. G. Ryder, and
M. E. Fiuczynski, Region analysis: A parallel
elimination method for data flow analysis,
IEEE Transactions on Software Engineering,
(21) 11 (1995), pp. 913–926.

[16] V. Elling and K. Schwan, Min-cut methods for
mapping dataflow graphs, Proceedings of the
5th International Euro-Par Conference on
Parallel Processing, ser. Euro-Par’99.
Springer-Verlag, London, UK, 1999,
pp. 203–212, http://dl.acm.org/citation.cfm?
id=646664.701045.

[17] K. E. Schauser, D. E. Culler, and T. V. Eicken,
Compiler controlled multithreading for lenient
parallel languages, in Proceedings of the 5th
ACM Conference on Functional Programming
Languages and Computer Architecture,

Cambridge, MA, USA, August 26–30, 1991,
Lecture Notes in Computer Science, Vol. 523,
1991, pp. 50–72.

Robert Hoettger re-
ceived his B. Eng
degree in 2011 in infor-
mation technology and
electrical engineering
from University of
Applied Sciences and
Arts, Dortmund in
Germany. He is a Mas-
ter student and is going

to start his Ph D studies in 2014. His research area
covers distributed and parallel computing and model
based software engineering with regard to
automotive applications.

Burkhard Igel after
study in electrical engi-
neering and computer
science received his
doctoral degree (Ph.D.)
in computer science
from University of Dort-

mund. After more than 15 years working for
Siemens Corporation now he is Professor at
University of Applied Science and Arts in Dortmund
and chairman of the supervisory board of item is AG.
His research area covers distributed and parallel
computing as well as requirements engineering and
model based design.

Erik Kamsties is a professor
for software engineering and
embedded systems at the Dort-
mund University of Applied Sci-
ence and Arts. He received a
Diploma (M.S.) from the Tech-
nical University of Berlin and a
doctoral degree (Ph.D.) in com-
puter science from the Univer-
sity of Kaiserslautern (Ger-
many). His current research fo-
cuses on requirements engi-

neering, model-driven development, and embedded
multi-core systems.

