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Therefore, providing generic solution that supports 
the game developers in this task is desirable. 

In this paper, we discuss the problem of 
efficiently storing the persistent data of real-time 
interactive applications. We target applications 
which a) are developed in C++, the programming 
language used for most ROIA, and b) store their 
complex data in relational database management 
systems (RDMS). As the result of our analysis, we 
present a preliminary design of our persistency 
system – the Entity Persistence Module (EPM) – 
which we design as a middleware, i.e. a software 
layer that connect the application with different 
types of relational databases. We also describe how 
EPM provides the application developer with a 
programming interface (API) in order to simplify the 
use of the presented persistency system. 

In this paper, we discuss the problem of 
efficiently storing the persistent data of real-time 
interactive applications. We target applications 
which a) are developed in C++, the programming 
language used for most ROIA, and b) store their 
complex data in relational database management 
systems (RDMS). As the result of our analysis, we 
present a preliminary design of our persistency 
system – the Entity Persistence Module (EPM) – 
which we design as a middleware, i.e. a software 
layer that connect the application with different 
types of relational databases. We also describe how 
EPM provides the application developer with a 
programming interface (API) in order to simplify the 
use of the presented persistency system. 

The paper is organized as follows. In Section II, 
we present basic fundamentals about the MMOG 
architecture. Section III describes how persistent 
data can be represented in relational database 
management systems. In Section IV, we describe 
and analyze the common approaches of persistence 
layers. Section V describes the preliminary design of 
EPM and explains how it works as a middleware 
software layer. 

 
2. PROPERTIES OF MULTIPLAYER 

ONLINE GAMES 
MMOGs are a class of online games in which 

thousands of players participate simultaneously in a 
game by communicating and interacting with each 
other. This game class has been growing in several 
distinct categories, such as: Role-Playing Games 
(RPG), First Person Shooters (FPS), Real-Time 
Strategy Games, and others. Although each category 
has its specific game logic, they basically have a 
similar structure as follows: 
• The game comprises a virtual world where 

players reside and operate. 
• The actions of players change the state of the 

game world, including player avatars, according 

to the rules of the game logic. 
• The game logic dictates what actions are possible 

and how they affect the game world. 
In MMOG, a player with his character, called 

avatar, moves and interacts with other objects in the 
game world. All changeable world objects are called 
dynamic objects or entities. These include, for 
example, computer-controlled characters, weapons, 
and the avatars of other participants. The entities 
have different attributes which describe them or 
their state. For example, an avatar may has 
information about its position in the virtual 
environment, its life force, its name and carried 
items. In role-playing games a user can, for example, 
move an avatar, collect items, and trade with other 
avatars. Through the actions of the user in the game, 
his avatar may change or evolve. To avoid losing the 
recent development of the avatar and the new states 
of the game world, there is an essential need to 
storing these data persistently. 

To store the changed entities, a system for 
persistent data storage is required. The persistent 
data storage is used when the player enters the 
virtual world at arbitrary time, such that all previous 
changes become available again. The game 
developers need such a system in order to save, load 
and delete entities. The saving is usually made at so-
called key points of the game, for example, when the 
avatar completes a specific mission, acquires new 
objects or learns new skills. To increase reliability, it 
must be possible to save the changes of the game 
world continuously. 

The basic architecture used for MMOGs is the 
traditional client-server architecture, enriched with 
multiple servers. A client is responsible for 
presenting the game world to a player and 
interacting with that player. The client takes the 
inputs from the player and initiates changes in the 
game world. The server is responsible for the 
simulation of the game world and updating its state; 
it is usually called game server. 

Fig. 1 shows the main functions of the game 
server, which are realized in the following three 
steps: 
• The game server manages all entities of the 

virtual game world by continually receiving the 
actions of the players from the clients and 
analyzing them (Step 1); 

• The new game state is computed by applying the 
actions of the players and the rules of the game 
logic to the entities (step 2); 

• The new state is sent to the players (step 3). 
These three steps run within the game in a loop, 

called mainloop. A single iteration is called a tick 
and the number of cycles per second is called the 
tick-rate of the game. For a smooth gaming 
experience, it is essential that a certain tick-rate is 
kept. For example, Quake3 Arena[5] is a fast FPS 
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game which requires a tick-rate of minimum 20 
ticks/second. 

 
Fig. 1 – Steps of a ROIA mainloop 

 
3. DATABASES FOR GAME 

PERSISTENCY 
Database Management systems (DBMS) are 

classified according to the way of data 
representation, i.e., according to the data model of 
DBMS. The two most popular data models are 
record-oriented (i.e. relational data model) and 
object-oriented (i.e. object-oriented data model). The 
nature of the work environment and the 
requirements of an application determine which 
database model is more suitable[6]. 

An object-oriented DBMS supports complex data 
stored as objects; it employs a data model with 
object-oriented features: encapsulation, inheritance, 
and polymorphism. However, this data model lacks 
advanced searching facilities, therefore it sometimes 
called no-query. The underlying model in a 
Relational DBMS only supports simple data, rather 
than complex objects, but it strongly supports 
various advanced searching facilities[7], e.g., the 
relational SQL. To store the persistent objects of 
MMOG applications into a database and then 
retrieve them in an efficient way, we need both these 
facilities, complex data and query support. 

In a relational DBMS, users can query any table 
in the database and combine related tables using 
special join functions to include relevant data 
contained in other tables into the results, and if 
needed, filter the results. We call this property the 
ease of data retrieval. The relational database model 
is naturally scalable and extensible, providing a 
flexible structure to meet changing requirements and 
increasing amounts of data. The relational model 
permits changes to the database structure which can 
be implemented easily without impacting the data or 
the rest of the database. There is theoretically no 

limit on the number of rows and columns of tables. 
In reality, growth and change are limited by the 
relational database management system (RDBMS) 
and the hardware used for implementation. 

In order to create a relational database, it is 
necessary to define a schema, i.e. its structure 
described in a formal language supported by the 
DBMS. It refers to the organization of data and is a 
blueprint of how a database will be constructed 
(divided into database tables), i.e. it is a set of 
formulas (sentences) called integrity constraints 
imposed on a database. These constraints ensure 
compatibility between the parts of the schema. In 
relational databases, the schema defines tables, 
columns or fields, relationships, views, indexes, 
packages, types, database links, and other elements. 
In MMOGs, for example, two objects – the avatar 
and its inventory – are usually presented in two 
tables (relations), and their properties (attributes) are 
presented in the columns of these tables. Therefore, 
the properties of an avatar: AvatarID, Name, 
PositionX, PositionY, PositionZ, Energy, and 
InventoryID can be presented as columns in the 
avatar table, and the properties of inventory: 
InventoryID, Item1, Item2, and Item3 are presented 
as columns in the inventory table. 

For defining and managing data and data 
structures in RDBMS, Structured Query Language 
(SQL) is used as a standardized special-purpose 
programming language. SQL acts as an interface to 
the RDBMS on the application development side. 

Our approach is to develop a middleware for 
converting the complex data or complex objects of a 
MMOG application into simple data. Then we can 
use the relational DBMS as a database for MMOG 
applications. Relational DBMS are used in most 
popular MMOG applications, such as Second Life 
[3], and Guild Wars [2]. 

Nowadays, most popular multiplayer games, 
especially MMOGs, are developed using C++, 
because these modern games have high performance 
requirements which are best addressed with a 
relatively low-level, object-oriented programming 
language. Since the system for persistent data 
storage, which is presented in this paper, is used in 
the field of MMOGs, it is also developed in C++. 

In order to access a relational database from C++, 
i.e. use SQL in a C++ program code, there are two 
main possibilities: native and general database 
libraries. Database vendors provide native libraries 
that can be used via a special API to establish a 
direct connection between the program code and a 
specific database without any mediation; this is what 
is called native connection. The native libraries that 
are represented as API wrappers include for 
example, MySQL++[8]for MySQL database, and 
libpqxx[9]for PostgreSql database. A native library 
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Shadow information 
Shadow information is an additional information 

added to a persistent object by the application 
developer, as shown in Fig. 6 within the UserClass. 
This information is required by EPM to manage the 
persistent objects and is not required by the actual 
application. An object within an application is 
uniquely identified by its address in the memory 
which is only valid as long as the object exists in the 
memory. Records of a table, in contrast, are uniquely 
identified by a primary-key that is valid as long as 
the database exists. Therefore, persistent objects 
require a unique ID to identify them in the 
application, as well as in the database. This ID is 
referred to as EPM PersistenceID, see Fig. 7; it 
consists of Universally Unique Identifier (UUID) 
and type information that indicates the type of the 
persistent object. Shadow information is an indicator 
of whether the object already exists as a record in 
the database or not. This information is used to 
generate an appropriate SQL command to store or 
update the object. The “insert” SQL command is 
used if the object has not been stored before, 
otherwise, the “update” SQL command is needed. 

 

 
Fig. 7 – Example: presentation of PersistenceID as 

database key 

 
d. Object-Relational Mapping 

One of the most important issues in the design of 
EPM is object-relational mapping that converts 
complex data and objects of MMOG applications 
into simple data of primitive types for using a 
relational DBMS. The software components located 
on the right side of Fig. 6 are responsible for this. 
These components work across three stages of the 
persistence process: 

(1) First, after reading the mapping information 
of persistent classes according to what the game 
developer specified in MappingFile and 
DatatypeMapping, the ClassMapCreator creates one 
ClassMap for each persistent class in the application; 
the ClassMap component works in the next stage. 

(2) The MappingClasses are located within the 
essential part of EPM as shown in Fig. 6; they 
consist of two components: ClassMapManager and 
ClassMap. These components cooperate with the 
main EPM component (PersistenceManager) to store 
the persistent objects in an efficient manner. The 
ClassMapManager manages all the system’s 
ClassMaps and ensures that they are initialized and 
made available to PersistenceManager. The 
ClassMap can access all data of an object at run time 

to generate the appropriate SQL commands, and 
thus the current state of an object becomes ready for 
storing in a relational database. These SQL 
commands are encapsulated within the essential part 
of EPM and used in the next stage. 

(3) Finally, the persistent object is sent to 
permanent data storage (relational database). After 
obtaining the SQL statements from ClassMap, the 
DatabaseSchema defines the necessary tables, 
columns, relationships, data types, database links, 
and other elements which are necessary to store the 
persistent object. 

With regard to the mainloop, our strategy with 
the mapping components focuses on separating the 
SQL generation from SQL execution. Thus, the 
ClassMap interrupts the mainloop to generate the 
SQL statements, and thereafter, the DatabaseSchema 
can execute the SQL statements concurrently with 
the mainloop (as a separate thread). 

In sophisticated applications, most objects have 
one or more relationships with other objects. To 
avoid their separate storing, the ClassMap performs 
transitive persistence by storing the object with all of 
its associated objects to the database automatically. 
This recursive process of storing is called cascading. 
For example, the ClassMapAvatar of avatar object 
will cascade the storing operation to its associated 
object (inventory object). The (save: Inventory) task, 
included within ClassMapAvatar, holds mapping 
information that indicates a relationship between 
avatar and inventory. In EPM, any entity is 
automatically saved, loaded, and deleted to/from 
database, together with its associated objects. 

 
e. Connection with databases 

To connect with various RDBMS during the 
establishment of persistence, EPM provides a 
standard database interface, with different 
configuration possibilities for the game developer. 
The database interface accepts SQL statements and 
returns query results as result sets which are actually 
an object-oriented representation of relations. The 
RDBMS then stores the rows and columns that are 
represented in these result sets. 

Listing 2 shows an excerpt from the EPM’s 
database interface. The methods in line 3 and 4 
initialize the database connection, i.e. opening and 
closing a connection with a specific database. The 
getName() method in line 5 identifies the specific 
name of the database with which the connection is 
established. The methods in lines 7 through 10 
insert, retrieve, update, and delete data to/from 
database, correspondingly. 
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Automatic storage of objects 
EPM allows for saving persistent entities during 

the mainloop. The API of the PersistenceManager 
offers a possibility for the application developer to 
register any persistent entity which needs to 
beautomatically and continuously stored.The 
complete storing of all persistent entities cannot be 
implemented efficiently at each iteration of the 
mainloop, rather the application developer should 
specify which attributes should be stored at what 
time: e.g., theattributes that do not change often can 
be stored at longer intervals than other attributes. 
Fig. 10 illustrates the process of automatic 
persistence for an object with two attributes. The 
first attribute (black) should be saved every 20 ticks, 
and the second attribute (gray) should be saved 
every 4 ticks. For this reason, the object is registered 
twice in the PersistenceManager for automatic 
storage (Fig. 10 step 1): once for storing the first 
attribute and once for storing the second attribute. 
The PersistenceManager holds a list that contains: 
the persistenceID of the registered objects, the 
attributes, and the tick-numbers. When the automatic 
persistence method is initiated (step 2), the 
PersistenceManager checks which object must be 
saved during the mainloop-tick. In the 4th tick, the 
second attribute is not stored, rather it is updated and 
remains in the main memory for a limited time. 
However, in the 20th tick, both attributes will be 
stored in the database because 20 is a multiple of 4. 
EPM combines all suspended updates of the 
persistent object and then stores them using only one 
access to the database (step 3). 

 
Fig. 10 – Automatic saving of an object 

g. Persistence of entities 
EPM aims at ensuring persistence for two kinds 

of objects: (1) states of game world, and (2) 
individual entities. These objects are mapped onto 
database tables for persistency. For this Object-
Relational mapping[12], various kinds of 
information are required by EPM: the mapping 
information which specifies where and how the 
entities are stored, and the shadow information that 
is needed by EPM at runtime for managing 
persistent objects. The mapping strategy of EPM for 
dealing with the tables of the database is divided into 
three areas of mapping: (a) mapping of attributes, (b) 
mapping of hierarchies, and (c) mapping of 
relationships. 

 
6. CONCLUSION AND RELATED WORK 

Persistent data storage plays an important role in 
many distributed Real-time Online Interactive 
Applications (ROIA) such as modern Massively 
Multiplayer Online Games (MMOG). For the game 
developer, programming the connection between 
MMOG applications and RDBMS is not only time-
consuming and error-prone, it is also poorly 
reusable. Therefore, a flexible and reusable solution 
is desirable. 

In this paper, we analyze the problem of 
persistency for ROIA applications and present a 
preliminary design of the Entity Persistence Module 
(EPM) as a middle software layer to store the 
persistent data of MMOG applications. The game 
developer is provided by EPM with a comfortable 
API that relieves him from writing any additional 
code for both database access and object-relational 
mapping. The developer creates a configuration file 
to define which objects and attributes of the objects 
are persistent and in which database they should be 
stored. Depending on this information, the Mapping 
Classes and the required database schemas are 
automatically generated by EPM. The Mapping 
Classes then prepare the persistent data of the 
application and make it compatible with structures 
and data-types of RBBMS, as well as generate the 
required SQL commands to retrieve and store data 
from/to database. 

The presented methods block the mainloop of 
ROIA as short as possible by generating the SQL 
commands to update the database, and executing 
them asynchronously, running in a separate thread. 
EPM provides a method for partial storage of objects 
because not always the whole object needs to be 
saved if only few attributes have changed. With this 
method, the time to build and run the SQL 
commands is shortened. After registering an object 
in the automatic storage method, the application 
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developer has the opportunity to store an object 
continuously in a database. 

Although there are several sophisticated 
persistent data systems for Java such as 
Hibernate[14], or Java Data Objects[15], only few 
systems have been developed for C++. For example, 
LiteSQL[16]focuses on object-relational mapping by 
providing a layer that integrates C++ objects into a 
relational database; our persistence layer is specified 
to persist the state of real-time applications, and in 
addition to persist the C++ objects by our approach 
of object-relational mapping. DataXtend CE[17]has 
been used for applications with demanding real-time 
and object persistence requirements, particularly, in 
the fields of financial applications, flight booking, 
and courier delivery services. But it could not be 
applied in the field of MMOG applications, because 
the complexity of MMOG-architecture requires an 
efficient approach to manage the persistence of both 
objects and game state that are distributed across 
multiple game servers. 

In comparison to existing approaches in the field 
of object persistence middleware for MMOG 
applications like Versant [4], EPM provides more 
generic middleware which allows to store the 
persistent data to major types of relational databases, 
while[4] depends upon a native persistence for 
objects. Hence, the core database engine of [4] 
requires a specific database technology while our 
approach overcomes this drawback. 

As future work, we plan to integrate EPM with 
the Real-Time Framework (RTF) [18]that was 
developed at the University of Münster [19]within 
the edutain@grid project. After integrating the 
features of EPM (object- and game state-persistence) 
with the features of RTF (high-level game design), 
we will obtain a comprehensive middleware for 
developing and running online games. 
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