
Max Knem

Max Kn

Abstract: T
applications
systems. The
evolve also w
and the playe
time interact
persistency a
the applicatio
EPM automa
relational da
ROIA client-

Keywords:
real-time app

Distribut
applications
simultaneou
high deman
scalability.
applications
Online Gam
this area inc
successful
Playing G
Warcraft”[1
individual p
involved da
relational d
mature tec
Warcraft[1]
Second Life

In a MM
virtual worl
other. The
characters c
with other p
is to develo
equipped w
make this

meyer, Mohamm

TOW

emeyer, M

The class of
as Massively

ese application
while the user
er characters
tive applicati
and we descri
on developer f
atically perfo

atabases, supp
server archite

Massively mu
plications.

1. INTR
ted real-t
s (ROIA)
usly by thou
nds on avai

The pro
s of this typ
mes (MMOG
creases sharp
Massively

ame (MMO
1] with more
players. To
ata, data in su
databases wh
chnology.
], Guild Wa
e[3] employ
MOG, playe
ld to commu
players are
called avatar
players, an im
op his avatar
with new obj

developmen

med Nsaif, Frank

WARDS
ONLINE

Mohamme

Ei
mohammed

distributed R
y Multiplayer
ns usually wo
r is offline and

persistent in
ions in moder
be a prelimin
from writing

orms the mapp
ports the mana
ecture.

ultiplayer onl

RODUCTIO
time onli

can poten
usands of us
ilability, res
obably mo

pe are Massi
Gs). The num
ply in recen

Multiplaye
ORPG) is
e than 11 m
manage the
uch games ar

hich are base
For examp
ars[2]and th
this technolo
ers stay tog
unicate and in
being repres
rs. In additi

mportant ince
r: e.g., the av
jects or learn

nt persistentl

co

k Glinka, Alexa

DATA P
E INTERA

d Nsaif, F

Univ
insteinstr. 62,
d.nsaif@uni-m

Real-time On
r Online Gam
ork in a persis
d away from t
the system ov
rn relational

nary design of
and maintaini

pping operatio
agement of pe

line games (M

ON
ne intera

ntially be
sers. They m
sponsiveness
ost deman
vely Multip
mber of use
t years: the

er Online
the “World

millions of a
huge amoun

re often stor
ed on a solid
ple, World
he virtual w
ogy.
gether in a
nteract with
sented by vi
on to intera
entive of a p
vatar can bec
n new skills
ly, i.e. such

mputing@co
www.comp

ander Ploss, Ser

ERSISTE
ACTIVE

Frank Glink

versity of Mue
D-48149 Mue

muenster.de, g

nline Interact
mes (MMOGs)
stent environm
the applicatio
ver time. In th

databases. W
f the Entity Pe
ing complex a
ons to store/r
ersistent data

MMOG); pers

active
used

make
and

nding
layer

ers in
most
Role

d of
active
nt of
ed in

d and
d of
world

large
each

irtual
cting
layer
come
s. To

that

chan
they
relia
state
state
perm

T
avat
deve
gam
pers

T
pers
data
virtu
chan
usua
exam
miss
To i
the
Pers
of th
main
espe
The
appl

omputingonlin
utingonline.n

rgei Gorlatch /

ENCY IN
APPLICA

ka, Alexan

enster
enster, Germa

gorlatch@uni-

tive Applicat
), as well as

ment (also cal
on. The challen
is paper, we d

We analyze th
ersistence Mod
and error-pron
retrieve the c
in memory, an

sistency; virtu

nges are not
y must be s
ability of a
es of avatars
e of the
manently.
Through the
tar changes o
elopment of

me world, th
sistently.
To store th
sistent data
a storage is
ual world at
nges becom
ally made at
mple, when
sion, acquire
increase reli
changes o

sistent data m
he code of a
ntaining this
ecially if ne

persistence
lication use

ne.net
net

/ Computing, 20

REAL-T
ATIONS

nder Ploss

any
muenster.de

tions (ROIA)
interactive e

lled world) wh
nge is how to
deal with stor
he major requ
dule (EPM) m
ne code for pe
complex data
nd integrates

ual worlds; o

t lost when t
saved (persi
gaming ap
should be st
game wor

actions of th
or evolves. T

the avatar a
here is a ne

e changed
storage is r
used when

arbitrary tim
me available

so-called key
the avatar

es new objec
iability, it m
of the gam
management
a game, up
s code is co
w features a
code is usua

case, and

Internation

013, Vol. 12, Iss

TIME

s, Sergei G

includes su
e-Learning an
hich continue

o efficiently ma
ring persistent
uirements to

middleware wh
ersistent data

to/from diffe
it into the ma

object-relation

the game is
isted). To i

pplication, n
tored, but als
rld is usu

he user in th
To avoid losin
and the new
eed to store

entities, a
required. Th
n the player
me, such that

again. The
y points of th
r completes
cts or learns

must be poss
me world c
t takes a sign
to 40%[4].

omplex and
are added to
ally tailored

thus poorl

ISSN
nal Journal of

sue 1, 75-85

75

Gorlatch

ch important
nd simulation
es to exist and
ake the world
t data of real-
a system for

hich liberates
management.

erent types of
ain loop of the

nal mapping;

interrupted,
increase the

not only the
so the global

ually stored

he game, his
ng the recent
states of the

e these data

system for
he persistent
r enters the
all previous

e saving is
he game, for
 a specific

s new skills.
sible to save
ontinuously.
nificant part
Writing and
error-prone,

o the game.
to a specific
ly reusable.

N 1727-6209
 Computing

5

t
n
d
d
-
r
s

f
e

;

,
e
e
l
d

s
t
e
a

r
t
e
s
s
r
c
.
e
.
t
d
,
.
c
.

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

 76

Therefore, providing generic solution that supports
the game developers in this task is desirable.

In this paper, we discuss the problem of
efficiently storing the persistent data of real-time
interactive applications. We target applications
which a) are developed in C++, the programming
language used for most ROIA, and b) store their
complex data in relational database management
systems (RDMS). As the result of our analysis, we
present a preliminary design of our persistency
system – the Entity Persistence Module (EPM) –
which we design as a middleware, i.e. a software
layer that connect the application with different
types of relational databases. We also describe how
EPM provides the application developer with a
programming interface (API) in order to simplify the
use of the presented persistency system.

In this paper, we discuss the problem of
efficiently storing the persistent data of real-time
interactive applications. We target applications
which a) are developed in C++, the programming
language used for most ROIA, and b) store their
complex data in relational database management
systems (RDMS). As the result of our analysis, we
present a preliminary design of our persistency
system – the Entity Persistence Module (EPM) –
which we design as a middleware, i.e. a software
layer that connect the application with different
types of relational databases. We also describe how
EPM provides the application developer with a
programming interface (API) in order to simplify the
use of the presented persistency system.

The paper is organized as follows. In Section II,
we present basic fundamentals about the MMOG
architecture. Section III describes how persistent
data can be represented in relational database
management systems. In Section IV, we describe
and analyze the common approaches of persistence
layers. Section V describes the preliminary design of
EPM and explains how it works as a middleware
software layer.

2. PROPERTIES OF MULTIPLAYER

ONLINE GAMES
MMOGs are a class of online games in which

thousands of players participate simultaneously in a
game by communicating and interacting with each
other. This game class has been growing in several
distinct categories, such as: Role-Playing Games
(RPG), First Person Shooters (FPS), Real-Time
Strategy Games, and others. Although each category
has its specific game logic, they basically have a
similar structure as follows:
• The game comprises a virtual world where

players reside and operate.
• The actions of players change the state of the

game world, including player avatars, according

to the rules of the game logic.
• The game logic dictates what actions are possible

and how they affect the game world.
In MMOG, a player with his character, called

avatar, moves and interacts with other objects in the
game world. All changeable world objects are called
dynamic objects or entities. These include, for
example, computer-controlled characters, weapons,
and the avatars of other participants. The entities
have different attributes which describe them or
their state. For example, an avatar may has
information about its position in the virtual
environment, its life force, its name and carried
items. In role-playing games a user can, for example,
move an avatar, collect items, and trade with other
avatars. Through the actions of the user in the game,
his avatar may change or evolve. To avoid losing the
recent development of the avatar and the new states
of the game world, there is an essential need to
storing these data persistently.

To store the changed entities, a system for
persistent data storage is required. The persistent
data storage is used when the player enters the
virtual world at arbitrary time, such that all previous
changes become available again. The game
developers need such a system in order to save, load
and delete entities. The saving is usually made at so-
called key points of the game, for example, when the
avatar completes a specific mission, acquires new
objects or learns new skills. To increase reliability, it
must be possible to save the changes of the game
world continuously.

The basic architecture used for MMOGs is the
traditional client-server architecture, enriched with
multiple servers. A client is responsible for
presenting the game world to a player and
interacting with that player. The client takes the
inputs from the player and initiates changes in the
game world. The server is responsible for the
simulation of the game world and updating its state;
it is usually called game server.

Fig. 1 shows the main functions of the game
server, which are realized in the following three
steps:
• The game server manages all entities of the

virtual game world by continually receiving the
actions of the players from the clients and
analyzing them (Step 1);

• The new game state is computed by applying the
actions of the players and the rules of the game
logic to the entities (step 2);

• The new state is sent to the players (step 3).
These three steps run within the game in a loop,

called mainloop. A single iteration is called a tick
and the number of cycles per second is called the
tick-rate of the game. For a smooth gaming
experience, it is essential that a certain tick-rate is
kept. For example, Quake3 Arena[5] is a fast FPS

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

 77

game which requires a tick-rate of minimum 20
ticks/second.

Fig. 1 – Steps of a ROIA mainloop

3. DATABASES FOR GAME

PERSISTENCY
Database Management systems (DBMS) are

classified according to the way of data
representation, i.e., according to the data model of
DBMS. The two most popular data models are
record-oriented (i.e. relational data model) and
object-oriented (i.e. object-oriented data model). The
nature of the work environment and the
requirements of an application determine which
database model is more suitable[6].

An object-oriented DBMS supports complex data
stored as objects; it employs a data model with
object-oriented features: encapsulation, inheritance,
and polymorphism. However, this data model lacks
advanced searching facilities, therefore it sometimes
called no-query. The underlying model in a
Relational DBMS only supports simple data, rather
than complex objects, but it strongly supports
various advanced searching facilities[7], e.g., the
relational SQL. To store the persistent objects of
MMOG applications into a database and then
retrieve them in an efficient way, we need both these
facilities, complex data and query support.

In a relational DBMS, users can query any table
in the database and combine related tables using
special join functions to include relevant data
contained in other tables into the results, and if
needed, filter the results. We call this property the
ease of data retrieval. The relational database model
is naturally scalable and extensible, providing a
flexible structure to meet changing requirements and
increasing amounts of data. The relational model
permits changes to the database structure which can
be implemented easily without impacting the data or
the rest of the database. There is theoretically no

limit on the number of rows and columns of tables.
In reality, growth and change are limited by the
relational database management system (RDBMS)
and the hardware used for implementation.

In order to create a relational database, it is
necessary to define a schema, i.e. its structure
described in a formal language supported by the
DBMS. It refers to the organization of data and is a
blueprint of how a database will be constructed
(divided into database tables), i.e. it is a set of
formulas (sentences) called integrity constraints
imposed on a database. These constraints ensure
compatibility between the parts of the schema. In
relational databases, the schema defines tables,
columns or fields, relationships, views, indexes,
packages, types, database links, and other elements.
In MMOGs, for example, two objects – the avatar
and its inventory – are usually presented in two
tables (relations), and their properties (attributes) are
presented in the columns of these tables. Therefore,
the properties of an avatar: AvatarID, Name,
PositionX, PositionY, PositionZ, Energy, and
InventoryID can be presented as columns in the
avatar table, and the properties of inventory:
InventoryID, Item1, Item2, and Item3 are presented
as columns in the inventory table.

For defining and managing data and data
structures in RDBMS, Structured Query Language
(SQL) is used as a standardized special-purpose
programming language. SQL acts as an interface to
the RDBMS on the application development side.

Our approach is to develop a middleware for
converting the complex data or complex objects of a
MMOG application into simple data. Then we can
use the relational DBMS as a database for MMOG
applications. Relational DBMS are used in most
popular MMOG applications, such as Second Life
[3], and Guild Wars [2].

Nowadays, most popular multiplayer games,
especially MMOGs, are developed using C++,
because these modern games have high performance
requirements which are best addressed with a
relatively low-level, object-oriented programming
language. Since the system for persistent data
storage, which is presented in this paper, is used in
the field of MMOGs, it is also developed in C++.

In order to access a relational database from C++,
i.e. use SQL in a C++ program code, there are two
main possibilities: native and general database
libraries. Database vendors provide native libraries
that can be used via a special API to establish a
direct connection between the program code and a
specific database without any mediation; this is what
is called native connection. The native libraries that
are represented as API wrappers include for
example, MySQL++[8]for MySQL database, and
libpqxx[9]for PostgreSql database. A native library

Max Knem

 78

is usually
libraries be
connection
restriction t
problem wh
because the
not specifie
multiple ser
independen

Our app
Interface(SO
different da
native datab
structure o
integration
makes SQL
code, i.e. st
SOCI is in
backends. T
an applicati

F

The SO
various da
MySQL, S
generic ba
(ODBC). T
performanc
variety dat
commands
conversion
SOCI offers
types and a
data types
representati
storing and
libraries o

meyer, Mohamm

better suit
ecause of its
with databas
to a specifi
hen using na
e latter need
ed database
rvers. The s
t library (or
proach relie
OCI) library
atabases, an
base library
of the SO
of differen

L queries em
taying entire
ntegrated w

The backend
on into the a

Fig. 2 – SOCI

OCI current
atabase typ

SQLite3 and
ackend: Op
hus, by usin
e advantage
tabase acce
are passed
as it happe

s a flexible s
also an exten

of many
ion of non

retrieving t
of C++ are

med Nsaif, Frank

ted than g
 ability to e
se, but the di
ic database.
ative librarie

d to establish
types that a
olution is to
general datab
es on Simp
y[10] whicha
nd at the sa
. Fig. 2 sho

OCI library
nt database
mbedded in
ely within th

with databas
forwards th

appropriate d

I modular str

t version (
pes: Oracle
d Firebird,
pen Databa
ng SOCl we
e of native l
ess of OD
d to the R
ens in ODB
support for u
nsive integra
Boost C++

nstandard da
o/from datab
e used to

k Glinka, Alexa

general data
establish a d
isadvantage i

This may
es with MM
h connection

are distribute
o use a datab
base library)
ple Oracle
allows to ac

ame time it
ows the mod
y allowing
backends. S
the regular

he standard C
es via data

he data queri
database.

ructure

(3.1.0) supp
e, PostgreS
as well as

ase Connec
can combin
libraries and

DBC. The
RDBMS wit
BC. Addition
user-defined
ation with B
+ Libraries,
ata type du
bases. The B

store arbi

ander Ploss, Ser

abase
direct
is the
be a

MOGs
ns to
ed on
base-
).

Call
ccess
is a

dular
the

SOCI
C++

C++.
abase
es of

ports
SQL,
s the
tivity
e the
d the
SQL
thout
nally,

data
Boost
 i.e.
uring
Boost
itrary

info
libra
abili
valu

4.
T

pers
Da
In

are
used
to S
the
sma

Da
He

addi
from
Data
stori
data
Obje
enca
from
need
data
whe
one,

Da
In

com
Fig.
repr
store
info
perf
used
abst
addi
defin
map
user
info
info
nece
abst

T
calle
pres
sign
appr
furth
cust
impo

rgei Gorlatch /

rmation in
ary offers the
ity to store

ues in one var

KINDS OF
There are
sistence regar
atabase acce
this approac
realized in t

d for implem
QL comman
user. This a
ll projects.
atabase acce
ere, the code
itional classe

m the databa
a Access O
ing the pers

a between u
ects, Data
apsulate the
m/to database
ded in the cla
a with the D
en replacing
, all the data
atabase acce

this appro
mmunication

3 shows
esentation o
e a user cla
rmation. Co

formed at a c
d by all pers
raction layer
itional code
nes meta-in

pping of obje
r class requi
rmation mus
rmation, the
essary SQL
raction layer

This approac
ed persisten
sented in
nificant adv
roaches: it is
hermore, it
omizable. T
ortant for lar

/ Computing, 20

a variable
e boost::tupl

e a virtually
riable in a C

F PERSIS
three com

rding the con
ess by means
ch, particular
the classes o

menting the ac
nds directly b
approach is

ess by data a
e to access th
es which sepa
ase. The cla

Objects[11] a
istent data o
user classes

Transfer
e persistent
e. As a resu
asses of user

Data Transfe
the employ

access classe
ess by an ab
oach, the
with databas
, as an e

of an abstrac
ass (persisten
ommunicatio
central point
sistent classe
r, the develo

e for datab
nformation
ects to the d
ired to be p
st be specifi
e code for d

L commands
r.
ch of using a
ncy layer) i
this paper.

vantages ov
s reusable fo

is more
These adva
rge projects.

013, Vol. 12, Iss

, e.g. the
le class whic
y unlimited
++ program.

TENCE SY
mmon app
nnection with
s of user cla
r methods for
of users, i.e.
ccess to the d
by the classe
particularly

access classe
he database
arate the clas
ass instances
and are resp
of a class. T

and the D
Objects ar
data which

ult, an additio
rs to match th
er Objects. F
yed database
es should be
straction lay
user classe
se are strictl
example, a
tion layer to
nt class) usi
on with the
t of the abstr
es of the us
oper does no
ase access,
which de

database tabl
persistent, su
ied. Using th
database acc
s are creat

an abstraction
is used in
. This app
ver the tw
or different p

easily exte
antages are

sue 1, 75-85

Boost.Tuple
ch offers the

number of
.

YSTEMS
roaches to
h database:

asses
r persistence
 the code is
database and
es written by

suitable for

es
is placed in

sses of users
s are called
ponsible for
To exchange
Data Access
e used to
h is loaded
onal code is
he persistent
Furthermore,
e by a new
adjusted.

yer
es and the
ly separated.
a schematic
o access and
ing mapping

database is
raction layer
ser. With an
ot write any

but rather
scribes the
es. For each

uch mapping
his mapping
cess and the
ted by the

n layer (also
our system

proach has
wo previous
projects, and
endible and
e especially

e
e
f

o

e
s
d
y
r

n
s
d
r
e
s
o
d
s
t
,

w

e
.
c
d
g
s
r
n
y
r
e
h
g
g
e
e

o
m
s
s
d
d
y

Max Knem

Fig. 3 – Sc

The syst
between the
the applica
reveals the
such a persi
• The syst

game w
and enti
stored i
difficulti
incompa
objects
(compos
only sto
primitive
that are o
Therefor
the obje
for stori
game lo
retrieval
This tas
Mapping
attribute
between
support
inheritan

• The sys
continuo
avatar g
complete
always t
be possi
should b

meyer, Mohamm

hematic repr

tem of pers
e entities of
ation) and t
 following
istency syste
tem should p
orld, i.e. the
ities of an a
into a relat
ies here is c
atible type
is almost al

site value),
ore and man
e data types)
organized in
re, the system
ect values in
ing in the d
gic requires
 from the
sk is usual
g[12]. Partic
s of obje
 objects are

object-orie
nce and polym
stem should
ously at cer
gets new obj
es a specifi
the entire en
ible to defin
be stored. Fo

med Nsaif, Frank

resentation of
layer

istent data s
MMOGs (i.
the RDBMS
basic requir

em:
persist the sta
e states of in
application
tional DBM
converting t
systems. Th
lways a non
while relatio
nipulate sca
), such as int
n tables and s
m should be

nto groups o
database, and
 it, convert
database wi
lly called O
cularly impo
cts and th

e stored. Th
ented conc
morphism.

d be able t
rtain times
ects or learn

fic task in
ntity is to be
ne which par
or this purpo

k Glinka, Alexa

f the abstract

storage is a
e., the objec
S. Our ana
rements tow

ate of the MM
ndividual ob
are continuo

MS. One of
the data betw
he data typ
n-primitive v
onal DBMS

alar values,
tegers and str
stored as rec
e able to con
of simpler va
d then, when
them back u

ithout mism
Object-Relati
ortant is how
he relations

he system sh
cepts, such

to store en
(e.g., when

ns new skill
the game).
stored; it sh

rticular attrib
ose, the persi

ander Ploss, Ser

tion

link
cts of
alysis
wards

MOG
bjects
ously
f the
ween

pe of
value

S can
(i.e.,
rings
ords.
nvert
alues
n the
upon

match.
ional

w the
ships
hould
h as

ntities
n an
ls, or

Not
hould
butes
istent

d
a
d
a
d
w

• T
d
R
s
s

T
preli
stora
EPM
inter
man
a. I

W
softw
integ
of M
of se
Fig
eligi
corr
addr
load
play
the g
login
retri
avat
Whe
logg
store

Fig

rgei Gorlatch /

data manag
appropriate
developer. T
abstraction fr
database, suc
write a databa
The system s
database, but
RDBMS. T
specific type
supporting in

5. THE E

This section
iminary desi
age called E

M serves a
ractive appli

nagement sys
Integration of
We design
ware layer b
grate persiste

MMOG appl
ervers: login
4. The login
ible to part
esponding d
ress, and list
ded from the
yer retrieves
game-client;
n server and
ieved data, th
tar has stopp
en the playe
ged out at the
ed in the acc

g. 4 – Integrat

/ Computing, 20

ement syst
interface

This interf
from the dir
ch that the de
ase-specific
should not b
t rather be ab

Therefore, it
s of databas

nterfaces for

EPM SYST
PERSIST
describes t

ign of our sy
Entity Persi
s an interf
ications and
stems (RDBM
f persistence
our EPM

between MM
ence into the
lications, EP
n server and g
n server che
icipate in th
data of the
t of avatars
e database.
data from

; therefore, E
d the account
he game log
ped in the

er exits the g
e login serve
ount-databas

tion of EPM
MMO

013, Vol. 12, Iss

tem must
for the

face will p
rect interacti
eveloper does
code.

be limited to
ble to work w
t must ab
ses by provid
database con

TEM FOR D
TENCY

the basic co
ystem for pe
istence Mod
face betwee
d the relation
MS).
e in MMOG
system to

MOG and R
e complex in

PM resides o
game server
ecks whether
he game. If
player, suc
owned by t
To play the
the account

EPM works
t-database. B
gic determine
previous ga

game, the ga
er and the acc
se.

in the archite
OG

sue 1, 75-85

79

provide an
application

provide an
on with the
s not need to

a particular
with different
stract from
ding general
nnections.

DATA

oncepts and
ersistent data
dule (EPM).
en real-time
nal database

work as a
RDBMS. To
nfrastructure

on two types
as shown in

r a player is
f necessary,

ch as name,
the player is
e game, the
-database to
between the

Based on this
es where the
ame session.
ame-client is
count data is

ecture of an

9

n
n
n
e
o

r
t

m
l

d
a
.
e
e

a
o
e
s
n
s
,
,
s
e
o
e
s
e
.
s
s

Max Knem

 80

Fig. 5 s
mainloop p
the game st
players from
step 1), the
which is pe
back to the

Fig. 5 –

b. Architec

The ess
comprises
rectangle in
the figure
upper side r
mapping an
are the supp
the essentia
way. The ar
an abstract d

c. Informat

In order
EPM system
persistent c
RDBMS, E
classes whi
database f
provided by
to EPM by
mapping, an
Mapping F

Mapping
objectsare
representati
information
specifies wh
be persisten

meyer, Mohamm

shows the in
performing th
tate. The mai
m the client
en it calcula
rsisted using
clients (step

– Integration
m

cture of the p
sential part
the softwar

n the middle
represents th
represents th

nd database i
plementary p
al part of E
rchitecture o
design in[13

tion about pe
to allow fo

m – to establ
classes of M
PM needs m
ch need pers

for storing.
y the applica
y: mapping f
nd database

File
g files descri
stored. EPM

ion of the
n as XML fil
hich classes

nt and where

med Nsaif, Frank

ntegration o
he continuou
inloop receiv
s and analyz
ates the new
g EPM (step

4).

of EPM in th
mainloop

persistence m
of the EP

re componen
of Fig. 6.Th
he database

he applicatio
information

part of the EP
EPM to work

f EPM follow
].

ersistency
or our persist
lish a connec
MMOGs an

meta-informat
sistency, and

This meta
ation develop
file, Persiste
config.

ibe where an
M provides
data structu

les. The map
and which
they should

k Glinka, Alexa

f EPM with
us processin
ves the action
zes them (F
w state (step
3), and then

he application

module
PM archite
nts in the

he bottom sid
 side, while

on side as we
files. These

PM which al
k in an effi
ws some ide

tency layer –
ction between
nd one or m
tion about: 1
d 2) the desir
a-information
per and prese
enceID, data

nd how persi
its own X

ures of map
pping inform

attributes sh
be stored.

ander Ploss, Ser

h the
ng of
ns of
ig. 5
p 2),

n sent

n

cture
gray

de of
e the
ell as
files

llows
icient
eas of

– the
n the
more

1) the
rable
n is
ented
atype

istent
XML
pping
ation

hould

L
file
for
attrib
of a
info
pers
of th
4, an
line
spec
we
(Ava
avat
spec
shou

List

rgei Gorlatch /

Fig. 6 – Arc
Per

Listing 1 sho
that contain
a base cla
butes. This a

avatar. The
rmation of t

sistent class i
he database i
nd the table i
5. After we

cific databas
need access
atar table) t
tar (line 7)
cified in line
uld be stored

ting 1- Part o

/ Computing, 20

chitecture Ov
rsistence Mod

ows an exam
s a part of t
ss called A
attribute in t
first four lin
the avatar cl
is specified
in line 3, the
in which the

e have acces
e depending
to a specif

to store the
. The data
8 and the co

d is specified

f an XML ma
an avatar

013, Vol. 12, Iss

verview of the
dule (EPM)

mple of XM
the mapping
Avatar with
the example
nes define t
lass, the give
in line 2, th

e database sch
avatars will

sed a specifi
g on the firs
fic column o
e specific n

type of th
olumn in whi

in line 9.

apping file th
r class

sue 1, 75-85

e Entity

ML mapping
information
one of its
is the name

the mapping
en name for
en the name
hema in line
 be stored in

fic table of a
st five lines,
of that table
name of the
he name is
ich the name

hat describes

g
n
s
e
g
r
e
e
n
a
,
e
e
s
e

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

 81

Shadow information
Shadow information is an additional information

added to a persistent object by the application
developer, as shown in Fig. 6 within the UserClass.
This information is required by EPM to manage the
persistent objects and is not required by the actual
application. An object within an application is
uniquely identified by its address in the memory
which is only valid as long as the object exists in the
memory. Records of a table, in contrast, are uniquely
identified by a primary-key that is valid as long as
the database exists. Therefore, persistent objects
require a unique ID to identify them in the
application, as well as in the database. This ID is
referred to as EPM PersistenceID, see Fig. 7; it
consists of Universally Unique Identifier (UUID)
and type information that indicates the type of the
persistent object. Shadow information is an indicator
of whether the object already exists as a record in
the database or not. This information is used to
generate an appropriate SQL command to store or
update the object. The “insert” SQL command is
used if the object has not been stored before,
otherwise, the “update” SQL command is needed.

Fig. 7 – Example: presentation of PersistenceID as

database key

d. Object-Relational Mapping

One of the most important issues in the design of
EPM is object-relational mapping that converts
complex data and objects of MMOG applications
into simple data of primitive types for using a
relational DBMS. The software components located
on the right side of Fig. 6 are responsible for this.
These components work across three stages of the
persistence process:

(1) First, after reading the mapping information
of persistent classes according to what the game
developer specified in MappingFile and
DatatypeMapping, the ClassMapCreator creates one
ClassMap for each persistent class in the application;
the ClassMap component works in the next stage.

(2) The MappingClasses are located within the
essential part of EPM as shown in Fig. 6; they
consist of two components: ClassMapManager and
ClassMap. These components cooperate with the
main EPM component (PersistenceManager) to store
the persistent objects in an efficient manner. The
ClassMapManager manages all the system’s
ClassMaps and ensures that they are initialized and
made available to PersistenceManager. The
ClassMap can access all data of an object at run time

to generate the appropriate SQL commands, and
thus the current state of an object becomes ready for
storing in a relational database. These SQL
commands are encapsulated within the essential part
of EPM and used in the next stage.

(3) Finally, the persistent object is sent to
permanent data storage (relational database). After
obtaining the SQL statements from ClassMap, the
DatabaseSchema defines the necessary tables,
columns, relationships, data types, database links,
and other elements which are necessary to store the
persistent object.

With regard to the mainloop, our strategy with
the mapping components focuses on separating the
SQL generation from SQL execution. Thus, the
ClassMap interrupts the mainloop to generate the
SQL statements, and thereafter, the DatabaseSchema
can execute the SQL statements concurrently with
the mainloop (as a separate thread).

In sophisticated applications, most objects have
one or more relationships with other objects. To
avoid their separate storing, the ClassMap performs
transitive persistence by storing the object with all of
its associated objects to the database automatically.
This recursive process of storing is called cascading.
For example, the ClassMapAvatar of avatar object
will cascade the storing operation to its associated
object (inventory object). The (save: Inventory) task,
included within ClassMapAvatar, holds mapping
information that indicates a relationship between
avatar and inventory. In EPM, any entity is
automatically saved, loaded, and deleted to/from
database, together with its associated objects.

e. Connection with databases

To connect with various RDBMS during the
establishment of persistence, EPM provides a
standard database interface, with different
configuration possibilities for the game developer.
The database interface accepts SQL statements and
returns query results as result sets which are actually
an object-oriented representation of relations. The
RDBMS then stores the rows and columns that are
represented in these result sets.

Listing 2 shows an excerpt from the EPM’s
database interface. The methods in line 3 and 4
initialize the database connection, i.e. opening and
closing a connection with a specific database. The
getName() method in line 5 identifies the specific
name of the database with which the connection is
established. The methods in lines 7 through 10
insert, retrieve, update, and delete data to/from
database, correspondingly.

Max Knem

 82

Listing 2

The Dat
are provid
database co
Since differ
store data,
C++ data ty
database. T
configure a
example, th
database ty
server, and
file is con
EPM. The
specified in
employs th
different ba
databases.

Fig. 8
connection
Loader is th
part of EPM

Fig. 8 –

meyer, Mohamm

2 – Excerpt fr

aTypeMappi
ded for the
onfiguration
rent database

DataTypeM
ype is mappe
The Databa
connection

his file can in
ype, networ
the authentic
figured duri
database lib

n this config
he SOCI l
ackends supp

shows the
initialization

he componen
M.

– Initializatio

med Nsaif, Frank

rom the data

ing and Data
e application

files as sh
es use differ

Mapping file
ed to which
aseConfig f
with a speci

nclude: name
rk address
cation data fo
ing the initi
brary used b

guration file.
library [10]
porting conn

sequence o
n. Here, the
nt located in

on of databas

k Glinka, Alexa

base interfac

abaseConfig
n develope
hown in Fig
rent data typ
e defines w
data types o

file is used
ific database
e of the datab
of the data

for logging in
ialization of
by EPM is
Currently, E

]which prov
nection to var

of the data
DatabaseCo
side the esse

e connection

ander Ploss, Ser

ce

files
r as
g. 6.
es to

which
of the
d to
. For
base,
abase
n; the
f the

also
EPM
vides
rious

abase
nfig-

ential

f. M
T

man
Clas
com
coop
info
Pers
deve
load
data
Pers
obje
regis
expl
Acti

T
the d
resid
To m
the
new
there
for p
mem
intro
insta
for
Pers
alrea
(step
retur
3). T
obje
data

rgei Gorlatch /

Management
The compon
nagement of
ssMaps and

mponent o
perates with
rmation to m

sistenceMana
eloper with
d and unloa
abase. We
sistenceMana
ects in the
stered persis
lained in the
ive Persisten
To manipulat
database into
des in the m
manage the a
EPM modul

wly loaded to
e. The Persi
persistent ob

mory. Here,
oduced at t
ance, if EPM

a second
sistence-Man
ady in main
p 2), and afte
rns to the act
Therefore, th
ect copy whi
a loss (step 4)

Fig. 9 – Lo

/ Computing, 20

t of persisten
nents of E
f persistent
d SpecificD
of EPM

these comp
manage the
ager provi
a programm

ad the per
propose tw
ager: to man
main memo

stent objects
following.

nt Objects
te an object,
o the main m

main memory
active state o
le checks if
the main me

istenceMana
bjects which
the ID is

he beginnin
M requests an

time (Fig.
nager checks

memory by
er finding it,
tive object in
he Persistenc
ich contains
).

oading an alr

013, Vol. 12, Iss

t objects
EPM that s
objects at r
Databases.

(Persisten
ponentsand w

persistent o
ides the
ming interfa
sistent obje

wo methods
nage the activ
ory and to
during the m

, it must be
memory. The
y is called a
of the persis

f the persiste
emory or alr

ager makes a
h currently r
the EPM p

ng of this s
n active pers

9 step 1)
s whether th
checking th
 the Persiste
n the main m
ceManager c
all changes

ready active o

sue 1, 75-85

support the
runtime are:

The main
nceManager)
with shadow
objects. The

application
ace to store,
ects to/from

within the
ve persistent
manage the

mainloop, as

copied from
e object that
ctive object.

stent objects,
ent object is
ready resides
a list of IDs
reside in the
ersistenceID
section. For
sistent object
), then the
his object is
he list of IDs
enceManager
memory (step
can store the
without any

object

e
:
n
)

w
e
n
,

m
e
t
e
s

m
t
.
,
s
s
s
e

D
r
t
e
s
s
r
p
e
y

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

 83

Automatic storage of objects
EPM allows for saving persistent entities during

the mainloop. The API of the PersistenceManager
offers a possibility for the application developer to
register any persistent entity which needs to
beautomatically and continuously stored.The
complete storing of all persistent entities cannot be
implemented efficiently at each iteration of the
mainloop, rather the application developer should
specify which attributes should be stored at what
time: e.g., theattributes that do not change often can
be stored at longer intervals than other attributes.
Fig. 10 illustrates the process of automatic
persistence for an object with two attributes. The
first attribute (black) should be saved every 20 ticks,
and the second attribute (gray) should be saved
every 4 ticks. For this reason, the object is registered
twice in the PersistenceManager for automatic
storage (Fig. 10 step 1): once for storing the first
attribute and once for storing the second attribute.
The PersistenceManager holds a list that contains:
the persistenceID of the registered objects, the
attributes, and the tick-numbers. When the automatic
persistence method is initiated (step 2), the
PersistenceManager checks which object must be
saved during the mainloop-tick. In the 4th tick, the
second attribute is not stored, rather it is updated and
remains in the main memory for a limited time.
However, in the 20th tick, both attributes will be
stored in the database because 20 is a multiple of 4.
EPM combines all suspended updates of the
persistent object and then stores them using only one
access to the database (step 3).

Fig. 10 – Automatic saving of an object

g. Persistence of entities
EPM aims at ensuring persistence for two kinds

of objects: (1) states of game world, and (2)
individual entities. These objects are mapped onto
database tables for persistency. For this Object-
Relational mapping[12], various kinds of
information are required by EPM: the mapping
information which specifies where and how the
entities are stored, and the shadow information that
is needed by EPM at runtime for managing
persistent objects. The mapping strategy of EPM for
dealing with the tables of the database is divided into
three areas of mapping: (a) mapping of attributes, (b)
mapping of hierarchies, and (c) mapping of
relationships.

6. CONCLUSION AND RELATED WORK

Persistent data storage plays an important role in
many distributed Real-time Online Interactive
Applications (ROIA) such as modern Massively
Multiplayer Online Games (MMOG). For the game
developer, programming the connection between
MMOG applications and RDBMS is not only time-
consuming and error-prone, it is also poorly
reusable. Therefore, a flexible and reusable solution
is desirable.

In this paper, we analyze the problem of
persistency for ROIA applications and present a
preliminary design of the Entity Persistence Module
(EPM) as a middle software layer to store the
persistent data of MMOG applications. The game
developer is provided by EPM with a comfortable
API that relieves him from writing any additional
code for both database access and object-relational
mapping. The developer creates a configuration file
to define which objects and attributes of the objects
are persistent and in which database they should be
stored. Depending on this information, the Mapping
Classes and the required database schemas are
automatically generated by EPM. The Mapping
Classes then prepare the persistent data of the
application and make it compatible with structures
and data-types of RBBMS, as well as generate the
required SQL commands to retrieve and store data
from/to database.

The presented methods block the mainloop of
ROIA as short as possible by generating the SQL
commands to update the database, and executing
them asynchronously, running in a separate thread.
EPM provides a method for partial storage of objects
because not always the whole object needs to be
saved if only few attributes have changed. With this
method, the time to build and run the SQL
commands is shortened. After registering an object
in the automatic storage method, the application

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

 84

developer has the opportunity to store an object
continuously in a database.

Although there are several sophisticated
persistent data systems for Java such as
Hibernate[14], or Java Data Objects[15], only few
systems have been developed for C++. For example,
LiteSQL[16]focuses on object-relational mapping by
providing a layer that integrates C++ objects into a
relational database; our persistence layer is specified
to persist the state of real-time applications, and in
addition to persist the C++ objects by our approach
of object-relational mapping. DataXtend CE[17]has
been used for applications with demanding real-time
and object persistence requirements, particularly, in
the fields of financial applications, flight booking,
and courier delivery services. But it could not be
applied in the field of MMOG applications, because
the complexity of MMOG-architecture requires an
efficient approach to manage the persistence of both
objects and game state that are distributed across
multiple game servers.

In comparison to existing approaches in the field
of object persistence middleware for MMOG
applications like Versant [4], EPM provides more
generic middleware which allows to store the
persistent data to major types of relational databases,
while[4] depends upon a native persistence for
objects. Hence, the core database engine of [4]
requires a specific database technology while our
approach overcomes this drawback.

As future work, we plan to integrate EPM with
the Real-Time Framework (RTF) [18]that was
developed at the University of Münster [19]within
the edutain@grid project. After integrating the
features of EPM (object- and game state-persistence)
with the features of RTF (high-level game design),
we will obtain a comprehensive middleware for
developing and running online games.

ACKNOWLEDGMENT

Mohammed Nsaif is supported by the
cooperative program (BaghDAAD) for German-
Iraqi academic exchange.

7. REFERENCES

[1] World of Warcraft – Homepage, Blizzard
Entertainment, [Online]. http://www.wow-
europe.com/de/index.xml

[2] The database technology of Guild Wars,
[Online],
http://www.dbms2.com/2007/06/09/the-
database-technology-of-guild-wars

[3] Mitch Wagner, Inside Second Life's Data
Centers. In: Information-Week. [Online].

http://www.informationweek.com/news/showAr
ticle.jhtml?articleID=197800179

[4] Robert Green, Advanced Mata Management for
MMOG – The Versant Object Database in
MMOG Applications, Versant, White Paper
Version 2008.

[5] Quake 3 Arena Homepage. [Online].
http://www.idsoftware.com

[6] Database Classifications and the Marketplace.
[Online].
http://seqcc.icarnegie.com/content/SSD/
SSD7/1.5.2/normal/pg-trends/pg-nonrdb/pg-
dbclassifications/pg-dbclassifications.html

[7] Lisbeth Bergholt and Jacob Steen Due,.: The
Centre of Object Technology (COT), 1998.

[8] MySQL++ Homepage. [Online].
http://www.tangentsoft.net/myaql++/

[9] Lipqxx Homepage. [Online].
http://pqxx.org/development/libpqxx/

[10] SOCI Homepage. [Online].
http://www.soci.sourceforge.net/

[11] Sun Microsystems – Core J2EE Patterns – Data
Access Object, [Online]. http://java.sun.com/
blueprints/corej2eepatterns/Patterns/DataAccess
Object.html

[12] S.W. Ambler. (1998, Amby-Soft Inc. Version:
May) Mapping Objects to Relational Databases:
O/R Mapping In Detail. [Online].
http://www.agiledata.org/essays/mappingObject
s.htm

[13] S.W. Ambler, The Design of a Robust
Persistence Framework for Relational Databases
/ Amby-Soft Inc. [Online].
http://www.ambysoft.
com/downloads/persistenceLayer.pdf

[14] Hibernate Homepage. [Online]. http://www.
hibernate.org

[15] Java Data Objects Homepage. [Online].
http://java.sun.com/jdo/

[16] LiteSQL Homepage. [Online].
http://sourceforge.net/projects/litesql/

[17] DataXtend CE – Progress Software. [Online].
http://www.progress.com

[18] Frank Glinka, Alexander Ploss, Sergei Gorlatch,
and Jens Müller-Iden, High-Level Development
of Multiserver Online Games, International
Journal of Computer Games Technology, no.
Article ID 327387, pp. 16 pages doi:
10.1155/2008/327387, vol 2008.

[19] The Real-Time Framework (RTF). [Online].
http://www.real-time-framework.com/

Max Knem

oriented ap
Interactive
Multiplayer

research
managemen
time Online
Massively M

covering th
and is curr
"Developing
Programmin
Applications

meyer, Mohamm

pplication fra
Application

Online Gam

Mo
MS
Co
Co
an
He
De
Sc
Se
Mu

interests
nt systems,
e Interactive
Multiplayer O

Fr
co
th
20
as
co
of
ha
lea
re

he topic of r
rrently comp
g Grid Mid
ng of Rea
s".

med Nsaif, Frank

Max Knem
MSc degre
Computer S
University
(Germany).
group of
distributed
University o
research ar
relational da

ameworks, R
ns (ROIA),
es (MMOG).

ohammed
Sc degree
omputer Sci
ommission
nd Informatic
e is a PhD
epartment
cience (in th
ergei Gorlatc
uenster in
are relati
 distributed
e Applicatio

Online Games

rank Glink
omputer scie
e University
006 and is
ssociate at th
omputer scie
f Prof. Serg
as worked as
ader for

esearch proje
real-time app
pleting his P
ddleware fo
al-Time On

k Glinka, Alexa

meyer rece
ee in 2009
Science from

of Muen
He worked in

parallel
systems at

of Muenster.
rea focuses
atabases, o
Real-time O

and Mass
.

Nsaif rece
in 2005

ience from
for Comp

cs (ICCI) in
student with
of Comp

he group of
ch), Universi

Germany.
ional data

systems, R
ons (ROIA),
s (MMOG).

ka received
ence degree
y of Muenst
now a rese

he departme
ence in the g
gei Gorlatch
s a work pac

the Europ
ect edutain@
plication serv
PhD thesis
or a High-L
nline Intera

ander Ploss, Ser

eived
9 in

m the
nster
n the

and
t the
. His
s on
object
Online
sively

eived
5 in

Iraqi
uters
Iraq.

h the
puter
Prof.
ity of

His
base
Real-

and

his
from

ter in
earch
ent of
group
. He

ckage
pean

@grid
vices
titled

Level
active

sear
doct
"Effi
Onli
Envi
peer
book
appl
gam

low
Germ
peer
princ
rese
para
Serg
Univ
Cyb
from

rgei Gorlatch /

rch project
toral degree
icient Dynam
ine Interacti

vironments". H
r-reviewed c
k chapters
lications, e

mes, with the

at the Tec
many. Prof.
r reviewed
cipal inves
earch and d
allel, distribu
gei Gorlatch
versity of Kie
ernetics of U

m the Univers

/ Computing, 20

Alexa
degre
the U
2007
assoc
compu
for p
system
2011.
worke

edutain@g
e in 2011
mic Commu
ive Applicati
He has publi
conferences

on the sc
.g., massiv
focus on com

Serg
Full
Scien
Muen
2003
Asso
Tech
Berli
the
and H

chnical Unive
Gorlatch pu
papers and

stigator in
development
uted, Grid
 holds MSc
ev, PhD deg
Ukraine, and
sity of Passa

013, Vol. 12, Iss

ander Ploss
e in mathem

University of
and was

ciate in the de
uter science

parallel and
ms at Muens

During thi
ed in the inter
grid and re
for his diss

unication for
tions in Het
ished about
and journals
calability of

vely multipla
mmunication

gei Gorlatch
Professor o
nce at the U
nster (Germ
3. Earlier
ociate Profe
hnical Uni
in, Assistant
University

Humboldt Re
ersity of Mu
ublished mo
d books. He

various
projects in
and Cloud

c degree from
gree from the
d the Habilita
u (Germany)

sue 1, 75-85

85

received his
matics from
Muenster in
a research

epartment of
in the group

distributed
ster until July
is time, he
rnational re-
eceived his
sertation on
r Real-Time
terogeneous
20 papers in
s as well as
f interactive
ayer online
n aspects.

h has been
of Computer
University of
many) since

he was
ssor at the
iversity of
Professor at
of Passau,

esearch Fel-
unich, all in
re than 150
e has been
international
the field of
computing.

m the State
e Institute of
ation degree
).

5

s
m
n
h
f

p
d
y
e

s
n
e
s
n
s
e
e

n
r
f
e
s
e
f
t
,
-
n
0
n
l
f
.

e
f
e

