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Abstract: The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) framework provides a set of 
distributed services for monitoring, control, management and global optimization for large scale distributed systems. It 
is based on an ensemble of autonomous, multi-threaded, agent-based subsystems which are registered as dynamic 
services. They can be automatically discovered and used by other services or clients. The distributed agents can 
collaborate and cooperate in performing a wide range of management, control and global optimization tasks (such as 
network monitoring, resource accounting) using real time monitoring information. MonALISA includes a coherent set 
of network management services to collect in near real-time information about the network topology, the main data 
flows, traffic volume and the quality of connectivity. A set of dedicated modules were developed in the MonALISA 
framework to periodically perform network measurements tests between all sites. We developed global services to 
present in near real-time the entire network topology used by a community. The time evolution of global network 
topology is shown in a dedicated GUI. Changes in the global topology at this level occur quite frequently and even 
small modifications in the connectivity map may significantly affect the network performance. The global topology 
graphs are correlated with active end-to-end network performance measurements, done using the Fast Data Transfer 
application, between all sites. Access to both real-time and historical data, as provided by MonALISA, is also important 
for developing services able to predict the usage pattern, to aid in efficiently allocating resources globally. For 
resource accounting, MonALISA collects information regarding the amounts of resources consumed by the users, which 
represent virtual organizations in a large scale distributed system. Besides providing statistical information, an 
accounting system can also be the base for managing distributed resources upon an economic model. In the MonALISA 
monitoring framework we developed modules that provide accounting facilities, collecting information from cluster 
managers like Condor, PBS, LSF and SGE. The usage statistics is used for an intelligent management of the resources. 
 
Keywords: monitoring, large scale networks, topology, accounting, MonALISA. 

 
 

1. INTRODUCTION 
An important part of managing global-scale 

systems is a monitoring system that is able to 
monitor and track in real time many site facilities, 
networks, and tasks in progress. The monitoring 
information gathered is essential for developing the 
required higher level services, the components that 
provide decision support and some degree of 
automated decisions and for maintaining and 
optimizing workflow in large scale distributed 
systems (LSDS). These management and global 
optimization functions are performed by higher level 
agent-based services.  

MonALISA, which stands for Monitoring 
Agents using a Large Integrated Services 
Architecture, is a monitoring framework designed 
as an ensemble of dynamic services, able to 
collaborate and cooperate in performing a wide 

range of information gathering and processing tasks. 
Current applications of MonALISA’s higher level 
services include resource accounting, optimized 
dynamic routing, control and optimization for data 
transfers, distributed job scheduling and automated 
management of remote services among a large set of 
distributed facilities. MonALISA is currently used 
around the clock in several major projects and has 
proven to be both highly scalable and reliable.  

The main aim for developing the MonALISA 
system was to provide a flexible framework capable 
to use in near real-time the complete monitoring 
information from large number of jobs, computing 
facilities and wide area networks to control and 
optimize complex workflows in distributed systems.  

Compared with other existing monitoring tools 
for LSDS, MonALISA is more generic and provides 
real-time, scalability, and dependability guarantees. 
Currently existing monitoring frameworks tend to be 
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too dedicated to specific activities. For example, 
Ganglia, and Lemon are mainly used to monitor 
computing clusters while tools like MRTG, 
PerfSonar, Nagios and Spectum are used to provide 
monitor information for Wide Area Networks. In 
MonALISA we provide the functionality to easily 
collect any type of information and in this way to 
offer a more synergetic approach, necessary to 
control and optimize the execution of data intensive 
applications on large scale distributed systems.  

In this paper we present the system architecture 
and its applications to monitor and control real-
world LSDSs. In particular, we present details for 
two important monitored services: the accounting 
and networking components. We acknowledge that 
an important part of managing any global-scale 
distributed systems is the monitoring system that 
should be able to monitor and track in real time 
many site facilities, networks, and tasks in progress. 
The monitoring information gathered is essential for 
developing the required higher level services, the 
components that provide decision support and some 
degree of automated decisions and for maintaining 
and optimizing workflow in LSDSs.  

In LSDSs an accounting component is used to 
records the resource consumption for each user, and 
may have other functionalities like enabling the 
administration of the storage of this information, and 
interacting with other related services. One of the 
functions of the accounting system is to enable an 
economically self-sustained distributed system. Such 
a system should provide the possibility to charge the 
users for the resources consumed, or the possibility 
to trade resources among organizations. Another 
function of an accounting system is to provide 
statistical information that can be further used to 
develop intelligent algorithms for scheduling and 
resource management.  

As the importance of the accounting component 
is widely recognized (i.e., as a fundamental pillar of 
Cloud Computing), several projects have been 
initiated in this domain. Still, there are significant 
challenges in developing an accounting system, 
related mostly to the complexity and heterogeneity 
of LSDS environments. We distinguish between 
accounting systems and monitoring systems that 
include accounting features [1]: while an accounting 
system stores detailed information about single 
jobs/users, and can provide usage records for a 
particular job, a monitoring system usually collects 
statistical information such as the total number of 
jobs run by each user, or per-VO resource 
consumption (VO stands for virtual organization). 

In MonALISA we concentrated on the latter 
approach, and developed a set of dedicated 
monitoring and accounting modules for LSDSs. The 
accounting modules collect information from job 

managers such as Condor, PBS, LSF and SGE, and 
the accounting data is further stored in the 
MonALISA databases. 

The monitoring framework has to intelligently 
collect, in a LSDS environment, a large number of 
monitoring events that are generated by the system 
components during the execution or interaction with 
external objects (such as users or processes). 
Monitoring such events is necessary for observing 
the run-time behavior of the large scale distributed 
system and for providing status information required 
for debugging, tuning and managing processes. 
However, correlated events are generated 
concurrently and can be distributed in various 
locations, which complicates the management 
decisions process.  

To illustrate this, we also present a set of services 
developed in the context of the MonALISA 
framework for monitoring and controlling large 
scale networks, as an extension of the work 
previously presented in [2].  

The rest of the paper is structured as follows. 
Section 2 presents the MonALISA monitoring 
framework. In Section 3 we present the monitoring 
services for large scale networks, together with 
solutions for the representation of network 
topologies at different OSI layers. This is followed 
by a real-world use-case for monitoring network 
topology in case of one of the largest network 
supporting the LHC experiments at CERN. Section 
4 describes the accounting modules, and several 
results obtained using the modules.Finally, in 
Section 5 we give conclusions and present future 
work. 

 
2. SYSTEM DESIGN 

MonALISA (Monitoring Agents in A Large 
Integrated Services Architecture) [3,15] is a globally 
scalable framework of services jointly developed by 
California Institute of Technology (Caltech) and 
University Politehnica of Bucharest (UPB). 
MonALISA is currently used in several large scale 
High-Energy Physics communities and grid systems 
including CMS [4], ALICE [5], ATLAS [6], the 
Open Science Grid (OSG) [7], and the Russian LCG 
sites. It actively monitors the USLHCNet production 
network, as well as the UltraLight R&D network [4].  

As of this writing, more than 360 MonALISA 
sites are being monitored 24/7 throughout the world. 
The services monitor more than 60,000 computing 
servers, and thousands of concurrent jobs. More than 
3.5 million parameters are currently monitored in 
near-real time with an aggregate update rate of 
approximately 50,000 parameters per second. 

The MonALISA system is designed as an 
ensemble of autonomous self-describing agent-based 
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Fig. 1 – The four layers, main services and components of the MonALISA framework 

subsystems which are registered as dynamic 
services. These services are able to collaborate and 
cooperate in performing a wide range of distributed 
information-gathering and processing tasks.  

An agent-based architecture of this kind is well-
adapted to the operation and management of large 
scale distributed systems, by providing global 
optimization services capable of orchestrating 
computing, storage and network resources to support 
complex workflows. By monitoring the state of 
LSDS-sites and their network connections end-to-
end in real time, the MonALISA services are able to 
rapidly detect, help diagnose and in many cases 
mitigate problem conditions, thereby increasing the 
overall reliability and manageability of the 
distributed computing systems. The MonALISA 
architecture, presented in Fig. , is based on four 
layers of global services. The entire system is 
developed based on the Java technology.  

The network of Lookup Discovery Services 
(LUS) provides dynamic registration and discovery 
for all other services and agents. MonALISA 
services are able to discover each other in the 
distributed environment, and be discovered by 
interested clients. The registration uses a lease 
mechanism. If a service fails to renew its lease, it is 
removed from the LUSs and a notification is sent to 
all services or applications that subscribed for such 
events. Remote event notification is used in this way 
to get a real overview of this dynamic system. 

The second layer represents the network of 
MonALISA services that host many monitoring 
tasks through the use of a multithreaded execution 
engine. The network also hosts a variety of loosely 
coupled agents that analyse the collected 
information in real time. These agents are able to 
process the information locally, and to communicate 
with other services or agents to perform various 

global optimization tasks. A service in MonALISA 
is a component that interacts autonomously with 
other services, either through dynamic proxies or via 
agents that use self-describing protocols. By using 
the network of lookup services, a distributed 
services registry, and the discovery and notification 
mechanisms, the services are able to access each 
other seamlessly. The use of dynamic remote event 
subscription allows a service to register an interest in 
a selected set of event types, even in the absence of a 
notification provider at registration time.  

On the third layer MonALISA hosts a series of 
Proxy services. The layer provides an intelligent 
multiplexing mechanism for the information 
requested by the clients or other services, and 
ensures a reliable communication between agents. It 
also provides an Access Control Enforcement layer 
to provide secures access to the collected 
information.  

Higher level services and client access the 
collected information using the proxy layer of 
services. A load balancing mechanism is used to 
allocate these services dynamically to the best proxy 
service. The clients, other services or agents can get 
any real-time or historical data by using a predicate 
mechanism for requesting or subscribing to selected 
measured values. These predicates are based on 
regular expressions to match the attribute description 
of the measured values a client is interested in. They 
may also be used to impose additional conditions or 
constraints for selecting the values. The subscription 
requests create a dedicated priority queue for 
messages. The communication with the clients is 
served by a pool of threads. The allocated thread 
performs the matching tests for all the predicates 
submitted by a client with the monitoring values in 
the data flow. The same thread is responsible to send 
the selected results back to the client as compressed 
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serialized objects. Having an independent thread for 
clients allows sending the information they need, in 
a fast and reliable way, and it is not affected by 
communication errors which may occur with other 
clients. In case of communication problems these 
threads will try to re-establish the connection or to 
clean-up the subscriptions for a client or a service 
which is no longer active.  

 
3. NETWORK MONITORING AND 

MANAGEMENT 
A large set of MonALISA monitoring modules 

has been developed to collect specific network 
information or to interface it with existing 
monitoring tools, including: SNMP modules for 
passive traffic measurements and link status; Active 
network measurements using simple ping-like 
measurements; Tracepath-like measurements to 
generate the global topology of a wide area network; 
Interfaces with the well-known monitoring tools 
MRTG, RRD [8]; Available Bandwidth 
measurements using tools like pathload; Active 
bandwidth measurements using Fast Data Transfer 
(FDT) [9]; Dedicated modules for TL1 [10] 
interfaces with CIENA’s CD/CIs, optical switches 
(Glimmerglass and Calient) and GMPLS controllers 
(Calient) [11, 12]. 

In the MonALISA framework the overall status 
of the dispersed systems being monitored is 
provided by either a GUI client or through 
specialized web portals. For the dedicated modules 
and agents used to monitor and control Optical 
Switches the GUI client of MonALISA provides a 
dedicated panel. This panel facilitates the interaction 
between users and the monitored Optical Switches. 
It offers to the end user a number of features such as 
complete perspective over the topology of the 
monitored optical networks or the possibility to 
monitor the state of the Optical Switches or the 
possibility to dynamically create new optical paths.  

The tremendous interest in optical networks led 
the Internet Engineering Task Force (IETF) to 
investigate the use of Generalized MPLS (GMPLS) 
and related signaling protocols to set up and tear 
down lightpaths. GMPLS is an extension of MPLS 
that supports multiple types of switching, including 
switching based on wavelengths usually referred to 
as Multi-Protocol Lambda Switching (MPλS). In 
order to meet the expectations of future network 
technologies in the prototype system we made the 
first step towards integrating emerging light path 
technologies. We implemented the monitoring 
module and control agent that provide an interface 
between MonALISA and the Calient’s GMPLS-
based control plane.The described system, part of 
MonALISA, is currently used in production to 

monitor and control a CALIENT Optical Switch 
located at California Institute of  

Technology in USA and another 
GLIMMERGLASS Optical Switch located at the 
European Center for Nuclear Research, in 
Switzerland. The dedicated monitoring modules use 
the TL1 language to communicate with the switch 
and they are used to collect specific monitoring 
information. The state of each link and any change 
in the system is reported to MonALISA agents. The 
system is integrated in a reliable and secure way 
with the end user applications and provides simple 
shell-like commands to map global connections and 
to create an optical path / tree on demand for any 
data transfer application. A schematic view of how 
the entire system works is shown in Figure 2. 

 
Fig. 2 – The system used to monitor and control 

Optical Switches and to create on demand optical path 
used in production 

The implemented prototype system is able to 
create dynamically an end to end light path in less 
than one second independent of the number of 
switches involved and their location. It monitors and 
supervises all the created connections and is able to 
automatically generate an alternative path in case of 
connectivity errors. The alternative path is set up 
rapidly enough to avoid a TCP timeout, and thus to 
allow the transfer to continue uninterrupted. 

 
Fig. 3 – A schematic view of the functionality to 

provide dynamically an efficient end to end path to 
data intensive applications. The VINCI system is 
optimizing the path allocation using as much as 

possible Layer 1 or Layer 2 segments 

To satisfy the demands of data intensive 
applications it is necessary to move to far more 
synergetic relationships between applications and 
networks. Currently, even the most complex 



Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366 
 

 355

scientific applications are simply passive users of the 
existing network infrastructure. The main objective 
of the VINCI (Virtual Intelligent Networks for 
Computing Infrastructures) project is to enable 
users’ applications, at the LHC and in other fields of 
data-intensive science, to effectively use and 
coordinate shared, hybrid network resources, to 
correlate them with available processing power in 
order to dynamically generate optimized workflows 
in complex distributed system (Figure 3). 

VINCI is a multi-agent system for secure light 
path provisioning based on dynamic discovery of the 
topology in distributed networks. For this project we 
are working to provide integrated network services 
capable to efficiently use and coordinate shared, 
hybrid networks and to improve the performance 
and throughput for data intensive applications. This 
includes services able to dynamically configure 
routers and to aggregate local traffic on dynamically 
created optical connections. 

The system dynamically estimates and monitors 
the achievable performance along a set of candidate 
(shared or dedicated) network paths, and correlates 
these results with the CPU power and storage 
available at various sites, to generate optimized 
workflows for LSDS tasks. The VINCI system is 
implemented as a dynamic set of collaborating 
Agents in the MonALISA framework, exploiting 
MonALISA’s ability to access and analyze in-depth 
monitoring information from a large number of 
network links and LSDS sites in real-time. 

 
3.1. MONITORING AND 
REPRESENTATION OF NETWORK 
TOPOLOGIES AT DIFFERENT OSI 
LAYERS 

We present monitoring and representational 
services developed considering various network 
topologies and the differences posed by network 
equipments operating at various OSI levels. In large-

scale networks, such as USLHCNet and UltraLight, 
we found devices at ever OSI layer.  

A. The Physical Network Layer Topology 

A set of specialized TL1 modules are used to 
monitor optical switches (Layer 1 devices) from two 
major vendors: Glimmerglass and Calient. We were 
able to monitor the optical power on ports and the 
state of the cross-connects inside these switches. 

Based on the monitoring information an agent is 
able to detect and to take informed decisions in case 
of eventual problems with the cross connections 
inside the switch or loss of light on the connections. 
The MonALISA framework allows one to securely 
configure many such devices from a single GUI, to 
see the state of each link in real time, and to have 
historical plots for the state and activity on each link. 
It also allows to easily manually create a path using 
the GUI. In Figure 4 we present the MonALISA 
GUI that is used to monitor the topology on the 
Layer 1 connections and the state and optical power 
of the links. The same GUI can be used to request an 
optical path between any two points in the topology. 
All the topology related information are kept 
distributed, every MonALISA service having its 
own view of the network. Every agent computes a 
shortest path tree based on Dijkstra’s algorithm. The 
convergence in case of problem is very fast, as every 
agent has the view of the entire topology. 

B. Layer 2 Network Topology / Circuits 

The USLHCNet transatlantic network has 
evolved from DOE-funded support and management 
of international networking between the US and 
CERN. USLHCNet today consists of a backbone of 
eight 10 Gbps links interconnecting CERN, 
MANLAN in New York, and Starlight in Chicago. 
The core of the USLHCNet network is based on 
Ciena Core Director CD/CI multiplexers which

 
Fig. 4 – Layer 1 topology: Monitoring and autonomous controlling optical switches 
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Fig. 5 – A network weathermap (left) and the layer 2 topology for the dynamic circuits (right) 

provide stable fallback in case of link outages at 
Layer 1 (the optical layer), and full support for the 
GFP/VCAT/LCAS [13] protocol suite.  

For the Core Director (CD/CI) we developed 
modules which monitor the routing protocol (OSRP) 
which allows us to reconstruct the topology inside 
the agents, the circuits (VCGs), the state of cross 
connects, the Ethernet (ETTP/EFLOW) traffic, the 
allocated time slots on the SONET interfaces and the 
alarms raised by the CD/CI (see Figure 5). 

The operational status for the Force10 ports and 
all the Ciena CD/CI alarms are recorded by the 
MonALISA services. They are analyzed and 
corresponding email notifications can be generated 
based on different error conditions. We also monitor 
the services used to collect monitoring information. 
A global repository for all these alarms is available 
on the MonALISA servers, which allows one to 
select and sort the alarms based on different 
conditions. The link status information is very 
sensitive information for the SLA (Service Level 
Agreement) with both the experiments and the link 
providers. Because of this very strict monitoring 
requirement the monitoring had to have almost 
100% availability. We achieved this monitoring each 
link at both ends from two different points. The 
NOCs in Europe, Geneva and Amsterdam, are cross-
monitored from both locations, and the same in US. 
In this way we monitor each link in four points and 
with special filters this information is directly 
aggregated in the repository. For redundancy and 
reliable monitoring we keep at least two instances of 
repositories running, one in Europe and one in US. 
For the past two years we manage to have 100% 
monitoring availability inside USLHCNet. 

C. Layer 3 Routed Network Topology 

For the routed networks, MonALISA is able to 
construct the overall topology of a complex wide 
area network, based on the delay on each network 
segment determined by tracepath-like measurements 
from each site to all other sites, as illustrated in 

Figure 6.  
For any LHC experiment such a network 

topology includes several hundred of routers and 
tens of Autonomous Systems. Any changes in the 
global topology are recorded and this information 
can be easily correlated with traffic patterns. The 
time evolution of global network topology is shown 
a dedicated GUI. Changes in the global topology at 
this level occur quite frequently and even small 
modifications in the connectivity map may 
significantly affect the network performance. 

 
3.2. A REAL USE-CASE FOR TOPOLOGY 
INFORMATION 

The Alice Grid infrastructure uses MonALISA 
framework for both monitoring and controlling. All 
the resources used by AliEn [14] services: 
computing and storage resources, central services, 
networks, jobs are monitored by MonALISA 
services at every site. 

A. Bandwidth measurements between Alice sites 

The data transfer service is used by the ALICE 
experiment to perform bandwidth measurements 
between all sites, by instructing pairs of site 
MonALISA instances to perform FDT memory-to-
memory data transfers with one or more TCP 
streams. 

 
Fig. 6 – MonALISA real time view of a topology. A 

view of all the routers, or just the network or 
“autonomous system” identifiers can be shown 
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Fig. 7 – Inter-site bandwidth test results. Tracepath is also recorded. 

 
The results are used for detecting network or 

configuration problems, since with each test the 
relevant system configuration and the tracepath 
between the two hosts are recorded as well. The 
MonALISA services are also used to monitor the 
end system configuration and automatically notify 
the user when these systems are not properly 
configured to support effective data transfers in 
WAN. In Figure 7 we present the results recorded 
from one site to all the others. 

B. Automatic storage discovery for Alice 

Using the monitoring information from trace-like 
measurements, derived information is computed in 
the repository, associating the Autonomous System 
(AS) number to each of the nodes in a network path. 
The repository also runs other monitoring modules 
that provide global values and one of them 
periodically queries AliEn for the list of defined 
storage elements and their size and usage according 
to the file catalog. Then periodic functional tests are 
performed from the central machine to check 
whether the basic file operations (add, get, remove) 
are successful. The entire software and network 
stacks are checked through these tests, thus the 
outcome should be identical for all clients trying to 
access the storages. 

Aggregating the monitoring and test results, a 
client-to-storage distance metric is computed and 
used to sort the list of available storage elements to a 
particular client. Then the closest working storage 
elements is selected either to save the data or, in case 
of reading, sorting the available locations based on 
this metric, trying to read from the closest location. 
The algorithm associates to each storage element a 
list of IP addresses representing known machines 
from its vicinity. 

C. Monitoring modules for dynamic light path 
provisioning 

Given the monitoring part, we present solutions 
adopted for dynamic and automatic provision of 

light path based on the monitoring information. For 
that MonALISA has two monitoring modules that 
provide information about the optical power on ports 
and the state of the cross-connect links inside the 
switch in near real-time. The modules use 
Transaction Language 1 (TL1) commands to retrieve 
monitoring information from the optical switch. 
Based on the monitoring information the agent is 
able to detect and to take informed decisions in case 
of eventual problems with the cross connections 
inside the switch or loss of light on the connections. 

For control the Optical Switch Agent is a 
software agent that is dynamically deployed and 
runs embedded in a MonALISA service. Its role is to 
monitor and control an optical switch, to publish and 
to continuously update its configuration. The 
configuration consists of the port map, which 
specifies the devices attached to the switch, state of 
the ports, optical cross-connects inside the switch 
and the necessary routing information. The agents 
use the MonALISA framework to discover each 
other, publish their configuration, and collaborate to 
create on-demand and end-to-end optical paths. 

The algorithm for dynamic path provisioning is 
able to establish an end-to-end connection in the 
shortest possible time. In order to achieve this, every 
agent in the system has the exact view of the 
network and adapts very quickly to changes, using 
the previously described solution. The network 
topology, implemented as a network graph, has 
agents as vertices and optical links between switches 
as edges, every edge having a cost associated with it. 
The system is modeled using a directed graph. Such 
an approach makes it possible to have both full-
duplex and simplex links between optical switches. 
Each agent in the graph computes a shortest path 
tree using a variant of Dijkstra’s algorithm. The 
agents system uses a two-phase commit strategy for 
creating the optical cross-connects and a lease 
mechanism to guarantee the reliability in case of 
partial failures. 
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Fig. 8 – The network topology used for creating dynamically, on demand an end to end optical path 

An agent that receives a lightpath request 
determines, based on the local tree that is already 
built, if the request can be fulfilled or not. If it is 
possible it also initiates transactions with both the 
local and remote ports involved in the path. Once the 
transaction is started, the agent assigns a unique ID 
for the path, sends the remote cross-connect 
commands and after that it tries to establish the 
cross-connects on the local switch. An independent 
thread is waiting for acknowledgements from the 
remote agents. Any remote agent which receives 
such a cross-connect request starts a local 
transaction only with the ports involved in the cross-
connect. If it succeeds in creating the cross-connect, 
it commits the local transaction and it sends back an 
“acknowledged” message, otherwise the transaction 
is rolled-back and a “not acknowledged” message is 
sent. Based on the received messages the local agent 
takes the decision whether or not the transaction can 
be committed or it has to be rolled back. The 
algorithm described above is reliable and guarantees 
that the system remains in a consistent state even if a 
network problem occurs. The newly created 
lightpath has a lease assigned which must be 
renewed by all the involved agents and in this way it 
can provide a viable mechanism for the system to 
recover from partial failures.  

To improve the performance and the response 
time all the functions executed by an agent are 
performed in asynchronous sessions using a pool of 
threads. A task can be a request for a lightpath from 
a client, or a cross connect request coming from 
another agent, or a rerouting task triggered by a 
topology change. The only sequential part of the 
algorithm described above is in the “pre-commit” 
phase, and this involves only the ports that are 

supposed to be in the lightpath. Any request 
submitted during this phase, which do not involve 
these ports can be fulfilled in parallel.  

Using this information, an agent is able to detect 
the loss-of-light on fiber, and take specific decisions 
if the port is part of a lightpath. The agent who 
detects the problem notifies the initiator, which is 
responsible to try to reroute the traffic through 
another path, if this is possible. When the initiator 
detects a change in topology that affects the 
lightpath, it forces the shortest path tree to be 
recalculated. Based on the new tree, the agent is able 
to take the decision if the light can be rerouted using 
other path, or it can tear down the entire path. This is 
very useful, because in case of successful rerouting, 
the problem will not disturb already established 
sockets, upper network layers, like TCP, not being 
able to detect the problem. 

The routing algorithm used to establish an end to 
end lightpath is similar with link-state routing 
protocols. The work presented here uses an 
algorithm similar to link-state routing algorithms 
because they converge faster than distance-vector 
algorithms. In order to guarantee consistency and 
reliability of the entire system, a two-phase commit 
strategy and a lease mechanism were also 
developed.  

We developed dedicated modules for several 
types of optical switches. The system is currently 
used to create dynamically on demand optical 
connections between computers located at CERN 
(Geneva) and California Institute of Technology 
(CALTECH) located in Pasadena, CA, using the 
networking infrastructure of USLHCNet and 
Internet2 [16, 17].  
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USLHCNet provides two transatlantic 10 Gb/s 
optical links between CERN and Starlight (Chicago) 
and MANLAN (New York). On the Internet2 
network, the pure optical connections are simulated 
using several VLANs to provide direct connections 
from Chicago and New York to CALTECH. The 
topology of the network infrastructure used is shown 
in Figure 8. 

The system is able to create dynamically an end 
to end lightpath in less than one second independent 
of the number of switches involved and their 
location. It monitors and supervises all the created 
connections and is able to automatically generate an 
alternative path in case of connectivity errors. The 
alternative path is set up rapidly enough to avoid a 
TCP timeout, and thus to allow the transfer to 
continue uninterrupted.  

The optical fibers are simulated through two 
VLANs between the two optical switches. One 
VLAN is routed through New York and the other 
one through Chicago. The monitoring module is able 
to simulate a fiber cut. The optical agent will detect 
this as a real loss-of-light and will try to reroute the 
path. 

In the example above a disk to disk transfer is 
presented, using two 4-disk servers, one at Caltech 
and the other one at CERN in Geneva. During the 
transfer four fiber cuts were simulated, 
corresponding to the four drops in the Figure 9. 

These fibers cuts simulations were done on the 
Geneva – Starlight and Geneva – Manlan links and 
the transfer was rerouted four times between these 
two links. The “fiber cut” and the reroute are done 
quick enough that the TCP does not sense the loss in 
connectivity and the transfer continues. The 
recovery time differs for various TCP stacks and the 
round trip time between end points. 

 
Fig. 9 – The total disk to disk throughput between a 
server at CERN and one at CALTECH. Four “fiber 

cuts” were simulated during the transfer. The 
throughput drops when a rerouting is done, but it 

recovers quickly 

In the MonALISA framework the overall status 
of the dispersed systems being monitored is 
provided by either a GUI client or through 
specialized web portals. For the dedicated modules 

and agents used to monitor and control Optical 
Switches the GUI client of MonALISA provides a 
dedicated panel. This panel facilitates the interaction 
between users and the monitored Optical Switches. 
It offers to the end user a number of features such as 
complete perspective over the topology of the 
monitored optical networks or the possibility to 
monitor the state of the Optical Switches or the 
possibility to dynamically create new optical paths. 

The main panel is presented in Figure 10. The 
main aspect of this panel is that it displays in an 
intuitive way the current topology of the monitored 
Optical Switches and the links between. For the 
Optical Switches we use different colors to represent 
the state of their internal ports and the state of the 
links between the represented entities. In the panel, 
besides the Optical Switches a number of other 
devices (the blue ovals) can also be represented. 
These devices, equipped with optical network cards, 
are connected by optical links to the Optical 
Switches being monitored. 

 
Fig. 10 – Same topology and status on the 3D Map 

panel 

The Optical Switches and the links connecting 
them are also represented in the 3D Map panel (see 
Figure 8). This panel locates the MonALISA 
monitoring services on a 3D view of the world 
geographical map. It also shows the monitoring 
WAN links, real-time traffic on them, the capacity 
of the links, the connectivity between sites, the 
optical switches controlled and other parameters like 
sites Load, CPU usage, IO parameters, etc. In this 
way the user is presented with an easy to use 
complete visualization tool which represents the 
global state of the entire monitored systems.  

For the optical paths created from this panel 
(represented in green color in Figure 4) the user is 
presented with the details of which devices and ports 
one particular path is crossing (from end to end) 
together with the components involved in that path 
(the highlighted devices in Figure 4).  

The panel can be also used to create new optical 
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paths or delete existing ones. In order to gain access 
to these operations the user must present though the 
necessary credentials. The security layer is 
implemented using RMI over SSL. 

 
4. MONITORING ALICE DISTRIBUTED 

COMPUTING ENVIRONMENT 
One of the major challenges in designing the 

monitoring and accounting system in case of LSDS 
is the heterogeneity of the sites. They may use 
various resource managers, such as Condor, PBS, 
Sun Grid Engine, LSF, etc. Such resource managers 
provide accounting information, but the set of 
provided parameters (and their measurements units 
for that matter) differ from one manager to another. 
While some resource managers record detailed 
information (such as the amount of memory and disk 
space used by the jobs, and the amount of network 
traffic they produce), others only record basic 
information (such as runtime and CPU time 
consumed). Therefore, the common set of 
parameters that can be collected depends on the set 
of available resource managers. 

Another challenge encountered when defining 
the format of a resource usage record is that there 
are some differences between LSDS jobs (e.g., 
between Grid jobs and batch jobs). Therefore, a 
decision has to be taken regarding which one of the 
job models should be used for accounting 
information. For example, when recording the start 
time for a Grid job, this may have different 
meanings: the time when the job got submitted to the 
Grid broker, the time when it entered the batch 
system queue, or the time when it actually started 
executing on a computing node. Though the last 
variant is usually considered at this moment 
(corresponding to a batch job model), it might be 
better to use the Grid job model and consider the 
time needed for brokering, data staging, etc. 

There are two ways in which an accounting 
system can collect the information: 1) in a real-time 
mode, while the jobs are being executed, or 2) by 
gathering data from the resource manager logs, after 
a job completes. The second approach has the 
advantages of simplicity, and provides more 
information – so it is sufficient for the accounting 
purposes. However, a monitoring system is not of 
much help if it provides information about a job only 
after it is finished. Users need real-time information, 
so that they know the status of their jobs while they 
are being executed – especially since a job can 
typically run for several hours. To obtain real-time 
information, a resource manager command that 
provides the jobs’ status must be run periodically, 
and its output interpreted. This approach has some 
disadvantages: a negative impact on performance 

(the commands sometimes take a long time to run, 
especially when there are thousands of jobs running 
on the site), and the format of the commands output 
can change from one version of the resource 
manager to another. The accounting modules 
implemented in MonALISA combine both the real-
time and the log-based approaches, to deliver 
accurate information regarding the resource usage. 

Resource manager failures are another important 
aspect that must be addressed by an accounting 
system. When, for various reasons, the resource 
manager fails to respond and the accounting system 
cannot obtain information, the situation should not 
be interpreted as zero resource usage. There are 
cases when, even though the queries to the resource 
manager fail, the jobs are still running correct. 

 
4.1. COLLECTING ACCOUNTING 
INFORMATION WITH MONALISA 

MonALISA provides distributed registration and 
discovery for services and applications, secured 
remote administration, and also an agent execution 
framework that is used to: supervise applications, 
restart or reconfigure them, and notify other services 
when certain conditions are detected. Information is 
provided for: system information for computer 
nodes and clusters, network information (traffic, 
flows, connectivity, topology) for WAN and LAN, 
information regarding the performance of 
Applications, Jobs or services, and end to end 
performance measurements. Users may access real 
time information using a graphical user interfaces, 
developed with the Java WebStart technology. They 
can also access history information stored in 
MonALISA repositories [15]. 

The accounting modules are a part of the set of 
MonALISA’s monitoring modules, and have the role 
of collecting information from various available 
resource managers. These modules are able to work 
with Condor, PBS, LSF and SGE; if there are 
multiple queue managers in a cluster, the values 
obtained from them are combined. 

Condor is a workload management system 
specialized for compute intensive jobs. One of its 
advantages over other batch queuing systems is the 
ability to perform opportunistic computing 
(harnessing CPU power from idle desktop 
workstations). Also, its ClassAds is a flexible 
mechanism for matching resource requests with 
resource offers. PBS, which stands for Portable 
Batch System, is based on the client-server model, 
with a client making job execution requests to a 
batch server and the server handling the execution of 
the jobs in a cluster by placing them in queues. 
Among the features that PBS provides are the 
possibility to set priorities for jobs and to specify 
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interdependencies between them, automatic file 
staging and multiple scheduling algorithms. SGE 
(Sun Grid Engine) is a resource management system 
able to schedule the allocation of various distributed 
resources, like processors, memory, disk space, and 
software licenses. Its features include resource 
reservation, job checkpointing, the implementation 
of the DRMAA job API and multiple scheduling 
algorithms. LSF (Load Sharing Facility), a 
commercial resource management system, has as its 
core the Platform Enterprise Grid Orchestrator 
(EGO), which by virtualization and automation 
provides a way to orchestrate all the enterprise 
applications into a single cohesive system.  

Table 1. Resource managers and their metrics. 

Job 
manager CPU Time Run Time Job Size Disk Space

CON Yes Yes Yes Yes 
PBS Yes Yes No No 
SGE Yes No Yes No 
LSF Yes Yes Yes No 
 
The monitoring modules parse the output of 

specific commands that provide information about 
the current jobs’ status, and provide summarized 
results for each job. In Table 1 we present the 
metrics used for each resource manager (where CON 
means Condor). In case of Condor and PBS, the log 
files are also considered to obtain additional 
information. The single-job results are then added to 
the statistics made per user and per VO; the 
association between the Unix account from which a 
job is run and the VO is done on the base of a map 
file which specifies the corresponding VO for each 
account. 

There are two categories of VO parameters 
provided by the monitoring module: parameters that 
represent values obtained in the last time interval 
(between the previous run of the module and the 
current one), and parameters that represent rates 
(calculated as the difference between the current 
value of a parameter and the value obtained at the 
previous run, divided by the length of the time 
interval between runs). Among the parameters in the 
first category are the number of running/idle/held 
jobs, the number of submitted and finished jobs, the 
CPU time consumed, and the total size of the jobs. 
The parameters in the second category are the rates 
of submitted jobs, finished jobs, CPU time and wall 
clock time. The values of these parameters can be 
viewed with the aid of the MonALISA graphical 
client, and can also be retrieved by accessing the 
MonALISA web service. However, a MonALISA 
service only stores the parameter values for a limited 
amount of time. For longer periods of time, the 
values are stored in MonALISA repositories. 

As mentioned above, for Condor and PBS the 
modules can be configured to collect information 
from the history logs, besides running the job 
manager commands. Even though this information is 
not useful for real time monitoring (because the 
record for a job is written to the log only when the 
job is finished), there are several reasons why the 
log information is helpful: 
− the log file usually contains the exit status for 

jobs; knowing whether the jobs were finished 
successfully is important both for users and site 
administrators 

− there may be some very short jobs which start 
and end between two consecutive runs of the 
module; by examining the logs, we can add 
these jobs to the VO statistics 

− with the aid of the logs we can double-check the 
values for CPU time and runtime that the 
module collected (the value from the log should 
be greater than or equal to the value obtained in 
the last run of the module). 

A. Collecting Information from Remote Sites 

Normally, the accounting modules collect the 
information from the local cluster on which 
MonALISA is running. However, in some situations 
it is desired to obtain accounting information from 
remote sites. There are two possibilities of doing 
that. First, we use the job manager’s features. For 
example, Condor provides an option to query the 
jobs’ status from a remote pool. The MonALISA 
module can be configured to use this option and to 
collect information from a remote site (and also 
from multiple sites). The disadvantage is that in this 
way, we cannot benefit of the history information as 
the log files are not on the local machine anymore. 

Another possibility to obtain information from 
remote sites is to run the job manager commands 
through a SSH connection on the remote hosts. This 
can be done with any job manager, but it is 
necessary to configure the remote hosts so that a 
SSH connection can be opened with the public key 
authentication method. Another disadvantage is the 
overhead caused by the SSH communication, 
especially when there are problems with the network 
connectivity. This solution has been implemented in 
a version of the Grid modules that is used in the 
SEE-Grid project, on LCG middleware. 

B. Failure Handling 

As mentioned, the accounting system must 
consider situations when the resource manager fails 
and stops providing information. A distinction 
should be made between the case when the manager 
returns an error message, the case when there is no 
answer from the job manager, and the case when the 
job manager works correctly, but there are no 
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running jobs. Otherwise, the accounting system may 
mistakenly report zero current jobs while there 
actually are jobs still executing. To avoid this 
situation, we introduced a set of error codes for the 
accounting module. When the job manager 
command returns with error or it fails to answer, we 
set the appropriate error code, which is also visible 
from the graphical client. 

Another type of failure is the one that affects a 
single job. Sometimes the resource manager may 
decide to restart the failed job, and the CPU time 
counter of the job is reset to zero. We took this case 
into consideration and the accounting module can be 
configured for one of the following behaviours: 
adding the old value of the CPU counter to the VO 
statistic or neglecting the old value. 

C. Processing and Storing Accounting Information 
in the MonALISA Repositories 

MonALISA provides an easy mechanism to 
create clients able to use the discovery mechanism in 
JINI and to find all the active services running in a 
set of targeted communities (groups). Such clients 
can subscribe to a set of parameters or filter agents 
to receive selected information from all the services. 
This offers the possibility to present global views 
from the dynamic set of services running in a 
distributed environment to higher level services.  

The received values are further stored locally into 
a relational database, optimized for space and time. 
The collected monitoring information is further used 
to create web repositories able to present a synthetic 
view of how large distributed systems perform. The 
system allows the development of the required 
higher level services and components necessary to 
provide decision support, and eventually some 
degree of automated decisions, and to help maintain 
and optimize work-flows through the LSDS.  

The repository registers with a set of predicates 
and stores the received values in the local database. 
A predicate has the following pattern: Farm / 
Cluster / Node / start_time / end_time / function_list. 
These parameters can be dynamically plotted into a 
large variety of graphical charts, statistics tables, and 
interactive map views, following the configuration 
files describing the needed views, and thus offering 
customized global or specific perspectives. The 
same mechanism is used to offer access to this 
information from mobile phones using the Wireless 
Access Protocol (WAP). The WSDL/SOAP 
interface is also available so that clients can access 
information received from several farms in LSDS. 

The main components of the repository system 
are the storage client, responsible for data collection 
and storage, and the servlet engine, which ensures 
the translation of user’s customized requests from 
the interface into appropriate queries for the storage 

client (according to the predicate pattern previously 
presented). Furthermore, the repository can plot the 
results in a flexible manner, according to properties 
set in configuration files. Each chart has a 
corresponding configuration file with a simple 
structure that ensures flexibility. Consequently, site 
administrators can specify custom properties of the 
plot: the type (bar, series, spider, double axis series, 
pie, histogram, table, interactive map etc.), the 
information to be displayed – the predicate(s), the 
time interval (real time information or maximum 
length of the history interval), the metrics, the scale, 
statistics generation, graphical enhancements (series 
colours, size, names etc.). The same configuration 
file is used to specify which of these options should 
be accessible to users from the web interface and the 
options default values.  

This feature stresses two levels of customization 
permitted by the repository system: user level, at 
which the user can customize a default view through 
the interface, and site administration level, at which 
the super user can decide which monitoring 
information is made public and how this information 
is displayed. Furthermore, the flexibility at this level 
can be increased through integration of new filters 
and servlets, written by site’s administrators and 
performing specific tasks for the targeted 
community. We developed such filters for 
accounting resource usage in several repositories1. 
The MonALISA repository is a Web client that is 
able to present a synthetic view of how large 
distributed systems perform. A servlet engine is used 
to present historical and real time values, statistics 
and graphical charts in a flexible way. For that, a 
dedicated module adds a new level of aggregation to 
raw data stored in the database. The suitable 
aggregation method and parameters can then be 
selected from the interface or from the configuration 
files: sum, minimum/maximum, average, integration 
over a specified interval, etc.  

An important issue in resource usage accounting 
is the length of the monitored time interval. Usually, 
this time frame spans over a period of a few years 
which in conjunction with high parameter collection 
rates (~2700 parameters/minute for an average 
Grid/VO community) results in large amounts of 
monitored data. Such factor size for the repository 
database (~ 250 GB the average per VO) raises 
space and access time issues. We therefore 
optimized the system to achieve consistency, fault 
tolerance and reliable response times.  

First, we allow a precise selection of relevant 
collected data, as not all received information 

                                                 
1 For a collection of currently available MonALISA monitoring 
repositories the user can also consult http://monalisa.cacr. 
caltech.edu/monalisa__Repositories.htm.  
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presents interest for a certain community. The 
system administrator can choose from repository’s 
configuration file which received predicates should 
be stored in the database, and which should not, and 
which should only be stored in a temporary memory 
buffer, but not written to disk (ex: real-time 
information without history relevance). In the same 
concern for the database’s proportions, the time 
frame covered is adjustable using a sliding window 
mechanism.  

Also, performing accounting queries for long 
history periods is a time consuming process. 
Therefore, an optimized data storage model was 
needed. We used multiple parameters / series tables 
for a fast access. Additionally, we designed tables 
with multiple sampling intervals, so different queries 
may be served from the appropriate sampling table. 
For instance, an accounting query for a short history 
period (1 day, 1 week, 1 month) will use a table with 
a higher resolution (ex: 1 minute sampling), while 
queries for long periods (6 months, 1 year) use lower 
resolution tables (ex: 15 minutes sampling). Also, 
the sampling method can be customized: write 
average values for the sampling interval or write 
directly received data. Further, we use an adaptive 
memory buffer in order to speed up the response.  

Besides being written to the database, the 
accounting monitoring information is stored in a 
buffer, so recent data (used for real-time charts) can 
be quickly accessible without time consuming 
readings from the disk. The size of this buffer can be 
set by the system administrator, otherwise is 
automatically adjusted according to existing memory 
resources. The time frame of the buffer usually 
spans from a few hours to a few days according to 
its memory size and received results rate (~3 hours 
and ~1.000.000 results for an average-size 
repository). Besides this buffer, a data cache is used, 
indexed after servlet queries, which stores the most 
requested queries and their responses. We designed 

this complementary cache observing that there are 
certain requests with the same parameters (all 
information in the configuration files is translated in 
servlet parameters), returning the same charts, so a 
new plot of the same chart was both time consuming 
and unnecessary. 

 
4.2. CASE STUDY: USING MONALISA 
FOR ACCOUNTING 

The Open Science Grid (OSG) is a consortium 
formed as a continuation of the Grid3 project, with 
the purpose of enabling multiple scientist 
communities to access a common Grid 
infrastructure. The infrastructure is administered by 
a set of U.S. universities and national laboratories. 
One of the main project domains in OSG is nuclear 
physics, as many of the current OSG applications 
regard the experiments at the Large Hadron Collider 
from CERN, Switzerland. Other projects developed 
within OSG are in astrophysics, biology and 
gravitational-wave science. The OSG includes an 
Integration Grid, used for testing of new 
technologies and applications, and Production Grid, 
which is a stable environment for executing 
applications. The OSG middleware is packaged with 
the Virtual Data Toolkit (VDT), including Globus 
and Condor as main components, and also the 
MonALISA framework. 

We have been monitoring the OSG group using a 
global repository for several years, tracking 155.000 
parameters from 54 deployed MonALISA services 
on 26.300 nodes (see Figure 11). The number of 
finished jobs in this interval was ~ 9.000.000 in 50 
Virtual Organizations. The repository has been 
serving ~ 2.100.000 requests at an average rate of 
120 requests/hour, with peaks of 1.500 
requests/hour. The average collection rate is ~2.300 
results/minute. 

 

 
Fig. 11 – The OSG Repository 
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Fig. 12 – Integrated CPU time statistic from the 
MonALISA repository 

Fig. 13 – Finished jobs statistic from the MonALISA 
repository 

Figure 12 shows an example of accounting 
resource usage in OSG group with the MonALISA 
repository. The chart presents the total integrated 
CPU time consumed at each site in the last week, 
measured as hours (of CPU time) x number of 
CPUs. The user can select from the interface the 
farms which present interest, the time interval for the 
plot (with predefined periods – last hour, day, week, 
month, year etc. or specific periods), the 
representation model (stacked area, series etc.) and 
size. The chart also has a description and annotations 
and is available for download in different formats: 
CSV, HTML. 

 
Fig. 14 – CPU time consumed by the jobs of a virtual 

organization 

In Figure 15 the plotted results represent the 
number of running and idle jobs for a VO, across 

different OSG sites. This kind of information, 
summarized per VO, is stored on a long term in 
MonALISA repositories. 

 
Fig. 15 – Number of running and idle jobs of a virtual 

organization, across different sites 

Another example of accounting resource usage is 
shown in Figure 13 where a two axes plot presents 
the number of finished jobs in each Virtual 
Organization for the last year as well as the 
cumulative number of finished jobs in each VO, for 
the last year. 

Figures 14 and 15 present information displayed 
by the MonALISA graphical client. The data was 
obtained from MonALISA services that are running 
on OSG sites. In Figure 15 there are the values of 
CPU time consumed by the jobs belonging to a VO, 
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on a single site. Similar charts are available for the 
values of wall clock time, jobs size and disk usage 
(depending on the resource manager running on the 
site). Such charts are helpful when a user wishes to 
learn about the status of his/her jobs. 

 
5. CONCLUSION 

We have presented a distributed framework for 
collecting and processing accounting information in 
LSDS environments. Among the strengths of the 
framework are: scalability, the possibility of 
interacting with diverse resource managers, and 
collecting data both in a real time manner and from 
logs. As of this writing, more than 360 MonALISA 
sites are being monitored 24/7 throughout the world. 
The services monitor more than 60,000 computing 
servers, and thousands of concurrent jobs. More than 
3.5 million parameters are currently monitored in 
near-real time with an aggregate update rate of 
approximately 50,000 parameters per second. Such 
services are mostly deployed by the High Energy 
Physics community to monitor computing resources, 
running jobs and applications, different LSDS 
services and network traffic. The system is used to 
monitors detailed information on how the jobs are 
submitted to different systems, the resources 
consumed, and how the execution is progressing in 
real-time.  

In this paper we presented the capabilities of 
MonALISA framework towards monitoring and 
representing large scale networks at different OSI 
layers. We also present a very useful use case where 
informed automatic decisions based on monitoring 
information can improve reliability and increase 
overall performance of the system. Network 
monitoring, in particular, is vital to ensure proper 
network operations over time, and MonALISA was 
successfully used to provide its monitoring services 
to control a vast majority of the data intensive 
processing tasks used by the LHC experiments. In 
order to build a coherent set of network management 
services it is very important to collect in near real-
time information about the network traffic volume 
and its quality, and analyze the major flows and the 
topology of connectivity. 
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