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learning. In the optimization stage, we introduce a 
threshold value as a pruning parameter to decide 
which subtree's leaves to prune and estimate with 
10-fold cross-validation [13]. After the optimization, 
the SONG improves its classification accuracy as 
well as reducing the computation cost. We use 
bagging [2] and boosting [14] as a resampling 
technique for the SONG. 

We compare the SONG with support vector 
machine (SVM) [15] to investigate the 
computational cost and the classification accuracy 
using ten problems in the UCI machine learning 
repository [16]. 

The rest of the paper is organized as follows. The 
next section shows how to construct the SONG. 
Section 3 shows the experimental results. Then 
section 4 is devoted to some experiments to 
investigate the incremental learning performance of 
SONG. Finally we present some conclusions, and 
outline plans for future work. 

 
2. CONSTRUCTING SELF-ORGANIZING 

NEURAL GROVE 
First, we mention the on-line pruning method in 

the learning of SGNT. Second, we show  
the optimization method in constructing the SONG. 
Finally, we show a simple example of  
the pruning method for a two dimensional 
classification problem. 

 
2.1. ON-LINE PRUNING OF SELF-
GENERATING NEURAL TREE 

SGNN are based on SOM and are implemented 
as an SGNT architecture. The SGNT can be 
constructed directly from the given training data 
without any intervening human effort. The SGNT 
algorithm is defined as a tree construction problem 
of how to construct a tree structure from the given 
data which consists of multiple attributes under the 
condition that the final leaves correspond to the 
given data. First, we mention the on-line pruning 
method in the learning of SGNT. Second, we show 
the optimization method in constructing the SONG. 

Before we describe the SGNT algorithm, we 
denote some notations. 

• input data vector:  eiא Թ௠. 
• root, leaf, and node in the SGNT: nj. 
• weight vector of nj:wj א Թ௠. 
• the number of the leaves in nj: cj. 
• distance measure: d(ei, wj). 
• winner leaf for ei in the SGNT: nwin. 

The SGNT algorithm is a hierarchical clustering 
algorithm. The pseudo C code of the SGNT 
algorithm is given as follows: 

Algorithm (SGNT Generation) 
Input:  
    A set of training examples E = {e_i}, 

        i = 1, ... , N. 
    A distance measure d(e_i,w_j). 
 Program Code: 
    copy(n_1,e_1); 
    for (i = 2, j = 2; i <= N; i++) { 
        n_win = choose(e_i, n_1); 
        if (leaf(n_win)) { 
            copy(n_j, w_win); 
            connect(n_j, n_win); 
             j++; 
        } 
        copy(n_j, e_i); 

            connect(n_j, n_win); 
            j++;           
            prune(n_win); 
       } 
  Output: 
    Constructed SGNT by E. 
 
In the above algorithm, several sub procedures 

are used. Table 1 shows the sub procedures of the 
SGNT algorithm and their specifications. 

 
Table 1. Sub procedures of SGNT algorithm. 

Sub procedure Specification 
copy(nj, ei/wwin)  Create nj, copy ei/wwin as wj in nj. 
choose(ei, n1) Decide nwin for ei. 
leaf(nwin) Check nwin whether nwin is a leaf or not.
connect(nj, nwin) Connect nj as a child leaf of nwin. 
prune(nwin) Prune leaves if the leaves have the 

same class. 
 
In order to decide the winner leaf nwin in the sub 

procedure choose(ei,n1), competitive learning is 
used. This sub procedure is recursively used from 
the root to the leaves of the SGNT.  If an nj includes 
the nwin as its descendant in the SGNT, the weight  
wjk(k = 1,2, … , m) of the njis updated as follows: 
 

௝௞ݓ ՚ ௝௞ݓ ൅ ଵ
஼ೕ

· ൫݁௜௞ െ ,௝௞൯ݓ 1 ൑ ݇ ൑ ݉. (1)
 

In the SGNT, the input vector xi corresponds to 
ei, and the desired output yi corresponds to the 
network output oi which is stored in one of the leaf 
neurons, for (xi, yi) אD. Here, D is the training data 
set which consists of data {xi,yi| i=1,… , N}, xiא Թ௠ 
is the input and yi is the desired output. After all 
training data are inserted into the SGNT as the 
leaves, the leaves each have a class label as the 
outputs and the weights of each node are the 
averages of the corresponding weights of all its 
leaves. The whole network of the SGNT reflects the 
given feature space by its topology.  
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We explain the SGNT generation algorithm using 
an simple example. In this example, $m$ is one and 
the four training data (xi, yi) is (1,1), (2,2), (3,3), and 
(4,4). Hence, e11 =1, e21 = 2, e31 = 3, and e41 = 4. 
Fig. 1 shows an example of the SGNT generation. 
First, e11 is just copied to a neuron n1 as the root, and 
e11 is substituted to w11 (Fig. 1 (a)). In Fig. 1, the 
circle is the neuron, the integer in the circle is the 
number of neuron j, the integer of left-upper of the 
circle is cj, and the integer of under the circle is wj1. 
Next, n2 and n3 are generated as the children of n1 
with w21=1, w31=2. w11 is updated by e21 to 1+1/2(2-
1)=1.5 (Fig. 1 (b)). Next, the winner in {n1, n2, n3} 
is n3 since d(e3,w1) = 1.5, d(e3,w2) = 2, and 
d(e3,w3) = 1; and thus, n4 and n5 are generated as the 
children of n3 with w41 = 2, w51 = 3. w31 is updated 
by e31 to 2+1/2(3-2)=2.5 and w11 is updated by e31 to 
1.5+1/3(3-1.5)=2 (Fig. 1 (c)). Finally, n6 and n7 are 
generated as the children of n5 with w61 = 3, w71 = 4. 
w51 is updated by e41 to 3+1/2(4-3)=3.5, w31 is 
updated by e41 to 2.5 + 1/3(4-2.5) = 3, and w11 is 
updated by e41 to 2 + 1/4(4-2) = 2.5 (Fig. 1 (d)).  

 

 
Fig. 1 – An example of the SGNT generation. 

 
Note, to optimize the structure of the SGNT 

effectively, we remove the threshold value of the 
original SGNT algorithm in [8] to control the 
number of leaves based on the distance because of 
the trade-off between the memory capacity and the 
classification accuracy. In order to avoid the above 
problem, we introduce a new pruning method in the 
sub procedure prune(nwin). We use the class label to 
prune leaves. For leaves that have the nwin's parent 
node, if all leaves belong to the same class, then 
these leaves are pruned and the parent node is given 
to the class. 

 
2.2. OPTIMIZATION OF THE SONG 

 
The SGNT has the capability of high speed 

processing. However, the accuracy of the SGNT is 
inferior to the conventional approaches, such as 
nearest neighbor, because the SGNT has no 
guarantee to reach the nearest leaf for unknown data. 
Hence, we construct the SONG by taking the 
majority of multiple SGNT's outputs to improve the 
accuracy (Fig. 2). 

 

 
Fig. 2 – The SONG which is constructed from K 
SGNTs. The SONG's output is decided by voting 

outputs of K SGNTs. 

 
Although the accuracy of the SONG is superior 

or comparable to the accuracy of conventional 
approaches, the computational cost increases in 
proportion to the increase in the number of SGNTs 
in the SONG. In particular, the huge memory 
requirement prevents the use of SONG for large 
datasets even with the latest computers. 

In order to improve the classification accuracy, 
we propose an optimization method of the SONG 
for classification. This method has two parts, the 
merge phase and the evaluation phase. The merge 
phase is performed as a pruning algorithm to reduce 
dense leaves. The merge phase algorithm is given  
as follows: 

 
Algorithm (Merge phase) 
1. begin initialize j = the height of the SGNT 
2.   do for each subtree’s leaves in the height j 
3.     if the ratio of the most class ൒  ,ߙ 
4.     then merge all leaves to parent node 
5.     if all subtrees are traversed in the height j, 
6.     then j՚j– 1 
7.   until j = 0 
8. end. 

 
This phase uses the class information and a 

threshold value ߙ to decide which subtree's leaves to 
prune or not. For leaves that have the same parent 
node, if the proportion of the most common class is 
greater than or equal to the threshold value ߙ, then 
these leaves are pruned and the parent node is given 
the most common class. 

The optimum threshold values ߙ  of the given 
problems are different from each other. The 
evaluation phase is performed to choose the best 
threshold value by introducing 10-fold cross 
validation. The evaluation phase algorithm is given 
as follows: 
 

(a) (b) (c) 

1
2
1
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1 2

1

1
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Algorithm (Evaluation phase) 
 
1. begin initialize  0.5 = ߙ 
2.   do for each  ߙ 
3.     evaluate the merge phase with 10-fold CV 
4.     if the best classification accuracy is obtained, 
5.     then record the  ߙ as the optimal value 
՚ ߙ .6 ߙ  ൅ 0.05 
7.   until  1 = ߙ 
end. 

 

2.3. SIMPLE EXAMPLE OF THE PRUNING 
METHOD 

We show an example of the pruning algorithm in 
Fig. 3. This is a two-dimensional classification 
problem with two equal circular Gaussian 
distributions that have an overlap. The shaded plane 
is the decision region of class 0 and the other plane 
is the decision region of class 1 by the SGNT. The 
dotted line is the ideal decision boundary. The 
number of training samples is 200 (class0: 100, 
class1: 100) (Fig. 3 (a)). 

 

    
(a)      (b) 

    
(c)      (d) 

Fig. 3 – An example of the SGNT's pruning algorithm, (a) a two dimensional classification problem with two 
equal circular Gaussian distribution, (b) the structure of the unpruned SGNT, (c) the structure of the pruned 

SGNT (1 =ࢻ), and (d) the structure of the pruned SGNT (0.6 = ࢻ).The shaded plane is the decision region of class 
0 by the SGNT and the doted line shows the ideal decision boundary 

 

The unpruned SGNT is given in Fig. 3 (b). In this 
case, 200 leaves and 120 nodes are automatically 
generated by the SGNT algorithm. In this unpruned 
SGNT, the height is 7 and the number of units is 
320. In this, we define the unit to count the sum of 
the root, nodes, and leaves of the SGNT. The root is 
the node which is of height 0.The unit is used as a 
measure of The decision boundary is the same as the 
unpruned SGNT. Fig. 3 (d) shows the pruned SGNT 
after the merge phase in 0.6 = ߙ. In this case, 182 
leaves and 115 nodes are pruned away and only 23 

units remain. Moreover, the decision boundary is 
improved more than the unpruned SGNT because 
this case can reduce the effect of the overlapping 
class by pruning the SGNT. 

In the above example, we use all training data to 
construct the SGNT. The structure of the SGNT is 
changed by the order of the training data. Hence, we 
can construct the MCS from the same training  
data by changing the input order. We call this 
approach “shuffling”. 
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3. EXPERIMENTAL RESULTS 
We investigate the computational cost (the 

memory capacity and the computation time) and the 
classification accuracy of the SONG with bagging 
for ten benchmark problems in the UCI machine 
learning repository [16]. Table 2 presents the 
abstract of the datasets. 

 
Table 2. The brief summary of the datasets. N is the 
number of instances, m is the number of attributes. 

Dataset N m classes 
balance-scale 625 4 3 
Breast-cancer-w 699 9 2 
glass 214 9 6 
ionosphere 351 34 2 
iris 150 4 3 
letter 20000 16 26 
liver-disorders 345 6 2 
new-thyroid 215 5 3 
pima-diabetes 768 8 2 
wine 178 13 3 
 
We evaluate how the SONG is pruned using 10-

fold cross-validation for the ten benchmark 
problems. In this experiment, we use a modified 
Euclidean distance measure for the SONG as 
follows: 
 

݀ሺݔ, ሻݕ ൌ ඥ∑ ܽ௜ · ሺݔ௜ െ ௜ሻଶ௠ݕ
௜ୀଵ , (2)

 
ܽ௜ ൌ ଵ

maxೕିminೕ
, ሺ1 ൑ ݆ ൑ ܰሻ. (3)

 
Since the performance of the SONG is not 

sensitive to the threshold value ߙ , we set the 
different threshold values ߙ to vary from 0.5 to 1;  
ߙ  = [0.5,0.55,0.6, … , 1].  We set the number of 
SGNT K in the SONG as 25 and execute 100 trials 
by changing the sampling order of each training set. 
All experiments in this section were performed on 
an UltraSPARC workstation with a 900 MHz CPU, 
1 GB RAM, and Solaris 8. 

The figures and tables must be numbered, have a 
self-contained caption. Figure captions should be 
below the figures; table captions should be above the 
tables. Also, avoid placing figures and tables before 
their first mention in the text.  

Table 3 shows the average memory requirement 
and of 100 trials for the SONG. As the memory 
requirement, we count the number of units which is 
the sum of the root, nodes, and leaves of the SGNT. 
The average memory requirement is reduced from 
65 % to 96.6 % and the classification accuracy is 
improved 0.1 % to 2.9 % by optimizing the SONG. 
Table 4 shows classification accuracy of 100 trials 
for the SONG. In Table 4, the standard deviation is 

given inside the bracket (ൈ 10-3). The classification 
accuracy is improved 0.1 % to 2.9 % by optimizing 
the SONG. These results support that the SONG can 
be effectively used for all datasets with  
regard to both the computation cost and the 
classification accuracy. 

 

Table 3. The average memory requirement of 100 
trials for the bagged SGNT in the SONG. 

Dataset pruned unpruned ratio 
balance-scale 107.68 861.18 12.5 
breast-cancer-w 30.88 897.37 3.4 
glass 104.33 297.75 35 
ionosphere 50.75 472.39 10.7 
iris 15.64 208.56 7.4 
letter 6197.5 27028.56 22.9 
liver-disorders 163.12 471.6 34.5 
new-thyroid 49.45 298.21 16.5 
pima-diabetes 204.4 1045.03 19.5 
wine 15 238.95 6.2 
Average 693.88 3181.96 16.9 

 

Table 4. The classification accuracy of 100 trials for 
the bagged SGNT in the SONG. The standard 
deviation is given inside the bracket  (ൈ 10-3). 

Dataset pruned unpruned ratio 
balance-scale 0.866 

(6.36) 
0.837 
(7.83) 

+2.9 

breast-cancer-w 0.97 
(2.41) 

0.966 
(2.71) 

+0.4 

glass 0.714 
(13.01) 

0.709 
(14.86) 

+0.5 

ionosphere 0.891 
(6.75) 

0.862 
(7.33) 

+2.9 

iris 0.962 
(6.04) 

0.955 
(5.45) 

+0.7 

letter 0.956 
(0.77) 

0.955 
(0.72) 

+0.1 

liver-disorders 0.648 
(12.89) 

0.636 
(13.36) 

+1.2 

new-thyroid 0.958 
(7.5) 

0.957 
(7.49) 

+0.1 

pima-diabetes 0.749 
(7.05) 

0.728 
(7.83) 

+2.1 

wine 0.976 
(4.41) 

0.972 
(5.57) 

+0.4 

Average 0.869 0.858 +1.1 

 
Table 5 shows the average classification accuracy 

of 10 trials for the SONG with boosting. On 
boosting, we implement AdaBoost [14] to the 
SONG. Since original AdaBoost algorithm have 
been proposed for binary classification problems, we 
use four binary classification problems. In 
comparison with boosting, bagging is superior to 
boosting on all of the 4 datasets. In short,  
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bagging is better than boosting in terms of the 
classification accuracy.  

 
Table 5. The average classification accuracy of 10 
trials for the SONG with boosting. The standard 

deviation is given inside the bracket (ൈ 10-3). 

Dataset SGNT SONG ratio 
breast-cancer-w 0.96 

(6.47) 
0.957 
(4.13) 

-0.3 

ionosphere 0.854 
(18.26) 

0.773 
(17.4) 

-8.1 

liver-disorders 0.588 
(17.9) 

0.572 
(24.3) 

-1.6 

pima-diabetes 0.696 
(12.2) 

0.722 
(6.82) 

+2.6 

Average 0.775 0.756 -1.9 
 
To show the advantages of the SONG, we 

compare it with SVM on the same problems. In the 
SONG, we choose the best classification accuracy of 
100 trials with bagging. In SVM, we use C-SVM in 
libsvm [17] with radial basis function kernel. We 
select the parameters of SVM, the cost parameters C 
and the kernel parameters ߛ , from 15 ൈ 15 = 225 
combinations by 10-fold cross validation; C = 
[212,211,210, … , 2-2] and [2-10 , … ,24,23,22] = ߛ.We 
normalize the input data from 0 to 1 for all problems 
in SONG and SVM. All methods are compiled by 
using gcc with the optimization level -O2 on the 
same workstation. 

Table 6, Table 7, and Table 8 show the 
classification accuracy, the memory requirement, 
and the computation time achieved by the SONG 
and SVM respectively. Next, we show the results for 
each category. 

 
Table 6. The classification accuracy of 10 trials for the 

best pruned SONG and SVM. 

Dataset SONG SVM 
balance-scale 0.885 0.992 
breast-cancer-w 0.976 0.973 
glass 0.758 0.738 
ionosphere 0.912 0.954 
iris 0.973 0.96 
letter 0.958 0.977 
liver-disorders 0.685 0.73 
new-thyroid 0.972 0.977 
pima-diabetes 0.764 0.766 
wine 0.983 0.989 
Average 0.887 0.904 

 
First, in view point of the classification accuracy, 

the SONG superior to SVM 3 of the 10 datasets and 
degrade 1.7 % in the average in Table 6. 

Second, in terms of the memory requirement, 
even though the SONG includes the root and the 

nodes which are generated by the SGNT generation 
algorithm, this is less than SVM for 8 of the 10 
datasets. Although the memory requirement of the 
SONG is totally used K times in Table 7, we release 
the memory of SGNT for each trial and reuse the 
memory for effective computation. Therefore, the 
memory requirement is suppressed by the size of the 
single SGNT. 

 
Table 7. The memory requirement of 10 trials for the 

best pruned SONG and SVM. 

Dataset SONG SVM 
balance-scale 109.93 60.6 
breast-cancer-w 26.8 79.6 
glass 91.33 132.4 
ionosphere 51.38 147.9 
iris 11.34 51.3 
letter 6208.03 7739.7 
liver-disorders 134.17 214.5 
new-thyroid 45.74 44.1 
pima-diabetes 183.57 363.5 
wine 11.8 62.2 
Average 687.41 889.58 

 
Table 8. The computation time (in sec.) of 10 trials for 

the best pruned SONG and SVM. 

Dataset SONG SVM 
balance-scale 0.82 4.77 
breast-cancer-w 1.18 0.64 
glass 0.36 0.61 
ionosphere 1.93 1.25 
iris 0.13 0.06 
letter 208.52 2359.39 
liver-disorders 0.54 2.07 
new-thyroid 0.23 0.22 
pima-diabetes 1.72 5.63 
wine 0.31 0.15 
Average 21.57 236.88 

 
Finally, in view of the computation time, 

although the SONG consumes the cost of K times of 
the SGNT to construct the model and test for the 
unknown dataset, the average computation time is 
faster than SVM in Table 8. The SONG is slower 
than SVM for small datasets such as glass, 
ionosphere, and iris. However, the SONG is faster 
than SVM for large datasets such as balance-scale, 
letter, and pima-diabetes. Especially, in letter, the 
computation time of the SONG is faster than SVM 
about 11 times. We need to repeat 10-fold cross 
validation many times to select the optimum 
parameter for ߙ , k, C, and ߛ . This evaluation 
consumes much computation time for large datasets 
such as letter. Therefore, the SONG based on the 
fast and compact SGNT is useful and practical for 
large datasets. Moreover, the SONG has the ability 
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