
Yury Kolokolov, Anna Monovskaya / Computing, 2013, Vol. 12, Issue 2, 133-141 
 

 133

 
 
 

FRACTAL APPROACH TO FORMING OF MODIFIED BIFURCATION 
DIAGRAMS IN PRACTICAL APPLICATIONS 

 
Yury Kolokolov, Anna Monovskaya 

 
Russian Research Institute of Hydrometeorological Information – World Data Center,  

6, Korolev str., 249035, Obninsk, Russia 
2kolo@mail.ru, www.meteo.ru  

 
Abstract: The points connected with both improving the methods based on the use of the bifurcation analysis and 
opening new possibilities to use the bifurcation analysis in practical applications are discussed in the paper. So, the 
fractal approach to form modified bifurcation diagrams is developed. The approach is directed towards extending 
knowledge about the nonlinear dynamics state-of-the-art by means of the growth in the capacity and adequacy of 
information about nonlinear dynamics regularities and uncertainties. In particular, it is summarized the peculiarities of 
the fractal approach; it is signed the main ways to practical applications of the fractal approach – forecasting 
nonlinear dynamics, estimating the stability margin and risk.  
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1. INTRODUCTION 
The great importance of a bifurcation diagram is 

caused by the fundamental idea – to represent the 
inhere property of Nature connected with the 
regularities during the evolution of a nonlinear 
system. Taking into account this idea, the bifurcation 
analysis is widely ised for scientific researches of 
nonlinear dynamics regarding different kinds of 
systems, for example: researching into dynamical 
processes keeping under observation in power [1, 2], 
control [2, 3] and information [4,5] parts of technical 
systems; researching into dynamical processes 
keeping under observation in biological [6] and 
natural [7, 8] systems; revealing the evolution 
processes in social systems [9]; and so on. However, 
the restrictions concerning the use of bifurcation 
analysis results for practical applications remain yet 
quite hard. Such restrictions can be conditionally 
divided in two groups.  

The first group of the restrictions follows from 
unavoidable uncertainties, which appear in the 
nonlinear system dynamics during intricate 
interrelations between several nonlinear phenomena 
under noise effects. As a result, there is the problem 
of building the mathematical model characterized by 
the both properties: the adequacy regarding the 
completeness of nonlinear phenomena variety; the 
adequacy regarding the accuracy of determining the 
bifurcation boundary allocations. The first group 

restrictions are mainly softened by adjusting the 
parameters of a system by the trial-and-error method 
[2, 10]. In this case, at first, computer calculations 
are carried out for a simplified mathematical model 
of the system with the purpose to determine a 
preliminary solution. Then, experimental researches 
are carried out to make more precise the computer 
solution. But, the difference between a computer 
simulated bifurcation diagram and an experimental 
bifurcation diagram can remain essential even after 
mathematical model complications [2]. It leads to 
the necessity to provide for great stability margins 
while design a control system using in a responsible 
technological process.  

The second group of the restrictions follows from 
both multidimensional phase and multidimensional 
parametrical spaces, which are involved in imaging 
the evolution of nonlinear dynamics. As a result, 
there is the problem of informational visualization, 
because a bifurcation diagram is either not originally 
designed to show or can partly show some 
phenomena and some characteristics which are 
necessary to analyse. For example, the intermittency 
is shown with distortions, both the ripple amplitude 
and the average value of an analyzed phase variable 
are partly shown, a symbolic characteristic of a 
periodical process is not shown, and so on [11]. The 
second group restrictions are mainly softened by 
using the modifications of bifurcation diagrams. The 
simplest variant of such modification is to exhibit 
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the evolution of some necessary characteristic of a 
periodic process (for example, the symbolic 
characteristic) similar to the evolution of a phase 
variable [11, 12]. Other example, it can be forming 
of the fractal structures, which allow to connect 
uniquely in a special 2D-projection about five or six 
coordinates of phase and parametrical spaces [13]. 

The mentioned problems of the mathematical 
model adequacy and the informational visualization 
have a deep interrelation. The interrelation is 
stipulated not only by uncertainties and regularities 
of nonlinear dynamics evolution, but also by 
possibilities and restrictions of the search tools used. 
This problem statement is considered in the fractal 
approach to forming of modified bifurcation 
diagrams. The basic idea of the fractal approach is to 
pick up such viewpoint on nonlinear dynamics 
evolution that this viewpoint is the most proper for 
solving the certain scientific or practical task. As a 
result, it becomes possible to improve the methods 
based on use of the bifurcation analysis and to open 
new possibilities to use the bifurcation analysis in 
practical applications. In the paper the peculiarities 
of the fractal approach to forming of modified 
bifurcation diagrams are summarized. Also it signs 
the main ways to practical applications of the fractal 
approach – forecasting of nonlinear dynamics, 
estimating the stability margin and risk. The results 
presented in the paper are got by experimental 
researches.  

 
2. EXPERIMENTAL SETUP 

Aspiration to practical applications of the 
bifurcation analysis leads to focus attention on 
experimental researches. The benefit of the 
experimental way is connected with the presentation 
of nonlinear dynamics evolution without 
destructions and distortions owing to the intricate 
interrelations between nonlinear phenomena and 
noise in contrast to the computational way based on 
use of mathematical models with unavoidable 
simplifications. The results of the experimental 
researches presented in the paper were made on the 
experimental setup “DC-DC buck converter” 
(60 W), the functional diagram of which is presented 
in Fig. 1a. The experimental setup was desined by 
the modular approach taking into account the 
widely-used schematic circuits (a PWM-regulator, a 
buck converter, a power supply, and so on). The 
information-measuring system was desined by 
analogy with the experimental setup “DC-DC drive” 
(1kW) [2, 11, 14]. In particular, the digital 
oscilloscope Tektronix TDS3014B is used for 
interactive signal imaging (channel “1”), first of all, 
for the synchronized imaging of the current (i) and 

voltage in the buck converter power circuit, and also 
the synchronizing function voltage (UCF) and the 
switching function voltage (UKF). Time series is 
acquired by the data acquisition system E20-10 
produced by L-Card company (Moscow, Russia), 
which is physically the extension board connected to 
the PC via USB port [11, 14]. The system consists of 
a 14-bit analog-to-digital converter (ADC) and a 
direct memory access controller providing the 
continuous data piping to the PC for posterior 
processing (channel “2”). Additionally, the 
specialized real-time channel (channel “3”) is 
realized through the data processing and data 
transferring subsystems. The data processing 
subsystem includes the RISC-microcontroller 
(ARM7, NXP/Philips). The data transferring 
subsystem includes the erasable programmable logic 
device (Cyclone I, ALTERA) and the interface 
translator (FT245RL, FTDI). The channel “3” is 
used for realization and investigation of real-time 
identification, forecasting and adaptation algorithms 
based on time series fragmentation [11, 14]. 

The algorithm of bifurcation diagram building is 
well-known and is based on the use of Poincaré’s 
periodicity condition. Its data acquisition cycle 
consists of the following procedures: setting the 
actual parameters; waiting the running transient 
completion; acquiring the phase variable samples 
with the synchronizing frequency (1/T); data saving. 
The cycle is repeated with variation of each 
parameter with the specified step and direction 
within the specified range. Certainly, an 
experimental setup can not guaranty any initial 
condition for each phase variable, any range and any 
step for each variable parameter, any disturbance at 
each moment, and so on. Nevertheless, if it is known 
both regularities and uncertanties of the considered 
system nonlinear dynamics, then it can be proposed 
variants “to detour” such experimental limits. The 
more regularities and uncertanties are known, the 
less limits there are. Taking into account this rule, it 
is accepted the following peculiarity of data 
asquicition in relation to the abovementioned 
algorithm of bifurcation diagram building: the 
sampling frequency is higher in several tens; the 
sampling duration is longer in several times. For 
example, an experimental bifurcation diagram 
presented in Fig.1b exhibits the evolution of 
nonlinear dynamics through the period doubling 1-2-
4-.. scenario. The fragments of time series around 
Fig. 1b illustrate the periodic processes mapped by 
the bifurcation diagram branches (from left to right: 
the 1-process; the 2-process; intermittency of the 1- 
and 2-processes).  
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Fig. 1 – The functional diagram of the experimental setup (a); an example of the bifurcation diagram,  

R-value is equal to 10Ω (b) 

 
3. MODIFICATIONS OF BIFURCATION 

DIAGRAMS AND REGULARITIES 
The modified bifurcation diagram represents a 

projection that can be built by use of the same set of 
time series. Modifications exhibit the possibility of 
different shapes in the case of the same bifurcation 
diagram. The shape depends on the choice of the 
moment of i-sampling regarding the T-period 
beginning (in other words, the choice of Poincare’s 
mapping) and on potentialities of special operator 
transformations. All the modifications are regular. 
Let’s build the dependence of dm/dmmax on dp within 
the limits of periodic process existence, where dm is 
the averaged distance between the 2-process 
branches, dmmax is the maximum dm-value, dp is the 
relative duration from the T-period beginning to the 

moment of i-sampling in relation to the T-period 
duration (Fig. 1b). The range of the dp-values can be 
divided into two parts (Fig. 2a): from dp=40% to 
dp=71% there is dm-increasing; from dp=71% to 
dp=40% there is dm-decreasing with two bends – 
near dp =100% (T-period beginning) and near 
dp=20%. This regularity remains similar with 
variation of parameters. Also, the fractal regularities 
of shifting the fixed points of mapping in the phase 
space will be observed [13]. For example, 
bifurcation diagrams will be regularly shifted 
downward along i-axis with R-value increasing 
(Fig. 2b). So, both the shape of the same bifurcation 
diagram and the disposition of a set of bifurcation 
diagrams in the phase space can be modified by the 
choice of Poincare’s mapping. 
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Fig. 2 – The dependence dm/dmmax on dp (a); B71-bifurcation diagrams (b) and B40-bifurcation diagrams (c) with 

R-value equal to 10Ω and 30 Ω 

 
This possibility is very important for the 

realization the fractal methods of real-time 
forecasting of nonlinear dynamics [13]. The main 
idea of the method is connected with forming of 
secondary, tertiary and so on fractal structures, 
which allow to connect uniquely in a special 2D-
projection about five or six coordinates of phase and 
parametrical spaces. To realize this connection a 
special operator transformation is used: 

V⎯⎯→⎯ vFX    (1) 
 
where X is a vector of phase variables in a 
multidimentional phase space, FV is a piece-wise 
operator, V is a vector of images in a special 2D-
projection. The physical meaning of the 
transformation (1) is to eliminate the overlapping of 
branches of several bifurcation diagrams in the 
phase space. For example, from the Fig. 2b it is 
necessary to eliminate either all the upper or all the 

bottom branches of the 2-process. Otherwise, the 
bifurcation diagram added between the uppermost 
and bottommost bifurcation diagrams will overlap 
one or several neighbour bifurcation diagrams (the 
dotted diagram in Fig. 2b).  

The transformation by FV – operator can be quite 
laborious for realization. At the same time, it turns 
out that the same result can be got by using the 
dm/dmmax-dependence on dp as the choice of the dp-
value with which dm=0. The bifurcation realization 
with the certain dp-value will be hereafter called the 
Bdp-bifurcation diagram («Branch»-bifurcation 
diagram), where the dp-index denotes conditions 
under which the diagram was built. The result of the 
corresponding modifications the bifurcation 
diagrams Fig. 2b is presented in Fig. 2c. The figure 
illustrates the existence of three zones: the 1-process 
zone; the 2-process zone; the narrow streak of an
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Fig. 3 – Three lines of the bifurcation realizations with R-value equal to 10 Ω, where three columns of B0-, B40-, 
B71- bifurcation diagrams are correspond to each bifurcation realization (a);  

an example of J-bifurcation diagram (b); illustrations to the stability margin (c,d) 
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uncertainty zone (∆αUZ). Experimental researches 
show that the ∆αUZ-zone can not be eliminated 
because it is the particular property of any scenario 
of nonlinear dynamics evolution [11, 15]. Since the 
transformation (1) is not originally designed to 
reveal the ∆αUZ-zone then using the B-bifurcation 
diagrams allows to increase in adecuacy of the 
preliminary information for the fractal methods of 
real-time forecasting of nonlinear dynamics. 
 

4. REALIZATIONS OF BIFURCATION 
DIAGRAMS AND STABILITY MARGIN 
The unavoidable influence of “delicate” 

nonlinear phenomena (similar to a hysteresis, an 
intermittency and so on), noise and unknown 
parameters on a bifurcation point location leads to 
the conception of the bifurcation realization [11] – 
the experimental bifurcation diagram built with the 
particular combination of internal and external 
parameters, and also with the particular direction 
and the particular step of the bifurcation parameter 
quasi-static variation. Processing a set of bifurcation 
realizations allows to get the generalized and 
averaged information. So called the J-bifurcation 
diagram (“Joint”- bifurcation diagram) is used to 
show this information [11]. In general case J-
bifurcation diagrams allow to analyze either several 
kinds of the modifications for one bifurcation 
realization or the same kind of the modification for 
several bifurcation realizations. For example, let’s 
consider three bifurcation realizations (three lines 
1, 2, 3 in Fig. 3a) with three kinds of the B-
bifurcation diagrams (three columns from left to 
right, accordingly: dp=0%, dp=40%, dp=71%). The 
figure shows the possibility of some differences 
while the bifurcation boundary is exibited in nine 
variants. The ∆αUZ-zone appears by combining these 
variants. In particular, here the ∆αUZ-zone range is 
equal about 15% of the 1-process range that can be 
illustrated by one of the J-bifurcation diagrams 
(Fig. 3b). The 1-process probability is equal to 100% 
at left of the ∆αUZ-zone left limit (αUZleft), the 1-
process probability is equal to 0% at right of the 
∆αUZ-zone right limit (αUZright), a system behavior 
within the ∆αUZ-zone is uncertain. So it becomes 
possible to propose both the physical meaning and 
the principle of the quantitative assessment for the 
stability margin based on the nonlinear dynamics 
nature. 

The commonly accepted meaning of the stability 
margin is connected with some nonzero distance 
between the actual (αORj) and crucial values of a 
control system parameter, where the crucial value 
means the loss of the operating process stability. For 
example, if the 1-process is the operating and the 2-

process is the abnormal, then it is necessary to 
answer two questions. First, where the bifurcation 
point locates? But taking into account system 
behavior within the ∆αUZ-zone, the answer this 
question cannot be unique. Second, how long the 
distance between actual and crucial values should 
be? At present, this distance is determined in a wide 
range and is validated on the basis of the empirical 
considerations, for example [16, 17, 18]. Moreover, 
the operating process stability margin should 
correspond to the «worst combination» of 
parameters. But it is difficult to determine because 
of the changes over time in internal and external 
parameters in wide ranges, for example, [1, 2, 10]. 
Let’s demonstrate that a physical meaning of the 
stability margin can approach the reality by the 
following assumption: the ∆αUZ-zone is the unit of 
measurement to estimate the stability margin.  

In this case the stability margin (SORj) is 
calculated by the way (Fig. 3c): 

 
SORj= ∆αORj/∆αUZ.    (2) 

 
If αORj belongs to the 1-process range, then 

SORj > 1. By analogy, if αORj belongs to the 2-process 
range, then SORj < 0. The complication of operational 
conditions leads to widening the ∆αUZ-zone. For 
example, let the ∆αUZ–zone in Fig. 3d is wider in 
comparison with the ∆αUZ–zone in Fig. 3c, and let 
the αORj-value is the same for the both cases. Then 
the SORj-value in Fig. 3c is greater than the SORj-
value in Fig. 3d. The consequence from this property 
is concordant with the practical experience: the more 
various operating regimes there are, the more narrow 
the 1-process range is. Next, the minimal stability 
margin guaranteeing the 100% probability of the 1-
process stability takes place with the left limit of the 
∆αUZ-zone, where SORj=1. The decrease in this 
probability occurs from αUZleft to αUZright. 
Correspondingly, the farther αORj from the 
bifurcation boundary is, the greater SORj–value is. 
The probability of the 1-process stability disappears 
completely to αUZright, so, the stability margin 
becomes equal to zero. 

 

5. PIECE-WISE BIFURCATION 
DIAGRAMS AND RISK ESTIMATING 
At present, the risk estimating is based on the use 

of statistic methods. If one has in mind the risk 
estimating in the cases of qualitative leaps of system 
states, then it seems to be more valid to take into 
account the risk of bifurcation phenomena. 
Correspondingly, the use of only statistic methods 
becomes insufficiently complete owing to essential
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Fig. 4 – Three lines of B0-, B40-, B71- bifurcation diagrams for the same bifurcation realization with R-value equal 
to 10Ω (a); zoom-in combination of the fragments I and II, the observed windows “1” and “2” accordingly (b); 

zoom-in combination of the fragments III and IV, the observed windows “3” and “4” accordingly (c) 

 
distinctions between the physical nature of 
uncertainty in accordance with statistic models and 
the physical nature of uncertainty in accordance with 
nonlinear models. Let’s consider two examples to 
illustrate the problem statement (Fig. 4). In the left 
part of the Fig. 4 three modifications of the same 
bifurcation realization are presented (from up to 
bottom, accordingly: B0-bifurcation diagram;  
B2-bifurcation diagram; B40-bifurcation diagram). 
All the diagrams are characterized by the blur of 
branches, where the range of noise is limited by the 
standard deviation ±4σ in relation to the preliminary 
calculated mathematical expectations for each 
branch. Let’s assume that the prehystory of the 
system behavior is known within the range of α-
variation from 10 to 30 (the observable window “1” 
in Fig. 4a). Then the prospective system behavior 
within the range of α-variation from 30 to 40 (the 
observable window “2” in Fig. 4a, the upper figure) 
will be concordant with the limits of statistical risk. 
But, let’s assume that the system behavior will be 
shown with the dp-value equal to 2% in comparison 
with the observable window “1” (the observable 
window “2” in Fig. 4a, the middle figure). Then the 

acting system behavior will exit beyond of the limits 
for the prospective system behavior. In this example 
the excess of the potential limits will be about two 
times (Fig. 4b, combination of the fragments I and 
II). 

Let’ consider the second example. Let the 
prehistory of the system behavior is known within 
the range of α-variation from 38 to 48 (the 
observable window “3” in Fig. 4a, the bottom 
figure). In this case it is necessary to note that the 
peculiarity of the B40-bifurcation diagram: the 
branches of the 2-process actually coincide with 
each other that does not allow to identify formally 
the 2-process based on Poincaré’s periodicity 
condition in contrast to the previous cases (Fig. 4a, 
the upper and middle figures). In other words, after 
the realized bifurcation the image of the bifurcation 
diagram is distorted too much, that the number of 
branches remains equal to one and looks like the 1-
process. So, a qualitative leap of system state can be 
indistinguishable by experimental way [11]. Let’s 
assume that the system behavior will be shown with 
the dp-value equal to 40% in comparison with the 
observable window “3” (the observable window “4” 
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in Fig. 4a, the upper figure). Then the acting system 
behavior not only will exit essentially beyond of the 
limits for the prospective system behavior, but also 
unpredictable dual features will be observed. 
(Fig. 4c, combination of the fragments III and IV). 

The diagrams sewing together pieces of several 
B-bifurcation diagrams are used in the both 
examples to illustrate the variants of potential limits 
of the risk. The similar bifurcation diagrams will be 
hereafter called the PW-bifurcation diagram 
(“Piece-Wise”-bifurcation diagram). These 
diagrams can be built for one or several bifurcation 
realizations. The PW-bifurcation diagram allows to 
show up and to classify the potential combinations 
of risk phenomena with the purpose to estimate 
more valid the variety of prospective system 
behavior. So, it becomes possible to discern the 
system behavior beyond the limits known under the 
conditions, when nonlinear dynamics is excluded 
from consideration. 

 
6. CONCLUSION 

Three modified bifurcation diagrams (B-, J-, PW-
bifurcation diagrams) are considered through 
developing the fractal approach to forming of 
modified bifurcation diagrams. The “Branch”-
bifurcation diagrams (B-bifurcation diagram) are 
intended for the growth in the capacity and adequacy 
of the preliminary information about nonlinear 
dynamics regularities. It seems to be important in 
applications to the methods of real-time nonlinear 
dynamics identification and forecasting. The 
“Joint”-bifurcation diagrams (J-bifurcation 
diagram) are intended to show up and to analyse the 
uncertainty zones near bifurcation boundaries. It can 
be used for more valid estimating a stability margin 
that seems to be important in applications to 
methods of control system design and methods of 
adaptation. The“Piece-wise”-bifurcation diagrams 
(PW-bifurcation diagram) are intended to show up 
and to classify the potential combinations of risk 
phenomena taking into account nonlinear behavior. 
It seems to be important in applications to more 
valid estimate the ranges of prospective dynamics of 
the considered system.  
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