
Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 351

MONALISA: A MONITORING FRAMEWORK
FOR LARGE SCALE COMPUTING SYSTEMS

Ciprian Dobre 1), Ramiro Voicu 2), Iosif C. Legrand 3)

1) University POLITEHNICA of Bucharest, Spl. Independentei 313, Romania, ciprian.dobre@cs.pub.ro

2) California Institute of Technology, Pasadena, CA 91125, USA, Ramiro.Voicu@cern.ch
3) CERN, European Organization for Nuclear Research, CH-1211, Geneve 23, Switzerland, Iosif.Legrand@cern.ch

Abstract: The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) framework provides a set of
distributed services for monitoring, control, management and global optimization for large scale distributed systems. It
is based on an ensemble of autonomous, multi-threaded, agent-based subsystems which are registered as dynamic
services. They can be automatically discovered and used by other services or clients. The distributed agents can
collaborate and cooperate in performing a wide range of management, control and global optimization tasks (such as
network monitoring, resource accounting) using real time monitoring information. MonALISA includes a coherent set
of network management services to collect in near real-time information about the network topology, the main data
flows, traffic volume and the quality of connectivity. A set of dedicated modules were developed in the MonALISA
framework to periodically perform network measurements tests between all sites. We developed global services to
present in near real-time the entire network topology used by a community. The time evolution of global network
topology is shown in a dedicated GUI. Changes in the global topology at this level occur quite frequently and even
small modifications in the connectivity map may significantly affect the network performance. The global topology
graphs are correlated with active end-to-end network performance measurements, done using the Fast Data Transfer
application, between all sites. Access to both real-time and historical data, as provided by MonALISA, is also important
for developing services able to predict the usage pattern, to aid in efficiently allocating resources globally. For
resource accounting, MonALISA collects information regarding the amounts of resources consumed by the users, which
represent virtual organizations in a large scale distributed system. Besides providing statistical information, an
accounting system can also be the base for managing distributed resources upon an economic model. In the MonALISA
monitoring framework we developed modules that provide accounting facilities, collecting information from cluster
managers like Condor, PBS, LSF and SGE. The usage statistics is used for an intelligent management of the resources.

Keywords: monitoring, large scale networks, topology, accounting, MonALISA.

1. INTRODUCTION
An important part of managing global-scale

systems is a monitoring system that is able to
monitor and track in real time many site facilities,
networks, and tasks in progress. The monitoring
information gathered is essential for developing the
required higher level services, the components that
provide decision support and some degree of
automated decisions and for maintaining and
optimizing workflow in large scale distributed
systems (LSDS). These management and global
optimization functions are performed by higher level
agent-based services.

MonALISA, which stands for Monitoring
Agents using a Large Integrated Services
Architecture, is a monitoring framework designed
as an ensemble of dynamic services, able to
collaborate and cooperate in performing a wide

range of information gathering and processing tasks.
Current applications of MonALISA’s higher level
services include resource accounting, optimized
dynamic routing, control and optimization for data
transfers, distributed job scheduling and automated
management of remote services among a large set of
distributed facilities. MonALISA is currently used
around the clock in several major projects and has
proven to be both highly scalable and reliable.

The main aim for developing the MonALISA
system was to provide a flexible framework capable
to use in near real-time the complete monitoring
information from large number of jobs, computing
facilities and wide area networks to control and
optimize complex workflows in distributed systems.

Compared with other existing monitoring tools
for LSDS, MonALISA is more generic and provides
real-time, scalability, and dependability guarantees.
Currently existing monitoring frameworks tend to be

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 352

too dedicated to specific activities. For example,
Ganglia, and Lemon are mainly used to monitor
computing clusters while tools like MRTG,
PerfSonar, Nagios and Spectum are used to provide
monitor information for Wide Area Networks. In
MonALISA we provide the functionality to easily
collect any type of information and in this way to
offer a more synergetic approach, necessary to
control and optimize the execution of data intensive
applications on large scale distributed systems.

In this paper we present the system architecture
and its applications to monitor and control real-
world LSDSs. In particular, we present details for
two important monitored services: the accounting
and networking components. We acknowledge that
an important part of managing any global-scale
distributed systems is the monitoring system that
should be able to monitor and track in real time
many site facilities, networks, and tasks in progress.
The monitoring information gathered is essential for
developing the required higher level services, the
components that provide decision support and some
degree of automated decisions and for maintaining
and optimizing workflow in LSDSs.

In LSDSs an accounting component is used to
records the resource consumption for each user, and
may have other functionalities like enabling the
administration of the storage of this information, and
interacting with other related services. One of the
functions of the accounting system is to enable an
economically self-sustained distributed system. Such
a system should provide the possibility to charge the
users for the resources consumed, or the possibility
to trade resources among organizations. Another
function of an accounting system is to provide
statistical information that can be further used to
develop intelligent algorithms for scheduling and
resource management.

As the importance of the accounting component
is widely recognized (i.e., as a fundamental pillar of
Cloud Computing), several projects have been
initiated in this domain. Still, there are significant
challenges in developing an accounting system,
related mostly to the complexity and heterogeneity
of LSDS environments. We distinguish between
accounting systems and monitoring systems that
include accounting features [1]: while an accounting
system stores detailed information about single
jobs/users, and can provide usage records for a
particular job, a monitoring system usually collects
statistical information such as the total number of
jobs run by each user, or per-VO resource
consumption (VO stands for virtual organization).

In MonALISA we concentrated on the latter
approach, and developed a set of dedicated
monitoring and accounting modules for LSDSs. The
accounting modules collect information from job

managers such as Condor, PBS, LSF and SGE, and
the accounting data is further stored in the
MonALISA databases.

The monitoring framework has to intelligently
collect, in a LSDS environment, a large number of
monitoring events that are generated by the system
components during the execution or interaction with
external objects (such as users or processes).
Monitoring such events is necessary for observing
the run-time behavior of the large scale distributed
system and for providing status information required
for debugging, tuning and managing processes.
However, correlated events are generated
concurrently and can be distributed in various
locations, which complicates the management
decisions process.

To illustrate this, we also present a set of services
developed in the context of the MonALISA
framework for monitoring and controlling large
scale networks, as an extension of the work
previously presented in [2].

The rest of the paper is structured as follows.
Section 2 presents the MonALISA monitoring
framework. In Section 3 we present the monitoring
services for large scale networks, together with
solutions for the representation of network
topologies at different OSI layers. This is followed
by a real-world use-case for monitoring network
topology in case of one of the largest network
supporting the LHC experiments at CERN. Section
4 describes the accounting modules, and several
results obtained using the modules.Finally, in
Section 5 we give conclusions and present future
work.

2. SYSTEM DESIGN

MonALISA (Monitoring Agents in A Large
Integrated Services Architecture) [3,15] is a globally
scalable framework of services jointly developed by
California Institute of Technology (Caltech) and
University Politehnica of Bucharest (UPB).
MonALISA is currently used in several large scale
High-Energy Physics communities and grid systems
including CMS [4], ALICE [5], ATLAS [6], the
Open Science Grid (OSG) [7], and the Russian LCG
sites. It actively monitors the USLHCNet production
network, as well as the UltraLight R&D network [4].

As of this writing, more than 360 MonALISA
sites are being monitored 24/7 throughout the world.
The services monitor more than 60,000 computing
servers, and thousands of concurrent jobs. More than
3.5 million parameters are currently monitored in
near-real time with an aggregate update rate of
approximately 50,000 parameters per second.

The MonALISA system is designed as an
ensemble of autonomous self-describing agent-based

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 353

Network of Lookup Services

MonALISA

Proxies

High Level
Services

Agents

Fig. 1 – The four layers, main services and components of the MonALISA framework

subsystems which are registered as dynamic
services. These services are able to collaborate and
cooperate in performing a wide range of distributed
information-gathering and processing tasks.

An agent-based architecture of this kind is well-
adapted to the operation and management of large
scale distributed systems, by providing global
optimization services capable of orchestrating
computing, storage and network resources to support
complex workflows. By monitoring the state of
LSDS-sites and their network connections end-to-
end in real time, the MonALISA services are able to
rapidly detect, help diagnose and in many cases
mitigate problem conditions, thereby increasing the
overall reliability and manageability of the
distributed computing systems. The MonALISA
architecture, presented in Fig. , is based on four
layers of global services. The entire system is
developed based on the Java technology.

The network of Lookup Discovery Services
(LUS) provides dynamic registration and discovery
for all other services and agents. MonALISA
services are able to discover each other in the
distributed environment, and be discovered by
interested clients. The registration uses a lease
mechanism. If a service fails to renew its lease, it is
removed from the LUSs and a notification is sent to
all services or applications that subscribed for such
events. Remote event notification is used in this way
to get a real overview of this dynamic system.

The second layer represents the network of
MonALISA services that host many monitoring
tasks through the use of a multithreaded execution
engine. The network also hosts a variety of loosely
coupled agents that analyse the collected
information in real time. These agents are able to
process the information locally, and to communicate
with other services or agents to perform various

global optimization tasks. A service in MonALISA
is a component that interacts autonomously with
other services, either through dynamic proxies or via
agents that use self-describing protocols. By using
the network of lookup services, a distributed
services registry, and the discovery and notification
mechanisms, the services are able to access each
other seamlessly. The use of dynamic remote event
subscription allows a service to register an interest in
a selected set of event types, even in the absence of a
notification provider at registration time.

On the third layer MonALISA hosts a series of
Proxy services. The layer provides an intelligent
multiplexing mechanism for the information
requested by the clients or other services, and
ensures a reliable communication between agents. It
also provides an Access Control Enforcement layer
to provide secures access to the collected
information.

Higher level services and client access the
collected information using the proxy layer of
services. A load balancing mechanism is used to
allocate these services dynamically to the best proxy
service. The clients, other services or agents can get
any real-time or historical data by using a predicate
mechanism for requesting or subscribing to selected
measured values. These predicates are based on
regular expressions to match the attribute description
of the measured values a client is interested in. They
may also be used to impose additional conditions or
constraints for selecting the values. The subscription
requests create a dedicated priority queue for
messages. The communication with the clients is
served by a pool of threads. The allocated thread
performs the matching tests for all the predicates
submitted by a client with the monitoring values in
the data flow. The same thread is responsible to send
the selected results back to the client as compressed

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 354

serialized objects. Having an independent thread for
clients allows sending the information they need, in
a fast and reliable way, and it is not affected by
communication errors which may occur with other
clients. In case of communication problems these
threads will try to re-establish the connection or to
clean-up the subscriptions for a client or a service
which is no longer active.

3. NETWORK MONITORING AND

MANAGEMENT
A large set of MonALISA monitoring modules

has been developed to collect specific network
information or to interface it with existing
monitoring tools, including: SNMP modules for
passive traffic measurements and link status; Active
network measurements using simple ping-like
measurements; Tracepath-like measurements to
generate the global topology of a wide area network;
Interfaces with the well-known monitoring tools
MRTG, RRD [8]; Available Bandwidth
measurements using tools like pathload; Active
bandwidth measurements using Fast Data Transfer
(FDT) [9]; Dedicated modules for TL1 [10]
interfaces with CIENA’s CD/CIs, optical switches
(Glimmerglass and Calient) and GMPLS controllers
(Calient) [11, 12].

In the MonALISA framework the overall status
of the dispersed systems being monitored is
provided by either a GUI client or through
specialized web portals. For the dedicated modules
and agents used to monitor and control Optical
Switches the GUI client of MonALISA provides a
dedicated panel. This panel facilitates the interaction
between users and the monitored Optical Switches.
It offers to the end user a number of features such as
complete perspective over the topology of the
monitored optical networks or the possibility to
monitor the state of the Optical Switches or the
possibility to dynamically create new optical paths.

The tremendous interest in optical networks led
the Internet Engineering Task Force (IETF) to
investigate the use of Generalized MPLS (GMPLS)
and related signaling protocols to set up and tear
down lightpaths. GMPLS is an extension of MPLS
that supports multiple types of switching, including
switching based on wavelengths usually referred to
as Multi-Protocol Lambda Switching (MPλS). In
order to meet the expectations of future network
technologies in the prototype system we made the
first step towards integrating emerging light path
technologies. We implemented the monitoring
module and control agent that provide an interface
between MonALISA and the Calient’s GMPLS-
based control plane.The described system, part of
MonALISA, is currently used in production to

monitor and control a CALIENT Optical Switch
located at California Institute of

Technology in USA and another
GLIMMERGLASS Optical Switch located at the
European Center for Nuclear Research, in
Switzerland. The dedicated monitoring modules use
the TL1 language to communicate with the switch
and they are used to collect specific monitoring
information. The state of each link and any change
in the system is reported to MonALISA agents. The
system is integrated in a reliable and secure way
with the end user applications and provides simple
shell-like commands to map global connections and
to create an optical path / tree on demand for any
data transfer application. A schematic view of how
the entire system works is shown in Figure 2.

Fig. 2 – The system used to monitor and control

Optical Switches and to create on demand optical path
used in production

The implemented prototype system is able to
create dynamically an end to end light path in less
than one second independent of the number of
switches involved and their location. It monitors and
supervises all the created connections and is able to
automatically generate an alternative path in case of
connectivity errors. The alternative path is set up
rapidly enough to avoid a TCP timeout, and thus to
allow the transfer to continue uninterrupted.

Fig. 3 – A schematic view of the functionality to

provide dynamically an efficient end to end path to
data intensive applications. The VINCI system is
optimizing the path allocation using as much as

possible Layer 1 or Layer 2 segments

To satisfy the demands of data intensive
applications it is necessary to move to far more
synergetic relationships between applications and
networks. Currently, even the most complex

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 355

scientific applications are simply passive users of the
existing network infrastructure. The main objective
of the VINCI (Virtual Intelligent Networks for
Computing Infrastructures) project is to enable
users’ applications, at the LHC and in other fields of
data-intensive science, to effectively use and
coordinate shared, hybrid network resources, to
correlate them with available processing power in
order to dynamically generate optimized workflows
in complex distributed system (Figure 3).

VINCI is a multi-agent system for secure light
path provisioning based on dynamic discovery of the
topology in distributed networks. For this project we
are working to provide integrated network services
capable to efficiently use and coordinate shared,
hybrid networks and to improve the performance
and throughput for data intensive applications. This
includes services able to dynamically configure
routers and to aggregate local traffic on dynamically
created optical connections.

The system dynamically estimates and monitors
the achievable performance along a set of candidate
(shared or dedicated) network paths, and correlates
these results with the CPU power and storage
available at various sites, to generate optimized
workflows for LSDS tasks. The VINCI system is
implemented as a dynamic set of collaborating
Agents in the MonALISA framework, exploiting
MonALISA’s ability to access and analyze in-depth
monitoring information from a large number of
network links and LSDS sites in real-time.

3.1. MONITORING AND
REPRESENTATION OF NETWORK
TOPOLOGIES AT DIFFERENT OSI
LAYERS

We present monitoring and representational
services developed considering various network
topologies and the differences posed by network
equipments operating at various OSI levels. In large-

scale networks, such as USLHCNet and UltraLight,
we found devices at ever OSI layer.

A. The Physical Network Layer Topology

A set of specialized TL1 modules are used to
monitor optical switches (Layer 1 devices) from two
major vendors: Glimmerglass and Calient. We were
able to monitor the optical power on ports and the
state of the cross-connects inside these switches.

Based on the monitoring information an agent is
able to detect and to take informed decisions in case
of eventual problems with the cross connections
inside the switch or loss of light on the connections.
The MonALISA framework allows one to securely
configure many such devices from a single GUI, to
see the state of each link in real time, and to have
historical plots for the state and activity on each link.
It also allows to easily manually create a path using
the GUI. In Figure 4 we present the MonALISA
GUI that is used to monitor the topology on the
Layer 1 connections and the state and optical power
of the links. The same GUI can be used to request an
optical path between any two points in the topology.
All the topology related information are kept
distributed, every MonALISA service having its
own view of the network. Every agent computes a
shortest path tree based on Dijkstra’s algorithm. The
convergence in case of problem is very fast, as every
agent has the view of the entire topology.

B. Layer 2 Network Topology / Circuits

The USLHCNet transatlantic network has
evolved from DOE-funded support and management
of international networking between the US and
CERN. USLHCNet today consists of a backbone of
eight 10 Gbps links interconnecting CERN,
MANLAN in New York, and Starlight in Chicago.
The core of the USLHCNet network is based on
Ciena Core Director CD/CI multiplexers which

Fig. 4 – Layer 1 topology: Monitoring and autonomous controlling optical switches

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 356

Fig. 5 – A network weathermap (left) and the layer 2 topology for the dynamic circuits (right)

provide stable fallback in case of link outages at
Layer 1 (the optical layer), and full support for the
GFP/VCAT/LCAS [13] protocol suite.

For the Core Director (CD/CI) we developed
modules which monitor the routing protocol (OSRP)
which allows us to reconstruct the topology inside
the agents, the circuits (VCGs), the state of cross
connects, the Ethernet (ETTP/EFLOW) traffic, the
allocated time slots on the SONET interfaces and the
alarms raised by the CD/CI (see Figure 5).

The operational status for the Force10 ports and
all the Ciena CD/CI alarms are recorded by the
MonALISA services. They are analyzed and
corresponding email notifications can be generated
based on different error conditions. We also monitor
the services used to collect monitoring information.
A global repository for all these alarms is available
on the MonALISA servers, which allows one to
select and sort the alarms based on different
conditions. The link status information is very
sensitive information for the SLA (Service Level
Agreement) with both the experiments and the link
providers. Because of this very strict monitoring
requirement the monitoring had to have almost
100% availability. We achieved this monitoring each
link at both ends from two different points. The
NOCs in Europe, Geneva and Amsterdam, are cross-
monitored from both locations, and the same in US.
In this way we monitor each link in four points and
with special filters this information is directly
aggregated in the repository. For redundancy and
reliable monitoring we keep at least two instances of
repositories running, one in Europe and one in US.
For the past two years we manage to have 100%
monitoring availability inside USLHCNet.

C. Layer 3 Routed Network Topology

For the routed networks, MonALISA is able to
construct the overall topology of a complex wide
area network, based on the delay on each network
segment determined by tracepath-like measurements
from each site to all other sites, as illustrated in

Figure 6.
For any LHC experiment such a network

topology includes several hundred of routers and
tens of Autonomous Systems. Any changes in the
global topology are recorded and this information
can be easily correlated with traffic patterns. The
time evolution of global network topology is shown
a dedicated GUI. Changes in the global topology at
this level occur quite frequently and even small
modifications in the connectivity map may
significantly affect the network performance.

3.2. A REAL USE-CASE FOR TOPOLOGY
INFORMATION

The Alice Grid infrastructure uses MonALISA
framework for both monitoring and controlling. All
the resources used by AliEn [14] services:
computing and storage resources, central services,
networks, jobs are monitored by MonALISA
services at every site.

A. Bandwidth measurements between Alice sites

The data transfer service is used by the ALICE
experiment to perform bandwidth measurements
between all sites, by instructing pairs of site
MonALISA instances to perform FDT memory-to-
memory data transfers with one or more TCP
streams.

Fig. 6 – MonALISA real time view of a topology. A

view of all the routers, or just the network or
“autonomous system” identifiers can be shown

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 357

Fig. 7 – Inter-site bandwidth test results. Tracepath is also recorded.

The results are used for detecting network or

configuration problems, since with each test the
relevant system configuration and the tracepath
between the two hosts are recorded as well. The
MonALISA services are also used to monitor the
end system configuration and automatically notify
the user when these systems are not properly
configured to support effective data transfers in
WAN. In Figure 7 we present the results recorded
from one site to all the others.

B. Automatic storage discovery for Alice

Using the monitoring information from trace-like
measurements, derived information is computed in
the repository, associating the Autonomous System
(AS) number to each of the nodes in a network path.
The repository also runs other monitoring modules
that provide global values and one of them
periodically queries AliEn for the list of defined
storage elements and their size and usage according
to the file catalog. Then periodic functional tests are
performed from the central machine to check
whether the basic file operations (add, get, remove)
are successful. The entire software and network
stacks are checked through these tests, thus the
outcome should be identical for all clients trying to
access the storages.

Aggregating the monitoring and test results, a
client-to-storage distance metric is computed and
used to sort the list of available storage elements to a
particular client. Then the closest working storage
elements is selected either to save the data or, in case
of reading, sorting the available locations based on
this metric, trying to read from the closest location.
The algorithm associates to each storage element a
list of IP addresses representing known machines
from its vicinity.

C. Monitoring modules for dynamic light path
provisioning

Given the monitoring part, we present solutions
adopted for dynamic and automatic provision of

light path based on the monitoring information. For
that MonALISA has two monitoring modules that
provide information about the optical power on ports
and the state of the cross-connect links inside the
switch in near real-time. The modules use
Transaction Language 1 (TL1) commands to retrieve
monitoring information from the optical switch.
Based on the monitoring information the agent is
able to detect and to take informed decisions in case
of eventual problems with the cross connections
inside the switch or loss of light on the connections.

For control the Optical Switch Agent is a
software agent that is dynamically deployed and
runs embedded in a MonALISA service. Its role is to
monitor and control an optical switch, to publish and
to continuously update its configuration. The
configuration consists of the port map, which
specifies the devices attached to the switch, state of
the ports, optical cross-connects inside the switch
and the necessary routing information. The agents
use the MonALISA framework to discover each
other, publish their configuration, and collaborate to
create on-demand and end-to-end optical paths.

The algorithm for dynamic path provisioning is
able to establish an end-to-end connection in the
shortest possible time. In order to achieve this, every
agent in the system has the exact view of the
network and adapts very quickly to changes, using
the previously described solution. The network
topology, implemented as a network graph, has
agents as vertices and optical links between switches
as edges, every edge having a cost associated with it.
The system is modeled using a directed graph. Such
an approach makes it possible to have both full-
duplex and simplex links between optical switches.
Each agent in the graph computes a shortest path
tree using a variant of Dijkstra’s algorithm. The
agents system uses a two-phase commit strategy for
creating the optical cross-connects and a lease
mechanism to guarantee the reliability in case of
partial failures.

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 358

Fig. 8 – The network topology used for creating dynamically, on demand an end to end optical path

An agent that receives a lightpath request
determines, based on the local tree that is already
built, if the request can be fulfilled or not. If it is
possible it also initiates transactions with both the
local and remote ports involved in the path. Once the
transaction is started, the agent assigns a unique ID
for the path, sends the remote cross-connect
commands and after that it tries to establish the
cross-connects on the local switch. An independent
thread is waiting for acknowledgements from the
remote agents. Any remote agent which receives
such a cross-connect request starts a local
transaction only with the ports involved in the cross-
connect. If it succeeds in creating the cross-connect,
it commits the local transaction and it sends back an
“acknowledged” message, otherwise the transaction
is rolled-back and a “not acknowledged” message is
sent. Based on the received messages the local agent
takes the decision whether or not the transaction can
be committed or it has to be rolled back. The
algorithm described above is reliable and guarantees
that the system remains in a consistent state even if a
network problem occurs. The newly created
lightpath has a lease assigned which must be
renewed by all the involved agents and in this way it
can provide a viable mechanism for the system to
recover from partial failures.

To improve the performance and the response
time all the functions executed by an agent are
performed in asynchronous sessions using a pool of
threads. A task can be a request for a lightpath from
a client, or a cross connect request coming from
another agent, or a rerouting task triggered by a
topology change. The only sequential part of the
algorithm described above is in the “pre-commit”
phase, and this involves only the ports that are

supposed to be in the lightpath. Any request
submitted during this phase, which do not involve
these ports can be fulfilled in parallel.

Using this information, an agent is able to detect
the loss-of-light on fiber, and take specific decisions
if the port is part of a lightpath. The agent who
detects the problem notifies the initiator, which is
responsible to try to reroute the traffic through
another path, if this is possible. When the initiator
detects a change in topology that affects the
lightpath, it forces the shortest path tree to be
recalculated. Based on the new tree, the agent is able
to take the decision if the light can be rerouted using
other path, or it can tear down the entire path. This is
very useful, because in case of successful rerouting,
the problem will not disturb already established
sockets, upper network layers, like TCP, not being
able to detect the problem.

The routing algorithm used to establish an end to
end lightpath is similar with link-state routing
protocols. The work presented here uses an
algorithm similar to link-state routing algorithms
because they converge faster than distance-vector
algorithms. In order to guarantee consistency and
reliability of the entire system, a two-phase commit
strategy and a lease mechanism were also
developed.

We developed dedicated modules for several
types of optical switches. The system is currently
used to create dynamically on demand optical
connections between computers located at CERN
(Geneva) and California Institute of Technology
(CALTECH) located in Pasadena, CA, using the
networking infrastructure of USLHCNet and
Internet2 [16, 17].

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 359

USLHCNet provides two transatlantic 10 Gb/s
optical links between CERN and Starlight (Chicago)
and MANLAN (New York). On the Internet2
network, the pure optical connections are simulated
using several VLANs to provide direct connections
from Chicago and New York to CALTECH. The
topology of the network infrastructure used is shown
in Figure 8.

The system is able to create dynamically an end
to end lightpath in less than one second independent
of the number of switches involved and their
location. It monitors and supervises all the created
connections and is able to automatically generate an
alternative path in case of connectivity errors. The
alternative path is set up rapidly enough to avoid a
TCP timeout, and thus to allow the transfer to
continue uninterrupted.

The optical fibers are simulated through two
VLANs between the two optical switches. One
VLAN is routed through New York and the other
one through Chicago. The monitoring module is able
to simulate a fiber cut. The optical agent will detect
this as a real loss-of-light and will try to reroute the
path.

In the example above a disk to disk transfer is
presented, using two 4-disk servers, one at Caltech
and the other one at CERN in Geneva. During the
transfer four fiber cuts were simulated,
corresponding to the four drops in the Figure 9.

These fibers cuts simulations were done on the
Geneva – Starlight and Geneva – Manlan links and
the transfer was rerouted four times between these
two links. The “fiber cut” and the reroute are done
quick enough that the TCP does not sense the loss in
connectivity and the transfer continues. The
recovery time differs for various TCP stacks and the
round trip time between end points.

Fig. 9 – The total disk to disk throughput between a
server at CERN and one at CALTECH. Four “fiber

cuts” were simulated during the transfer. The
throughput drops when a rerouting is done, but it

recovers quickly

In the MonALISA framework the overall status
of the dispersed systems being monitored is
provided by either a GUI client or through
specialized web portals. For the dedicated modules

and agents used to monitor and control Optical
Switches the GUI client of MonALISA provides a
dedicated panel. This panel facilitates the interaction
between users and the monitored Optical Switches.
It offers to the end user a number of features such as
complete perspective over the topology of the
monitored optical networks or the possibility to
monitor the state of the Optical Switches or the
possibility to dynamically create new optical paths.

The main panel is presented in Figure 10. The
main aspect of this panel is that it displays in an
intuitive way the current topology of the monitored
Optical Switches and the links between. For the
Optical Switches we use different colors to represent
the state of their internal ports and the state of the
links between the represented entities. In the panel,
besides the Optical Switches a number of other
devices (the blue ovals) can also be represented.
These devices, equipped with optical network cards,
are connected by optical links to the Optical
Switches being monitored.

Fig. 10 – Same topology and status on the 3D Map

panel

The Optical Switches and the links connecting
them are also represented in the 3D Map panel (see
Figure 8). This panel locates the MonALISA
monitoring services on a 3D view of the world
geographical map. It also shows the monitoring
WAN links, real-time traffic on them, the capacity
of the links, the connectivity between sites, the
optical switches controlled and other parameters like
sites Load, CPU usage, IO parameters, etc. In this
way the user is presented with an easy to use
complete visualization tool which represents the
global state of the entire monitored systems.

For the optical paths created from this panel
(represented in green color in Figure 4) the user is
presented with the details of which devices and ports
one particular path is crossing (from end to end)
together with the components involved in that path
(the highlighted devices in Figure 4).

The panel can be also used to create new optical

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 360

paths or delete existing ones. In order to gain access
to these operations the user must present though the
necessary credentials. The security layer is
implemented using RMI over SSL.

4. MONITORING ALICE DISTRIBUTED

COMPUTING ENVIRONMENT
One of the major challenges in designing the

monitoring and accounting system in case of LSDS
is the heterogeneity of the sites. They may use
various resource managers, such as Condor, PBS,
Sun Grid Engine, LSF, etc. Such resource managers
provide accounting information, but the set of
provided parameters (and their measurements units
for that matter) differ from one manager to another.
While some resource managers record detailed
information (such as the amount of memory and disk
space used by the jobs, and the amount of network
traffic they produce), others only record basic
information (such as runtime and CPU time
consumed). Therefore, the common set of
parameters that can be collected depends on the set
of available resource managers.

Another challenge encountered when defining
the format of a resource usage record is that there
are some differences between LSDS jobs (e.g.,
between Grid jobs and batch jobs). Therefore, a
decision has to be taken regarding which one of the
job models should be used for accounting
information. For example, when recording the start
time for a Grid job, this may have different
meanings: the time when the job got submitted to the
Grid broker, the time when it entered the batch
system queue, or the time when it actually started
executing on a computing node. Though the last
variant is usually considered at this moment
(corresponding to a batch job model), it might be
better to use the Grid job model and consider the
time needed for brokering, data staging, etc.

There are two ways in which an accounting
system can collect the information: 1) in a real-time
mode, while the jobs are being executed, or 2) by
gathering data from the resource manager logs, after
a job completes. The second approach has the
advantages of simplicity, and provides more
information – so it is sufficient for the accounting
purposes. However, a monitoring system is not of
much help if it provides information about a job only
after it is finished. Users need real-time information,
so that they know the status of their jobs while they
are being executed – especially since a job can
typically run for several hours. To obtain real-time
information, a resource manager command that
provides the jobs’ status must be run periodically,
and its output interpreted. This approach has some
disadvantages: a negative impact on performance

(the commands sometimes take a long time to run,
especially when there are thousands of jobs running
on the site), and the format of the commands output
can change from one version of the resource
manager to another. The accounting modules
implemented in MonALISA combine both the real-
time and the log-based approaches, to deliver
accurate information regarding the resource usage.

Resource manager failures are another important
aspect that must be addressed by an accounting
system. When, for various reasons, the resource
manager fails to respond and the accounting system
cannot obtain information, the situation should not
be interpreted as zero resource usage. There are
cases when, even though the queries to the resource
manager fail, the jobs are still running correct.

4.1. COLLECTING ACCOUNTING
INFORMATION WITH MONALISA

MonALISA provides distributed registration and
discovery for services and applications, secured
remote administration, and also an agent execution
framework that is used to: supervise applications,
restart or reconfigure them, and notify other services
when certain conditions are detected. Information is
provided for: system information for computer
nodes and clusters, network information (traffic,
flows, connectivity, topology) for WAN and LAN,
information regarding the performance of
Applications, Jobs or services, and end to end
performance measurements. Users may access real
time information using a graphical user interfaces,
developed with the Java WebStart technology. They
can also access history information stored in
MonALISA repositories [15].

The accounting modules are a part of the set of
MonALISA’s monitoring modules, and have the role
of collecting information from various available
resource managers. These modules are able to work
with Condor, PBS, LSF and SGE; if there are
multiple queue managers in a cluster, the values
obtained from them are combined.

Condor is a workload management system
specialized for compute intensive jobs. One of its
advantages over other batch queuing systems is the
ability to perform opportunistic computing
(harnessing CPU power from idle desktop
workstations). Also, its ClassAds is a flexible
mechanism for matching resource requests with
resource offers. PBS, which stands for Portable
Batch System, is based on the client-server model,
with a client making job execution requests to a
batch server and the server handling the execution of
the jobs in a cluster by placing them in queues.
Among the features that PBS provides are the
possibility to set priorities for jobs and to specify

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 361

interdependencies between them, automatic file
staging and multiple scheduling algorithms. SGE
(Sun Grid Engine) is a resource management system
able to schedule the allocation of various distributed
resources, like processors, memory, disk space, and
software licenses. Its features include resource
reservation, job checkpointing, the implementation
of the DRMAA job API and multiple scheduling
algorithms. LSF (Load Sharing Facility), a
commercial resource management system, has as its
core the Platform Enterprise Grid Orchestrator
(EGO), which by virtualization and automation
provides a way to orchestrate all the enterprise
applications into a single cohesive system.

Table 1. Resource managers and their metrics.

Job
manager CPU Time Run Time Job Size Disk Space

CON Yes Yes Yes Yes
PBS Yes Yes No No
SGE Yes No Yes No
LSF Yes Yes Yes No

The monitoring modules parse the output of

specific commands that provide information about
the current jobs’ status, and provide summarized
results for each job. In Table 1 we present the
metrics used for each resource manager (where CON
means Condor). In case of Condor and PBS, the log
files are also considered to obtain additional
information. The single-job results are then added to
the statistics made per user and per VO; the
association between the Unix account from which a
job is run and the VO is done on the base of a map
file which specifies the corresponding VO for each
account.

There are two categories of VO parameters
provided by the monitoring module: parameters that
represent values obtained in the last time interval
(between the previous run of the module and the
current one), and parameters that represent rates
(calculated as the difference between the current
value of a parameter and the value obtained at the
previous run, divided by the length of the time
interval between runs). Among the parameters in the
first category are the number of running/idle/held
jobs, the number of submitted and finished jobs, the
CPU time consumed, and the total size of the jobs.
The parameters in the second category are the rates
of submitted jobs, finished jobs, CPU time and wall
clock time. The values of these parameters can be
viewed with the aid of the MonALISA graphical
client, and can also be retrieved by accessing the
MonALISA web service. However, a MonALISA
service only stores the parameter values for a limited
amount of time. For longer periods of time, the
values are stored in MonALISA repositories.

As mentioned above, for Condor and PBS the
modules can be configured to collect information
from the history logs, besides running the job
manager commands. Even though this information is
not useful for real time monitoring (because the
record for a job is written to the log only when the
job is finished), there are several reasons why the
log information is helpful:
− the log file usually contains the exit status for

jobs; knowing whether the jobs were finished
successfully is important both for users and site
administrators

− there may be some very short jobs which start
and end between two consecutive runs of the
module; by examining the logs, we can add
these jobs to the VO statistics

− with the aid of the logs we can double-check the
values for CPU time and runtime that the
module collected (the value from the log should
be greater than or equal to the value obtained in
the last run of the module).

A. Collecting Information from Remote Sites

Normally, the accounting modules collect the
information from the local cluster on which
MonALISA is running. However, in some situations
it is desired to obtain accounting information from
remote sites. There are two possibilities of doing
that. First, we use the job manager’s features. For
example, Condor provides an option to query the
jobs’ status from a remote pool. The MonALISA
module can be configured to use this option and to
collect information from a remote site (and also
from multiple sites). The disadvantage is that in this
way, we cannot benefit of the history information as
the log files are not on the local machine anymore.

Another possibility to obtain information from
remote sites is to run the job manager commands
through a SSH connection on the remote hosts. This
can be done with any job manager, but it is
necessary to configure the remote hosts so that a
SSH connection can be opened with the public key
authentication method. Another disadvantage is the
overhead caused by the SSH communication,
especially when there are problems with the network
connectivity. This solution has been implemented in
a version of the Grid modules that is used in the
SEE-Grid project, on LCG middleware.

B. Failure Handling

As mentioned, the accounting system must
consider situations when the resource manager fails
and stops providing information. A distinction
should be made between the case when the manager
returns an error message, the case when there is no
answer from the job manager, and the case when the
job manager works correctly, but there are no

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 362

running jobs. Otherwise, the accounting system may
mistakenly report zero current jobs while there
actually are jobs still executing. To avoid this
situation, we introduced a set of error codes for the
accounting module. When the job manager
command returns with error or it fails to answer, we
set the appropriate error code, which is also visible
from the graphical client.

Another type of failure is the one that affects a
single job. Sometimes the resource manager may
decide to restart the failed job, and the CPU time
counter of the job is reset to zero. We took this case
into consideration and the accounting module can be
configured for one of the following behaviours:
adding the old value of the CPU counter to the VO
statistic or neglecting the old value.

C. Processing and Storing Accounting Information
in the MonALISA Repositories

MonALISA provides an easy mechanism to
create clients able to use the discovery mechanism in
JINI and to find all the active services running in a
set of targeted communities (groups). Such clients
can subscribe to a set of parameters or filter agents
to receive selected information from all the services.
This offers the possibility to present global views
from the dynamic set of services running in a
distributed environment to higher level services.

The received values are further stored locally into
a relational database, optimized for space and time.
The collected monitoring information is further used
to create web repositories able to present a synthetic
view of how large distributed systems perform. The
system allows the development of the required
higher level services and components necessary to
provide decision support, and eventually some
degree of automated decisions, and to help maintain
and optimize work-flows through the LSDS.

The repository registers with a set of predicates
and stores the received values in the local database.
A predicate has the following pattern: Farm /
Cluster / Node / start_time / end_time / function_list.
These parameters can be dynamically plotted into a
large variety of graphical charts, statistics tables, and
interactive map views, following the configuration
files describing the needed views, and thus offering
customized global or specific perspectives. The
same mechanism is used to offer access to this
information from mobile phones using the Wireless
Access Protocol (WAP). The WSDL/SOAP
interface is also available so that clients can access
information received from several farms in LSDS.

The main components of the repository system
are the storage client, responsible for data collection
and storage, and the servlet engine, which ensures
the translation of user’s customized requests from
the interface into appropriate queries for the storage

client (according to the predicate pattern previously
presented). Furthermore, the repository can plot the
results in a flexible manner, according to properties
set in configuration files. Each chart has a
corresponding configuration file with a simple
structure that ensures flexibility. Consequently, site
administrators can specify custom properties of the
plot: the type (bar, series, spider, double axis series,
pie, histogram, table, interactive map etc.), the
information to be displayed – the predicate(s), the
time interval (real time information or maximum
length of the history interval), the metrics, the scale,
statistics generation, graphical enhancements (series
colours, size, names etc.). The same configuration
file is used to specify which of these options should
be accessible to users from the web interface and the
options default values.

This feature stresses two levels of customization
permitted by the repository system: user level, at
which the user can customize a default view through
the interface, and site administration level, at which
the super user can decide which monitoring
information is made public and how this information
is displayed. Furthermore, the flexibility at this level
can be increased through integration of new filters
and servlets, written by site’s administrators and
performing specific tasks for the targeted
community. We developed such filters for
accounting resource usage in several repositories1.
The MonALISA repository is a Web client that is
able to present a synthetic view of how large
distributed systems perform. A servlet engine is used
to present historical and real time values, statistics
and graphical charts in a flexible way. For that, a
dedicated module adds a new level of aggregation to
raw data stored in the database. The suitable
aggregation method and parameters can then be
selected from the interface or from the configuration
files: sum, minimum/maximum, average, integration
over a specified interval, etc.

An important issue in resource usage accounting
is the length of the monitored time interval. Usually,
this time frame spans over a period of a few years
which in conjunction with high parameter collection
rates (~2700 parameters/minute for an average
Grid/VO community) results in large amounts of
monitored data. Such factor size for the repository
database (~ 250 GB the average per VO) raises
space and access time issues. We therefore
optimized the system to achieve consistency, fault
tolerance and reliable response times.

First, we allow a precise selection of relevant
collected data, as not all received information

1 For a collection of currently available MonALISA monitoring
repositories the user can also consult http://monalisa.cacr.
caltech.edu/monalisa__Repositories.htm.

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 363

presents interest for a certain community. The
system administrator can choose from repository’s
configuration file which received predicates should
be stored in the database, and which should not, and
which should only be stored in a temporary memory
buffer, but not written to disk (ex: real-time
information without history relevance). In the same
concern for the database’s proportions, the time
frame covered is adjustable using a sliding window
mechanism.

Also, performing accounting queries for long
history periods is a time consuming process.
Therefore, an optimized data storage model was
needed. We used multiple parameters / series tables
for a fast access. Additionally, we designed tables
with multiple sampling intervals, so different queries
may be served from the appropriate sampling table.
For instance, an accounting query for a short history
period (1 day, 1 week, 1 month) will use a table with
a higher resolution (ex: 1 minute sampling), while
queries for long periods (6 months, 1 year) use lower
resolution tables (ex: 15 minutes sampling). Also,
the sampling method can be customized: write
average values for the sampling interval or write
directly received data. Further, we use an adaptive
memory buffer in order to speed up the response.

Besides being written to the database, the
accounting monitoring information is stored in a
buffer, so recent data (used for real-time charts) can
be quickly accessible without time consuming
readings from the disk. The size of this buffer can be
set by the system administrator, otherwise is
automatically adjusted according to existing memory
resources. The time frame of the buffer usually
spans from a few hours to a few days according to
its memory size and received results rate (~3 hours
and ~1.000.000 results for an average-size
repository). Besides this buffer, a data cache is used,
indexed after servlet queries, which stores the most
requested queries and their responses. We designed

this complementary cache observing that there are
certain requests with the same parameters (all
information in the configuration files is translated in
servlet parameters), returning the same charts, so a
new plot of the same chart was both time consuming
and unnecessary.

4.2. CASE STUDY: USING MONALISA
FOR ACCOUNTING

The Open Science Grid (OSG) is a consortium
formed as a continuation of the Grid3 project, with
the purpose of enabling multiple scientist
communities to access a common Grid
infrastructure. The infrastructure is administered by
a set of U.S. universities and national laboratories.
One of the main project domains in OSG is nuclear
physics, as many of the current OSG applications
regard the experiments at the Large Hadron Collider
from CERN, Switzerland. Other projects developed
within OSG are in astrophysics, biology and
gravitational-wave science. The OSG includes an
Integration Grid, used for testing of new
technologies and applications, and Production Grid,
which is a stable environment for executing
applications. The OSG middleware is packaged with
the Virtual Data Toolkit (VDT), including Globus
and Condor as main components, and also the
MonALISA framework.

We have been monitoring the OSG group using a
global repository for several years, tracking 155.000
parameters from 54 deployed MonALISA services
on 26.300 nodes (see Figure 11). The number of
finished jobs in this interval was ~ 9.000.000 in 50
Virtual Organizations. The repository has been
serving ~ 2.100.000 requests at an average rate of
120 requests/hour, with peaks of 1.500
requests/hour. The average collection rate is ~2.300
results/minute.

Fig. 11 – The OSG Repository

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 364

Fig. 12 – Integrated CPU time statistic from the
MonALISA repository

Fig. 13 – Finished jobs statistic from the MonALISA
repository

Figure 12 shows an example of accounting
resource usage in OSG group with the MonALISA
repository. The chart presents the total integrated
CPU time consumed at each site in the last week,
measured as hours (of CPU time) x number of
CPUs. The user can select from the interface the
farms which present interest, the time interval for the
plot (with predefined periods – last hour, day, week,
month, year etc. or specific periods), the
representation model (stacked area, series etc.) and
size. The chart also has a description and annotations
and is available for download in different formats:
CSV, HTML.

Fig. 14 – CPU time consumed by the jobs of a virtual

organization

In Figure 15 the plotted results represent the
number of running and idle jobs for a VO, across

different OSG sites. This kind of information,
summarized per VO, is stored on a long term in
MonALISA repositories.

Fig. 15 – Number of running and idle jobs of a virtual

organization, across different sites

Another example of accounting resource usage is
shown in Figure 13 where a two axes plot presents
the number of finished jobs in each Virtual
Organization for the last year as well as the
cumulative number of finished jobs in each VO, for
the last year.

Figures 14 and 15 present information displayed
by the MonALISA graphical client. The data was
obtained from MonALISA services that are running
on OSG sites. In Figure 15 there are the values of
CPU time consumed by the jobs belonging to a VO,

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 365

on a single site. Similar charts are available for the
values of wall clock time, jobs size and disk usage
(depending on the resource manager running on the
site). Such charts are helpful when a user wishes to
learn about the status of his/her jobs.

5. CONCLUSION

We have presented a distributed framework for
collecting and processing accounting information in
LSDS environments. Among the strengths of the
framework are: scalability, the possibility of
interacting with diverse resource managers, and
collecting data both in a real time manner and from
logs. As of this writing, more than 360 MonALISA
sites are being monitored 24/7 throughout the world.
The services monitor more than 60,000 computing
servers, and thousands of concurrent jobs. More than
3.5 million parameters are currently monitored in
near-real time with an aggregate update rate of
approximately 50,000 parameters per second. Such
services are mostly deployed by the High Energy
Physics community to monitor computing resources,
running jobs and applications, different LSDS
services and network traffic. The system is used to
monitors detailed information on how the jobs are
submitted to different systems, the resources
consumed, and how the execution is progressing in
real-time.

In this paper we presented the capabilities of
MonALISA framework towards monitoring and
representing large scale networks at different OSI
layers. We also present a very useful use case where
informed automatic decisions based on monitoring
information can improve reliability and increase
overall performance of the system. Network
monitoring, in particular, is vital to ensure proper
network operations over time, and MonALISA was
successfully used to provide its monitoring services
to control a vast majority of the data intensive
processing tasks used by the LHC experiments. In
order to build a coherent set of network management
services it is very important to collect in near real-
time information about the network traffic volume
and its quality, and analyze the major flows and the
topology of connectivity.

ACKNOWLEDGMENT

This work was supported by project “ERRIC -
Empowering Romanian Research on Intelligent
Information Technologies/FP7-REGPOT-2010-1”,
ID: 264207. The work has been cofounded by the
Sectoral Operational Programme Human Resources
Development 2007-2013 of the Romanian Ministry
of Labour, Family and Social Protection through the
Financial Agreement POSDRU/89/1.5/S/62557.

6. REFERENCES
[1] L. Gaido, A. Guarise, G. Patania, R. Piro,

F. Rosso, A. Werbrouck, The Distributed Grid
Accounting System (DGAS), Last accessed
November 22, 2012, from http://www.to.infn.
it/grid/accounting/main.html.

[2] C. Dobre, R. Voicu, I. Legrand, Monitoring
large scale network topologies, Intelligent Data
Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS 2011),
Prague, Czech Republic (September 2011), pp.
218-222.

[3] MonALISA official website (2012), Last
accessed November 24, 2012, from
http://monalisa.caltech.edu/.

[4] CMS Experiment official website (2012), Last
retrieved November 21, 2012, from
http://cms.cern.ch.

[5] ALICE Experiment official website (2012),
Last retrieved November 21, 2012, from
http://aliweb.cern.ch.

[6] Atlas Experiment official website (2012), Last
retrieved November 21, 2012, from
http://atlas.web.cern.ch.

[7] OSG official website (2012), Last retrieved
November 25, 2012, from http://www.opens
ciencegrid.org.

[8] RRD official website (2012), Last retrieved
November 24, 2012, from http://www.mrtg.
org/rrdtool.

[9] FDT official website (2012), Last retrieved
November 24, 2012, from http://fdt.cern.ch.

[10] TL1 – Transaction Language 1 Generic
Requirements Document GR-831-CORE
(2012), Last retrieved November 12, 2012,
from http://telecom-info.telcordia.com/site-
cgi/ido/docs.cgi?ID=SEARCH&DOCUMENT
=GR-831.

[11] Calient Technologies official website (2012),
Last retrieved November 23, 2012, from:
http://www.calient.net.

[12] GMPLS – General Multi-Protocol Label
Switching Architecture RFC3945.

[13] ITU-T Rec. G.7042, Link Capacity Adjustment
Scheme (LCAS) for Virtual Concatenated
Signals, Feb. 2004.

[14] S. Bagnasco, L. Betev, P. Buncic, et al, AliEn:
ALICE environment on the grid, in: J. Phys.:
Conf. Ser. (2007), pp. 119.

[15] I.C. Legrand, H. Newman, R. Voicu, et al,
MonALISA: An agent based, dynamic service
system to monitor, control and optimize
distributed systems, In: Computer Physics
Communications, (180) Issue 12 (December
2009), pp. 2472-2498.

[16] R. Byrom, R. Cordenonsib, L. Cornwall, et al,

Ciprian Dobre, Ramiro Voicu, Iosif C. Legrand / Computing, 2012, Vol. 11, Issue 4, 351-366

 366

APEL: An implementation of Grid accounting
using R-GMA, in: UK e-Science All Hands
Conference, Nottingham (September 2005).

[17] A. Cooke, A.J. Gray, W. Nutt, et al, The
relational grid monitoring architecture:
mediating information about the grid, in:
Journal of Grid Computing, (2) 4 (2004), pp.
323-339.

Ciprian Dobre, PhD, has
scientific and scholarly
contributions in the field of
large scale distributed systems
concerning monitoring
(MonALISA), data services
(PRO, DataCloud@Work),
high-speed networking (VINCI,
FDT), large scale application
development (EGEE III, SEE-
GRID-SCI), evaluation using

modeling and simulation (MONARC 2, VNSim).
Ciprian Dobre was awarded a PhD scholarship from
California Institute of Technology (Caltech, USA),
and another one from Oracle. His results received
two CENIC Awards, and a Best Paper Award, and
were published in 6 books, 10 articles in major
international peer-reviewed journal, and over 60
articles in well-established international conferences
and workshops (these articles received more than
150 citations). Currently he is local project
coordinator for national projects ‘CAPIM – Context-

Aware Platform using Integrated Mobile Services’,
and ‘TRANSYS – Models and Techniques for Traffic
Optimizing in Urban Environments’.

Ramiro Voicu, PhD, is Soft-
ware Engineer at the Califor-
nia Institute of Technology. He
has expertise in the design
and development of solutions
for proficient provisioning of
network resources, data trans-

fer mechanisms capable of dynamic bandwidth ad-
justments capabilities, extensible monitoring infra-
structure development, with specific accent on the
mechanisms to provide full end-to-end performance
data.

Iosif Legrand is Senior Soft-
ware Engineer at the Califor-
nia Institute of Technology,
Division of Physics, Mathema-
tics and Astronomy. He wor-
ked on the simulation and mo-
deling of the Data Grid Hierar-
chy concept and the globally
distributed Computing Model
adopted by the LHC high ene-

rgy physics collaborations. He is member of the US-
CMS collaboration and is working on distributed
network services, monitoring systems and grid
related activities.

