Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

ISSN 1727-6209
International Journal of Computing

m computing@computingonline.net
J www.computingonline.net

TOWARDS DATA PERSISTENCY IN REAL-TIME
ONLINE INTERACTIVE APPLICATIONS

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch

University of Muenster
Einsteinstr. 62, D-48149 Muenster, Germany
mohammed.nsaif@uni-muenster.de, gorlatch@uni-muenster.de

Abstract: The class of distributed Real-time Online Interactive Applications (ROIA) includes such important
applications as Massively Multiplayer Online Games (MMOGs), as well as interactive e-Learning and simulation
systems. These applications usually work in a persistent environment (also called world) which continues to exist and
evolve also while the user is offline and away from the application. The challenge is how to efficiently make the world
and the player characters persistent in the system over time. In this paper, we deal with storing persistent data of real-
time interactive applications in modern relational databases. We analyze the major requirements to a system for
persistency and we describe a preliminary design of the Entity Persistence Module (EPM) middleware which liberates
the application developer from writing and maintaining complex and error-prone code for persistent data management.
EPM automatically performs the mapping operations to store/retrieve the complex data to/from different types of
relational databases, supports the management of persistent data in memory, and integrates it into the main loop of the
ROIA client-server architecture.

Keywords: Massively multiplayer online games (MMOG); persistency; virtual worlds; object-relational mapping;

real-time applications.

1. INTRODUCTION

Distributed real-time online interactive
applications (ROIA) can potentially be used
simultaneously by thousands of users. They make
high demands on availability, responsiveness and
scalability. The probably most demanding
applications of this type are Massively Multiplayer
Online Games (MMOGSs). The number of users in
this area increases sharply in recent years: the most
successful Massively Multiplayer Online Role
Playing Game (MMORPG) is the *“World of
Warcraft”[1] with more than 11 millions of active
individual players. To manage the huge amount of
involved data, data in such games are often stored in
relational databases which are based on a solid and
mature technology. For example, World of
Warcraft[1], Guild Wars[2]and the virtual world
Second Life[3] employ this technology.

In a MMOG, players stay together in a large
virtual world to communicate and interact with each
other. The players are being represented by virtual
characters called avatars. In addition to interacting
with other players, an important incentive of a player
is to develop his avatar: e.g., the avatar can become
equipped with new objects or learn new skills. To
make this development persistently, i.e. such that

changes are not lost when the game is interrupted,
they must be saved (persisted). To increase the
reliability of a gaming application, not only the
states of avatars should be stored, but also the global
state of the game world is usually stored
permanently.

Through the actions of the user in the game, his
avatar changes or evolves. To avoid losing the recent
development of the avatar and the new states of the
game world, there is a need to store these data
persistently.

To store the changed entities, a system for
persistent data storage is required. The persistent
data storage is used when the player enters the
virtual world at arbitrary time, such that all previous
changes become available again. The saving is
usually made at so-called key points of the game, for
example, when the avatar completes a specific
mission, acquires new objects or learns new skills.
To increase reliability, it must be possible to save
the changes of the game world continuously.
Persistent data management takes a significant part
of the code of a game, up to 40%][4]. Writing and
maintaining this code is complex and error-prone,
especially if new features are added to the game.
The persistence code is usually tailored to a specific
application use case, and thus poorly reusable.

75

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

Therefore, providing generic solution that supports
the game developers in this task is desirable.

In this paper, we discuss the problem of
efficiently storing the persistent data of real-time
interactive applications. We target applications
which a) are developed in C++, the programming
language used for most ROIA, and b) store their
complex data in relational database management
systems (RDMS). As the result of our analysis, we
present a preliminary design of our persistency
system — the Entity Persistence Module (EPM) -
which we design as a middleware, i.e. a software
layer that connect the application with different
types of relational databases. We also describe how
EPM provides the application developer with a
programming interface (API) in order to simplify the
use of the presented persistency system.

In this paper, we discuss the problem of
efficiently storing the persistent data of real-time
interactive applications. We target applications
which a) are developed in C++, the programming
language used for most ROIA, and b) store their
complex data in relational database management
systems (RDMS). As the result of our analysis, we
present a preliminary design of our persistency
system — the Entity Persistence Module (EPM) —
which we design as a middleware, i.e. a software
layer that connect the application with different
types of relational databases. We also describe how
EPM provides the application developer with a
programming interface (API) in order to simplify the
use of the presented persistency system.

The paper is organized as follows. In Section I,
we present basic fundamentals about the MMOG
architecture. Section Il describes how persistent
data can be represented in relational database
management systems. In Section IV, we describe
and analyze the common approaches of persistence
layers. Section V describes the preliminary design of
EPM and explains how it works as a middleware
software layer.

2. PROPERTIES OF MULTIPLAYER
ONLINE GAMES

MMOGs are a class of online games in which
thousands of players participate simultaneously in a
game by communicating and interacting with each
other. This game class has been growing in several
distinct categories, such as: Role-Playing Games
(RPG), First Person Shooters (FPS), Real-Time
Strategy Games, and others. Although each category
has its specific game logic, they basically have a
similar structure as follows:

e The game comprises a virtual world where
players reside and operate.

e The actions of players change the state of the
game world, including player avatars, according

to the rules of the game logic.

e The game logic dictates what actions are possible
and how they affect the game world.

In MMOG, a player with his character, called
avatar, moves and interacts with other objects in the
game world. All changeable world objects are called
dynamic objects or entities. These include, for
example, computer-controlled characters, weapons,
and the avatars of other participants. The entities
have different attributes which describe them or
their state. For example, an avatar may has
information about its position in the virtual
environment, its life force, its name and carried
items. In role-playing games a user can, for example,
move an avatar, collect items, and trade with other
avatars. Through the actions of the user in the game,
his avatar may change or evolve. To avoid losing the
recent development of the avatar and the new states
of the game world, there is an essential need to
storing these data persistently.

To store the changed entities, a system for
persistent data storage is required. The persistent
data storage is used when the player enters the
virtual world at arbitrary time, such that all previous
changes become available again. The game
developers need such a system in order to save, load
and delete entities. The saving is usually made at so-
called key points of the game, for example, when the
avatar completes a specific mission, acquires new
objects or learns new skills. To increase reliability, it
must be possible to save the changes of the game
world continuously.

The basic architecture used for MMOGs is the
traditional client-server architecture, enriched with
multiple servers. A client is responsible for
presenting the game world to a player and
interacting with that player. The client takes the
inputs from the player and initiates changes in the
game world. The server is responsible for the
simulation of the game world and updating its state;
it is usually called game server.

Fig. 1 shows the main functions of the game
server, which are realized in the following three
steps:

e The game server manages all entities of the
virtual game world by continually receiving the
actions of the players from the clients and
analyzing them (Step 1);

e The new game state is computed by applying the
actions of the players and the rules of the game
logic to the entities (step 2);

o The new state is sent to the players (step 3).
These three steps run within the game in a loop,

called mainloop. A single iteration is called a tick

and the number of cycles per second is called the
tick-rate of the game. For a smooth gaming
experience, it is essential that a certain tick-rate is
kept. For example, Quake3 Arena[5] is a fast FPS

76

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

game which requires a tick-rate of minimum 20
ticks/second.

% Garme-Clienl

© ®

naw state

Image of the Virtual World

Management of entities

Mainloop @
- > A\ N
Fan Nl | }
Al S L

Recaiving the
player actions

00

Caleulation of
new stale

Sending the
@ rewston

Fig. 1 — Steps of a ROIA mainloop

3. DATABASES FOR GAME
PERSISTENCY

Database Management systems (DBMS) are
classified according to the way of data
representation, i.e., according to the data model of
DBMS. The two most popular data models are
record-oriented (i.e. relational data model) and
object-oriented (i.e. object-oriented data model). The
nature of the work environment and the
requirements of an application determine which
database model is more suitable[6].

An object-oriented DBMS supports complex data
stored as objects; it employs a data model with
object-oriented features: encapsulation, inheritance,
and polymorphism. However, this data model lacks
advanced searching facilities, therefore it sometimes
called no-query. The underlying model in a
Relational DBMS only supports simple data, rather
than complex objects, but it strongly supports
various advanced searching facilities[7], e.g., the
relational SQL. To store the persistent objects of
MMOG applications into a database and then
retrieve them in an efficient way, we need both these
facilities, complex data and query support.

In a relational DBMS, users can query any table
in the database and combine related tables using
special join functions to include relevant data
contained in other tables into the results, and if
needed, filter the results. We call this property the
ease of data retrieval. The relational database model
is naturally scalable and extensible, providing a
flexible structure to meet changing requirements and
increasing amounts of data. The relational model
permits changes to the database structure which can
be implemented easily without impacting the data or
the rest of the database. There is theoretically no

limit on the number of rows and columns of tables.
In reality, growth and change are limited by the
relational database management system (RDBMS)
and the hardware used for implementation.

In order to create a relational database, it is
necessary to define a schema, i.e. its structure
described in a formal language supported by the
DBMS. It refers to the organization of data and is a
blueprint of how a database will be constructed
(divided into database tables), i.e. it is a set of
formulas (sentences) called integrity constraints
imposed on a database. These constraints ensure
compatibility between the parts of the schema. In
relational databases, the schema defines tables,
columns or fields, relationships, views, indexes,
packages, types, database links, and other elements.
In MMOGs, for example, two objects — the avatar
and its inventory — are usually presented in two
tables (relations), and their properties (attributes) are
presented in the columns of these tables. Therefore,
the properties of an avatar: AvatarlD, Name,
PositionX, PositionY, PositionZ, Energy, and
InventorylD can be presented as columns in the
avatar table, and the properties of inventory:
InventoryID, Iteml, Item2, and Item3 are presented
as columns in the inventory table.

For defining and managing data and data
structures in RDBMS, Structured Query Language
(SQL) is used as a standardized special-purpose
programming language. SQL acts as an interface to
the RDBMS on the application development side.

Our approach is to develop a middleware for
converting the complex data or complex objects of a
MMOG application into simple data. Then we can
use the relational DBMS as a database for MMOG
applications. Relational DBMS are used in most
popular MMOG applications, such as Second Life
[3], and Guild Wars [2].

Nowadays, most popular multiplayer games,
especially MMOGs, are developed using C++,
because these modern games have high performance
requirements which are best addressed with a
relatively low-level, object-oriented programming
language. Since the system for persistent data
storage, which is presented in this paper, is used in
the field of MMOGs:s, it is also developed in C++.

In order to access a relational database from C++,
i.e. use SQL in a C++ program code, there are two
main possibilities: native and general database
libraries. Database vendors provide native libraries
that can be used via a special API to establish a
direct connection between the program code and a
specific database without any mediation; this is what
is called native connection. The native libraries that
are represented as APl wrappers include for
example, MySQL++[8]for MySQL database, and
libpgxx[9]for PostgreSql database. A native library

7

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

is usually better suited than general database
libraries because of its ability to establish a direct
connection with database, but the disadvantage is the
restriction to a specific database. This may be a
problem when using native libraries with MMOGs
because the latter need to establish connections to
not specified database types that are distributed on
multiple servers. The solution is to use a database-
independent library (or general database library).

Our approach relies on Simple Oracle Call
Interface(SOCI) library[10] whichallows to access
different databases, and at the same time it is a
native database library. Fig. 2 shows the modular
structure of the SOCI library allowing the
integration of different database backends. SOCI
makes SQL queries embedded in the regular C++
code, i.e. staying entirely within the standard C++.
SOCI is integrated with databases via database
backends. The backend forwards the data queries of
an application into the appropriate database.

Application

A

v

C++
Interface

(socl

Common Backend Interface

Database
Backend

Database
Backend

— ¥

Database

Database

Fig. 2 — SOCI modular structure

The SOCI current version (3.1.0) supports
various database types: Oracle, PostgreSQL,
MySQL, SQLite3 and Firebird, as well as the
generic backend: Open Database Connectivity
(ODBC). Thus, by using SOCI we can combine the
performance advantage of native libraries and the
variety database access of ODBC. The SQL
commands are passed to the RDBMS without
conversion as it happens in ODBC. Additionally,
SOCI offers a flexible support for user-defined data
types and also an extensive integration with Boost
data types of many Boost C++ Libraries, i.e.
representation of nonstandard data type during
storing and retrieving to/from databases. The Boost
libraries of C++ are used to store arbitrary

information in a variable, e.g. the Boost.Tuple
library offers the boost::tuple class which offers the
ability to store a virtually unlimited number of
values in one variable in a C++ program.

4. KINDS OF PERSISTENCE SYSTEMS

There are three common approaches to

persistence regarding the connection with database:

Database access by means of user classes

In this approach, particular methods for persistence
are realized in the classes of users, i.e. the code is
used for implementing the access to the database and
to SQL commands directly by the classes written by
the user. This approach is particularly suitable for
small projects.

Database access by data access classes

Here, the code to access the database is placed in
additional classes which separate the classes of users
from the database. The class instances are called
Data Access Objects[11] and are responsible for
storing the persistent data of a class. To exchange
data between user classes and the Data Access
Objects, Data Transfer Objects are used to
encapsulate the persistent data which is loaded
from/to database. As a result, an additional code is
needed in the classes of users to match the persistent
data with the Data Transfer Objects. Furthermore,
when replacing the employed database by a new
one, all the data access classes should be adjusted.

Database access by an abstraction layer

In this approach, the wuser classes and the
communication with database are strictly separated.
Fig. 3 shows, as an example, a schematic
representation of an abstraction layer to access and
store a user class (persistent class) using mapping
information. Communication with the database is
performed at a central point of the abstraction layer
used by all persistent classes of the user. With an
abstraction layer, the developer does not write any
additional code for database access, but rather
defines meta-information which describes the
mapping of objects to the database tables. For each
user class required to be persistent, such mapping
information must be specified. Using this mapping
information, the code for database access and the
necessary SQL commands are created by the
abstraction layer.

This approach of using an abstraction layer (also
called persistency layer) is used in our system
presented in this paper. This approach has
significant advantages over the two previous
approaches: it is reusable for different projects, and
furthermore, it is more easily extendible and
customizable. These advantages are especially
important for large projects.

78

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

pe User Class N Object relational

mapping

Ex: Mapping Information
Class Name;

An indicator that

Class:
Class-Name
Database-Name

indicates: this

user-classisa .
attributes;
persistent class

4 iredto b varigbles; Schema-Name
and required to be

Table-Name
stored -Programm code- i

\ / Attribute:

Attribute-Name
Attribute-Type
Column-Name

Reading the
description of

Access to database
ia abstraction layer

L
Abstraction Layer

- Generating appropriate SOL statements
(Generating database scheme)
- Performing database access
Database Information
-Network address
-Authentication data

l persistent class to

store it in database
Database Server

Fig. 3 — Schematic representation of the abstraction
layer

The system of persistent data storage is a link
between the entities of MMOGs (i.e., the objects of
the application) and the RDBMS. Our analysis
reveals the following basic requirements towards
such a persistency system:

e The system should persist the state of the MMOG
game world, i.e. the states of individual objects
and entities of an application are continuously
stored into a relational DBMS. One of the
difficulties here is converting the data between
incompatible type systems. The data type of
objects is almost always a non-primitive value
(composite value), while relational DBMS can
only store and manipulate scalar values, (i.e.,
primitive data types), such as integers and strings
that are organized in tables and stored as records.
Therefore, the system should be able to convert
the object values into groups of simpler values
for storing in the database, and then, when the
game logic requires it, convert them back upon
retrieval from the database without mismatch.
This task is usually called Object-Relational
Mapping[12]. Particularly important is how the
attributes of objects and the relationships
between objects are stored. The system should
support object-oriented concepts, such as
inheritance and polymorphism.

e The system should be able to store entities
continuously at certain times (e.g., when an
avatar gets new objects or learns new skills, or
completes a specific task in the game). Not
always the entire entity is to be stored; it should
be possible to define which particular attributes
should be stored. For this purpose, the persistent

data management system must provide an
appropriate interface for the application
developer. This interface will provide an
abstraction from the direct interaction with the
database, such that the developer does not need to
write a database-specific code.

e The system should not be limited to a particular
database, but rather be able to work with different
RDBMS. Therefore, it must abstract from
specific types of databases by providing general
supporting interfaces for database connections.

5. THE EPM SYSTEM FOR DATA
PERSISTENCY

This section describes the basic concepts and
preliminary design of our system for persistent data
storage called Entity Persistence Module (EPM).
EPM serves as an interface between real-time
interactive applications and the relational database
management systems (RDBMS).

a. Integration of persistence in MMOG

We design our EPM system to work as a
software layer between MMOG and RDBMS. To
integrate persistence into the complex infrastructure
of MMOG applications, EPM resides on two types
of servers: login server and game server as shown in
Fig 4. The login server checks whether a player is
eligible to participate in the game. If necessary,
corresponding data of the player, such as name,
address, and list of avatars owned by the player is
loaded from the database. To play the game, the
player retrieves data from the account-database to
the game-client; therefore, EPM works between the
login server and the account-database. Based on this
retrieved data, the game logic determines where the
avatar has stopped in the previous game session.
When the player exits the game, the game-client is
logged out at the login server and the account data is
stored in the account-database.

Game-Client
Y A
Game- s':ravr;fz if\:::; Login-Server
server 1 S o
EPM EPM EPM EPM
A) I

—

ame persistency-
Database

Account-
Database Database

il T

Fig. 4 — Integration of EPM in the architecture of an
MMOG

Logging-

79

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

Fig. 5 shows the integration of EPM with the
mainloop performing the continuous processing of
the game state. The mainloop receives the actions of
players from the clients and analyzes them (Fig. 5
step 1), then it calculates the new state (step 2),
which is persisted using EPM (step 3), and then sent
back to the clients (step 4).

Virtual World |

User Input New Slate
A
Game Server
Mainioop : Managemant of entites
N
000
L, 4
Receiving the
Player Actions
Calculation of
new state
Persistence of the

Sanding the »- EPM (Entity Persistence Module)
new state

A
¥

new State @ ‘

Fig. 5 - Integration of EPM in the application
mainloop

b. Architecture of the persistence module

The essential part of the EPM architecture
comprises the software components in the gray
rectangle in the middle of Fig. 6.The bottom side of
the figure represents the database side, while the
upper side represents the application side as well as
mapping and database information files. These files
are the supplementary part of the EPM which allows
the essential part of EPM to work in an efficient
way. The architecture of EPM follows some ideas of
an abstract design in[13].

c¢. Information about persistency

In order to allow for our persistency layer — the
EPM system — to establish a connection between the
persistent classes of MMOGs and one or more
RDBMS, EPM needs meta-information about: 1) the
classes which need persistency, and 2) the desirable
database for storing. This meta-information is
provided by the application developer and presented
to EPM by: mapping file, PersistencelD, datatype
mapping, and database config.
Mapping File

Mapping files describe where and how persistent
objectsare stored. EPM provides its own XML
representation of the data structures of mapping
information as XML files. The mapping information
specifies which classes and which attributes should
be persistent and where they should be stored.

Application
— — i |Mapping | |Dat atype
?fsnrmm e’s‘“i‘mmg File Mapping

Database|
config | UserClass | o, | UserClass ClassMapCreator
)
T T Essential Part of the EPM |
A \
f : PersistenceManager 3 \
| — § ClassMapManager |
1 Active Automatic | 3
= 1 | —
I & ¢ | Persistent Persistent | |
o i | Object Objects |
! 3 i o) i ClassMap I
|| = ~ 9 |
e
| S o
5] 50L-Statement I
2 o
] & |
E
Il & l Result-Set @ |
m
I (] I
| Database] |
l ClassMap |
Specific Specific /]
e
\ Database | € € © [——
- -~

—— e

—
=
[=]
&.
w

Fig. 6 — Architecture Overview of the Entity
Persistence Module (EPM)

Listing 1 shows an example of XML mapping
file that contains a part of the mapping information
for a base class called Avatar with one of its
attributes. This attribute in the example is the name
of avatar. The first four lines define the mapping
information of the avatar class, the given name for
persistent class is specified in line 2, then the name
of the database in line 3, the database schema in line
4, and the table in which the avatars will be stored in
line 5. After we have accessed a specific table of a
specific database depending on the first five lines,
we need access to a specific column of that table
(Avatar table) to store the specific name of the
avatar (line 7). The data type of the name is
specified in line 8 and the column in which the name
should be stored is specified in line 9.

1 <class>

2 <name> Avatar </name>

3 =database> GameDatabase </database>
4 <schema> gamedatabase </schema>

<table> Avatar </table>

o

6 <attribute>

7 <name> AVname </name>

8 <glementlype> std © © string </elementlype>
9 <columnname= name <columnname=

10 </attribute>

11 </class>

Listing 1- Part of an XML mapping file that describes
an avatar class

80

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

Shadow information

Shadow information is an additional information
added to a persistent object by the application
developer, as shown in Fig. 6 within the UserClass.
This information is required by EPM to manage the
persistent objects and is not required by the actual
application. An object within an application is
uniquely identified by its address in the memory
which is only valid as long as the object exists in the
memory. Records of a table, in contrast, are uniquely
identified by a primary-key that is valid as long as
the database exists. Therefore, persistent objects
require a unique ID to identify them in the
application, as well as in the database. This ID is
referred to as EPM PersistencelD, see Fig. 7; it
consists of Universally Unique Identifier (UUID)
and type information that indicates the type of the
persistent object. Shadow information is an indicator
of whether the object already exists as a record in
the database or not. This information is used to
generate an appropriate SQL command to store or
update the object. The “insert” SQL command is
used if the object has not been stored before,
otherwise, the “update” SQL command is needed.

08042eb9-4929-4321-9750-955f3d9956ae-Classname
| Il |

uuID Type

Fig. 7 — Example: presentation of PersistencelD as
database key

d. Object-Relational Mapping

One of the most important issues in the design of
EPM is object-relational mapping that converts
complex data and objects of MMOG applications
into simple data of primitive types for using a
relational DBMS. The software components located
on the right side of Fig. 6 are responsible for this.
These components work across three stages of the
persistence process:

(1) First, after reading the mapping information
of persistent classes according to what the game
developer specified in MappingFile and
DatatypeMapping, the ClassMapCreator creates one
ClassMap for each persistent class in the application;
the ClassMap component works in the next stage.

(2) The MappingClasses are located within the
essential part of EPM as shown in Fig. 6; they
consist of two components: ClassMapManager and
ClassMap. These components cooperate with the
main EPM component (PersistenceManager) to store
the persistent objects in an efficient manner. The
ClassMapManager manages all the system’s
ClassMaps and ensures that they are initialized and
made available to PersistenceManager. The
ClassMap can access all data of an object at run time

to generate the appropriate SQL commands, and
thus the current state of an object becomes ready for
storing in a relational database. These SQL
commands are encapsulated within the essential part
of EPM and used in the next stage.

(3) Finally, the persistent object is sent to
permanent data storage (relational database). After
obtaining the SQL statements from ClassMap, the
DatabaseSchema defines the necessary tables,
columns, relationships, data types, database links,
and other elements which are necessary to store the
persistent object.

With regard to the mainloop, our strategy with
the mapping components focuses on separating the
SQL generation from SQL execution. Thus, the
ClassMap interrupts the mainloop to generate the
SQL statements, and thereafter, the DatabaseSchema
can execute the SQL statements concurrently with
the mainloop (as a separate thread).

In sophisticated applications, most objects have
one or more relationships with other objects. To
avoid their separate storing, the ClassMap performs
transitive persistence by storing the object with all of
its associated objects to the database automatically.
This recursive process of storing is called cascading.
For example, the ClassMapAvatar of avatar object
will cascade the storing operation to its associated
object (inventory object). The (save: Inventory) task,
included within ClassMapAvatar, holds mapping
information that indicates a relationship between
avatar and inventory. In EPM, any entity is
automatically saved, loaded, and deleted to/from
database, together with its associated objects.

e. Connection with databases

To connect with various RDBMS during the
establishment of persistence, EPM provides a
standard database interface, with different
configuration possibilities for the game developer.
The database interface accepts SQL statements and
returns query results as result sets which are actually
an object-oriented representation of relations. The
RDBMS then stores the rows and columns that are
represented in these result sets.

Listing 2 shows an excerpt from the EPM’s
database interface. The methods in line 3 and 4
initialize the database connection, i.e. opening and
closing a connection with a specific database. The
getName() method in line 5 identifies the specific
name of the database with which the connection is
established. The methods in lines 7 through 10
insert, retrieve, update, and delete data to/from
database, correspondingly.

81

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

class database {

/[methods to initialized the database connection
virtual void open{)=0;

virtual void close () = 0;

1

2

3

4

5 std::string getName () { return this-> name ; }

6 virtual Resultset * processSql (std : : string &)=0;

7 virtual void processSql { InsertSqlStatement &) =0;

8 virtual ResultSet * processSql (SelectSqlStatement &) =0;
9 virtual void processSql (UpdateSqlStatement &)=0;

10 virtual void processSql { DeletetSqlStatement &)=0;};

Listing 2 — Excerpt from the database interface

The DataTypeMapping and DatabaseConfig files
are provided for the application developer as
database configuration files as shown in Fig. 6.
Since different databases use different data types to
store data, DataTypeMapping file defines which
C++ data type is mapped to which data types of the
database. The DatabaseConfig file is used to
configure a connection with a specific database. For
example, this file can include: name of the database,
database type, network address of the database
server, and the authentication data for logging in; the
file is configured during the initialization of the
EPM. The database library used by EPM is also
specified in this configuration file. Currently, EPM
employs the SOCI library [10]which provides
different backends supporting connection to various
databases.

Fig. 8 shows the sequence of the database
connection initialization. Here, the DatabaseConfig-
Loader is the component located inside the essential
part of EPM.

DatabaseConfig
file

Ex:
- Database name
- Database type

Reading the
information ’, ________ ~
1 Database 1
1 Loader !
Selecting a I |
corresponding | | : o
loader ' Specific |2
: Database | :J-J‘
—— Loader I @
Creating a " | er_q’
database | I
configuration L4 Specific IOT_;,
1 Database : [
Utilizing the [i 13
database | | : Q
configuration L1y, Specific i
: Database |
: Initializer :
1
Initializing the| 1
connection e -
> Specific
Database
| —

Fig. 8 — Initialization of database connection

f. Management of persistent objects

The components of EPM that support the
management of persistent objects at runtime are:
ClassMaps and SpecificDatabases. The main
component of EPM (PersistenceManager)
cooperates with these componentsand with shadow
information to manage the persistent objects. The
PersistenceManager provides the application
developer with a programming interface to store,
load and unload the persistent objects to/from
database. We propose two methods within the
PersistenceManager: to manage the active persistent
objects in the main memory and to manage the
registered persistent objects during the mainloop, as
explained in the following.
Active Persistent Objects

To manipulate an object, it must be copied from
the database into the main memory. The object that
resides in the main memory is called active object.
To manage the active state of the persistent objects,
the EPM module checks if the persistent object is
newly loaded to the main memory or already resides
there. The PersistenceManager makes a list of IDs
for persistent objects which currently reside in the
memory. Here, the ID is the EPM persistencelD
introduced at the beginning of this section. For
instance, if EPM requests an active persistent object
for a second time (Fig. 9 step 1), then the
Persistence-Manager checks whether this object is
already in main memory by checking the list of 1Ds
(step 2), and after finding it, the PersistenceManager
returns to the active object in the main memory (step
3). Therefore, the PersistenceManager can store the
object copy which contains all changes without any
data loss (step 4).

Load object
with Id = 1

{id=1}

PersistenceManager

active persistent objects

Check (in the list) if the object
is already in the main memory

Return to the active object
in the main memory

@The final storage of the object

Fig. 9 — Loading an already active object

82

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

Automatic storage of objects

EPM allows for saving persistent entities during
the mainloop. The API of the PersistenceManager
offers a possibility for the application developer to
register any persistent entity which needs to
beautomatically and continuously stored.The
complete storing of all persistent entities cannot be
implemented efficiently at each iteration of the
mainloop, rather the application developer should
specify which attributes should be stored at what
time: e.g., theattributes that do not change often can
be stored at longer intervals than other attributes.
Fig. 10 illustrates the process of automatic
persistence for an object with two attributes. The
first attribute (black) should be saved every 20 ticks,
and the second attribute (gray) should be saved
every 4 ticks. For this reason, the object is registered
twice in the PersistenceManager for automatic
storage (Fig. 10 step 1): once for storing the first
attribute and once for storing the second attribute.
The PersistenceManager holds a list that contains:
the persistencelD of the registered objects, the
attributes, and the tick-numbers. When the automatic
persistence method is initiated (step 2), the
PersistenceManager checks which object must be
saved during the mainloop-tick. In the 4th tick, the
second attribute is not stored, rather it is updated and
remains in the main memory for a limited time.
However, in the 20th tick, both attributes will be
stored in the database because 20 is a multiple of 4.
EPM combines all suspended updates of the
persistent object and then stores them using only one
access to the database (step 3).

id=1
. < @ Registering objects
*’ with id =1 to
Attribute | Storing attributes: automatic storage

. every 20 ticks

el @Mainloop - Tick:
every 4 ticks

triggering the
autmatic storage

PersistenceManager

automatic persistent objects

List of registered objects
Tick: 20 | Tick: 4

@ Every 20 ticks,
storing both attributes.

4" tick

8" tick Updating the second attribute
th
RDBMS | 12, tick
167 tick
20" tick) Updating both attributes and storing them into the database

Fig. 10 — Automatic saving of an object

g. Persistence of entities

EPM aims at ensuring persistence for two kinds
of objects: (1) states of game world, and (2)
individual entities. These objects are mapped onto
database tables for persistency. For this Object-
Relational mapping[12], various kinds of
information are required by EPM: the mapping
information which specifies where and how the
entities are stored, and the shadow information that
is needed by EPM at runtime for managing
persistent objects. The mapping strategy of EPM for
dealing with the tables of the database is divided into
three areas of mapping: (a) mapping of attributes, (b)
mapping of hierarchies, and (c) mapping of
relationships.

6. CONCLUSION AND RELATED WORK

Persistent data storage plays an important role in
many distributed Real-time Online Interactive
Applications (ROIA) such as modern Massively
Multiplayer Online Games (MMOG). For the game
developer, programming the connection between
MMOG applications and RDBMS is not only time-
consuming and error-prone, it is also poorly
reusable. Therefore, a flexible and reusable solution
is desirable.

In this paper, we analyze the problem of
persistency for ROIA applications and present a
preliminary design of the Entity Persistence Module
(EPM) as a middle software layer to store the
persistent data of MMOG applications. The game
developer is provided by EPM with a comfortable
API that relieves him from writing any additional
code for both database access and object-relational
mapping. The developer creates a configuration file
to define which objects and attributes of the objects
are persistent and in which database they should be
stored. Depending on this information, the Mapping
Classes and the required database schemas are
automatically generated by EPM. The Mapping
Classes then prepare the persistent data of the
application and make it compatible with structures
and data-types of RBBMS, as well as generate the
required SQL commands to retrieve and store data
from/to database.

The presented methods block the mainloop of
ROIA as short as possible by generating the SQL
commands to update the database, and executing
them asynchronously, running in a separate thread.
EPM provides a method for partial storage of objects
because not always the whole object needs to be
saved if only few attributes have changed. With this
method, the time to build and run the SQL
commands is shortened. After registering an object
in the automatic storage method, the application

83

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

developer has the opportunity to store an object
continuously in a database.

Although there are several sophisticated
persistent data systems for Java such as
Hibernate[14], or Java Data Objects[15], only few
systems have been developed for C++. For example,
LiteSQL[16]focuses on object-relational mapping by
providing a layer that integrates C++ objects into a
relational database; our persistence layer is specified
to persist the state of real-time applications, and in
addition to persist the C++ objects by our approach
of object-relational mapping. DataXtend CE[17]has
been used for applications with demanding real-time
and object persistence requirements, particularly, in
the fields of financial applications, flight booking,
and courier delivery services. But it could not be
applied in the field of MMOG applications, because
the complexity of MMOG-architecture requires an
efficient approach to manage the persistence of both
objects and game state that are distributed across
multiple game servers.

In comparison to existing approaches in the field
of object persistence middleware for MMOG
applications like Versant [4], EPM provides more
generic middleware which allows to store the
persistent data to major types of relational databases,
while[4] depends upon a native persistence for
objects. Hence, the core database engine of [4]
requires a specific database technology while our
approach overcomes this drawback.

As future work, we plan to integrate EPM with
the Real-Time Framework (RTF) [18]that was
developed at the University of Munster [19]within
the edutain@grid project. After integrating the
features of EPM (object- and game state-persistence)
with the features of RTF (high-level game design),
we will obtain a comprehensive middleware for
developing and running online games.

ACKNOWLEDGMENT

Mohammed Nsaif is supported by the
cooperative program (BaghDAAD) for German-
Iragi academic exchange.

7. REFERENCES

[1] World of Warcraft — Homepage, Blizzard
Entertainment, [Online]. http://www.wow-
europe.com/de/index.xml

[2] The database technology of Guild Wars,
[Online],
http://www.dbms2.com/2007/06/09/the-
database-technology-of-guild-wars

[3] Mitch Wagner, Inside Second Life's Data
Centers. In: Information-Week. [Online].

http://www.informationweek.com/news/showAr
ticle.jhtml?articlelD=197800179

[4] Robert Green, Advanced Mata Management for
MMOG - The Versant Object Database in
MMOG Applications, Versant, White Paper
Version 2008.

[5] Quake 3 Arena Homepage.
http://www.idsoftware.com

[6] Database Classifications and the Marketplace.
[Online].
http://seqcc.icarnegie.com/content/SSD/
SSD7/1.5.2/normal/pg-trends/pg-nonrdb/pg-
dbclassifications/pg-dbclassifications.html

[7] Lisbeth Bergholt and Jacob Steen Due,.. The
Centre of Object Technology (COT), 1998.

[Online].

[8] MySQL++ Homepage. [Online].
http://www.tangentsoft.net/myaql++/

[9] Lipgxx Homepage. [Online].
http://pgxx.org/development/libpgxx/

[10] SOCI Homepage. [Online].

http://www.soci.sourceforge.net/

[11] Sun Microsystems — Core J2EE Patterns — Data
Access Object, [Online]. http://java.sun.com/
blueprints/corej2eepatterns/Patterns/DataAccess
Object.html

[12] S.W. Ambler. (1998, Amby-Soft Inc. Version:
May) Mapping Objects to Relational Databases:

O/R Mapping In Detail. [Online].
http://www.agiledata.org/essays/mappingObject
s.htm

[13] SW. Ambler, The Design of a Robust
Persistence Framework for Relational Databases

/ Amby-Soft Inc. [Online].
http://www.ambysoft.
com/downloads/persistencelLayer.pdf

[14] Hibernate Homepage. [Online]. http://www.
hibernate.org

[15] Java Data Objects Homepage. [Online].
http://java.sun.com/jdo/

[16] LiteSQL Homepage. [Online].

http://sourceforge.net/projects/litesgl/

[17] DataXtend CE - Progress Software. [Online].
http://www.progress.com

[18] Frank Glinka, Alexander Ploss, Sergei Gorlatch,
and Jens Miiller-Iden, High-Level Development
of Multiserver Online Games, International
Journal of Computer Games Technology, no.
Article ID 327387, pp. 16 pages doi:
10.1155/2008/327387, vol 2008.

[19] The Real-Time Framework (RTF). [Online].
http://www.real-time-framework.com/

84

Max Knemeyer, Mohammed Nsaif, Frank Glinka, Alexander Ploss, Sergei Gorlatch / Computing, 2013, Vol. 12, Issue 1, 75-85

Max Knemeyer received

MSc degree in 2009 in

p o Computer Science from the

\ University of Muenster

e (Germany). He worked in the

\./ group of parallel and

' distributed systems at the

University of Muenster. His

research area focuses on

relational databases, object

oriented application frameworks, Real-time Online

Interactive Applications (ROIA), and Massively
Multiplayer Online Games (MMOG).

-

-

Mohammed Nsaif received
MSc degree in 2005 in
Computer Science from lIraqi
Commission for Computers
and Informatics (ICCI) in Iraq.
He is a PhD student with the
Department of Computer
Science (in the group of Prof.
Sergei Gorlatch), University of
Muenster in Germany. His
research interests are relational database
management systems, distributed systems, Real-
time Online Interactive Applications (ROIA), and
Massively Multiplayer Online Games (MMOG).

Frank Glinka received his
computer science degree from
the University of Muenster in
2006 and is now a research
associate at the department of
computer science in the group
of Prof. Sergei Gorlatch. He
has worked as a work package
leader for the European
research project edutain@grid
covering the topic of real-time application services
and is currently completing his PhD thesis titled
"Developing Grid Middleware for a High-Level
Programming of Real-Time Online Interactive
Applications".

Alexander Ploss received his
degree in mathematics from
the University of Muenster in
2007 and was a research
associate in the department of
computer science in the group
for parallel and distributed
systems at Muenster until July
2011. During this time, he
worked in the international re-
search project edutain@grid and received his
doctoral degree in 2011 for his dissertation on
"Efficient Dynamic Communication for Real-Time
Online Interactive Applications in Heterogeneous
Environments”. He has published about 20 papers in
peer-reviewed conferences and journals as well as
book chapters on the scalability of interactive
applications, e.g., massively multiplayer online
games, with the focus on communication aspects.

Sergei Gorlatch has been
Full Professor of Computer
Science at the University of
Muenster (Germany) since
2003. Earlier he was
Associate Professor at the
Technical University of
Berlin, Assistant Professor at
the University of Passau,
and Humboldt Research Fel-
low at the Technical University of Munich, all in
Germany. Prof. Gorlatch published more than 150
peer reviewed papers and books. He has been
principal investigator in various international
research and development projects in the field of
parallel, distributed, Grid and Cloud computing.
Sergei Gorlatch holds MSc degree from the State
University of Kiev, PhD degree from the Institute of
Cybernetics of Ukraine, and the Habilitation degree
from the University of Passau (Germany).

, 4

85

