
Tomasz Owczarek / Computing, 2012, Vol. 11, Issue 4, 345-350 
 

 345

 
 
 

COMPETITION BETWEEN HETEROGENEOUS AGENTS IN COMPLEX 
ENVIRONMENT 

 
Tomasz Owczarek 

 
Faculty of Organization and Management, Silesian University of Technology,  

Zabrze, Poland, tomasz.owczarek@polsl.pl 
 

Abstract: The article applies complexity theory to study heterogeneous organizations in an environment filled with 
their competitors and complementors. An agent-based simulation model is used to analyze effects of interactions in an 
environment with different level of complexity. Agents, differing in size and adaptability, try to adapt to fitness 
landscape they are placed in (which is based on Kauffman’s NK model) in order to increase their fitness level. Results 
of conducted simulations are presented and analyzed. 
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1. INTRODUCTION 
It is believed that growing complexity of 

business environment changes interorganizational 
relationships and the way organizations perceive 
their rivals [1]-[2]. New ICT technologies and rapid 
growth of internet as sales and advertising medium 
are main causes of the more and more 
comprehensive (and thus more complex) products 
and services offered by firms. Firms have to operate 
in dynamic, complex environment and decide where 
to compete, because organizations today cannot 
operate alone. Sometimes their main partner in some 
activity is at the same time one of the largest 
competitors in another. The decision – which path to 
follow – is of strategic importance[3]-[4].  

The term coopetition (which can be defined as 
cooperation with competitor) is getting more and 
more attention in strategic management [4]-[6], and 
different approaches are used to study this concept 
[7]. The article is an attempt to apply complexity 
theory [8] to study behavior of heterogeneous 
organizations in an environment filled with their 
competitors and complementors [5].  

In the article agent-based model [9]-[11] is used 
to analyze effects of interactions in an environment 
with different level of complexity. In order to 
increase their fitness agents try to adapt to the fitness 
landscape they are placed in (which is based on 
Kauffman’s NK model [12]) and at the same time 
they must decide where to compete with other 
agents. The model is an extension of the model 

presented in [13]. Two new parameters are 
presented: firm-size and firm-agility, which 
differentiate agents. The question we want to answer 
here is the impact of the size of firms and their 
ability to make more radical change in their inner 
structure on their fitness level. The results from [13] 
are used to limit the range of parameters of the 
environment.  

The article is organized as follows. Section two 
presents the NK model used as a representation of 
environment with desired level of complexity. 
Section three describes the details of simulation 
model and introduces novel parameters in addition 
to the model presented in [13]. Results of conducted 
simulations are presented and analyzed in section 
four. Section five contains discussion and directions 
for future work. 

 
2. NK MODEL 

In Kauffman’s NK model [12] agents are treated 
as systems. They consist of fixed number of 
elements (parts). The combination of values of each 
element is agent’s inner structure. The NK model is 
an abstract representation of a fitness landscape i.e. a 
mapping from an agent’s inner structure to its fitness 
level. Agent’s fitness strictly depends on its inner 
parts. The set of parts, in the domain of 
organizations, can be interpreted as elements of its 
business strategy, human resource policy [14], 
resources owned, product features and so on. 

There are two main parameters in the model. 
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Parameter N refers to the number of elements each 
agent consists of. Greater N means that there are 
more types of different possible agents. Parameter K 
is responsible for the number of interconnections 
between the elements, because each element 
contributes some fitness, but this contribution 
depends upon that element and upon K other 
elements. In the original Kauffman’s model there is 
also additional parameter which specifies the 
number of possible values each element can have. In 
this paper it is assumed that each element can have 
two values: 0 or 1 so the number of all possible 
different agents is 2N. 

As it was said, each element si (i = 1,…, N) 
makes a fitness contribution wi specified by NK 
model (usually it is a random value drawn from the 
uniform interval between 0.0 and 1.0). The fitness of 
agent A is defined as the average contribution of its 
elements: 
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Table 1 shows two models with N = 2, first with 

K = 0 (model a) and second with K = 1 (model b). 
Two examples of agents and their fitness are also 
presented. 

Table 1. Examples of NK model 

model a  
K = 0  
(each 
element is 
independent) 

elements s1 fitness s2 fitness 
(0, *) 
(1, *) 
(*, 0) 
(*, 1) 

0.6 
0.3 
- 
- 

- 
- 

0.1 
0.4 

Example 1: W(1, 1) = (0.3 + 0.4)/2 = 0.35 
model b  
K = 1 
(elements 
depend upon 
each other) 

elements s1 fitness s2 fitness 
(0, 0) 
(0, 1) 
(1, 0) 
(1, 1) 

0.4 
0.7 
0.5 
0.6 

0.8 
0.3 
0.9 
0.5 

Example 2: W(1, 1) = (0.6 + 0.5)/2 = 0.55 
 
The main feature of NK model is the possibility 

of establishing desired ruggedness level [15] of the 
generated fitness landscape, which depends upon the 
parameter K. When K = 0 the surface of a landscape 
seems smooth, with single optimum which can be 
reached from any point by series of local adaptations 
(Fig. 1a). When K = N – 1, the generated landscape 
is very rugged, with many local optima and a slight 
change in agent’s structure can have a significant 
impact on its fitness (Fig. 1b).  

 
a) smooth, single-peaked landscape 

 
b) rugged, multi-peaked landscape 

Fig. 1 – Different kinds of lanscapes [14] 

Consider examples presented in Table 1. 
Changing the first element of the agent from 
example 1 will have a positive effect on its fitness 
(0.6 instead of 0.3) and it does not affect fitness 
contribution of its second element. The same change 
in the structure of agent from example 2 will 
decrease its overall fitness: it will increase the 
fitness contribution of its first element (from 0.6 to 
0.7) but at the same time the fitness contribution of 
its second element will be worst (0.3 instead of 0.5). 

Simply speaking, the more interconnections 
between elements of agent’s structure (i.e. the 
greater value of K), the more complex is the 
environment it exists in. 

 
3. SIMULATION MODEL 

The simulation model was created and performed 
with NetLogo 5.0.1, a multi-agent programmable 
modeling environment [16]. The simulation consists 
of two steps: firstly, the fitness landscape with 
specified parameters N and K is generated and then 
agents are placed in the landscape and they try to 
adapt (in order to receive the greater utility) by 
moving from one place to another.  

In the simulation model fitness landscape 
consists of 2N nodes (called places in the model) 
which represent any type of agents’ inner structure. 
Each place is connected with its one-mutant 
neighbors, i.e. places which differ in only one 
position. Places are the nodes of undirected graph 
and their position is based on the Fruchterman-
Reingold layout algorithm [17] (function layout-
spring in NetLogo). Each place has its fitness 
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specified according to NK model described earlier. 
Fig. 2 presents two examples of generated fitness 

landscape. For more clarity most of the links 
between places were hidden. The size of each place 
corresponds to its fitness level (greater size means 
greater fitness). Both landscapes were created with 
N = 8.  

Fig. 2a presents smooth landscape (K = 0). Two 
places were highlighted and their neighbors were 
shown. It is easy to notice that the sizes of the 
connected places are very similar. 

Fig. 2b presents a fitness landscape generated 
with parameter K = 7. Also two places were 
highlighted. This time there are noticeable 
differences between fitness levels of connected 
places.  

 

 
a) K = 0 

 
b) K = 7 

Fig. 2 – Examples of fitness landscapes generated in 
the simulation model (N = 8) 

 

After the fitness landscape is constituted, F 
agents are distributed in random places. A place 
occupied by agent defines the agent’s inner structure 
and its fitness. Agent’s utility (gain) from occupying 
a place depends on the place’s fitness but it is also 
modified by level of competition. In [13] the level of 
competition ci is defined as the number of agents 
with the same value at the i-th position of their inner 
structure. Consider two agents: A = (1,0,1) and 
B = (1,0,0). They are perceived as competitors at the 
first two elements and as complementors at the third 
element. Agents which are occupying the same place 
are seen as direct competitors. 

Let wi be the fitness gained from i-th element of 
the occupied place, let ci be the level of competition 
at the i-th element and let F be the number of agents. 
Then utility of agent is defined as: 
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In each iteration agents calculate their current 

utility and check the potential utility of neighboring 
places. If the potential utility is greater than their 
current utility, they move to a new place. 

Formula (2) generates some interesting outputs of 
the model. Fig. 3 presents one example of such 
output.  

 

 
Fig. 3 – Example of the output of the model 

As one can see from Table 2, the fitness level of 
places 3 and 4 are greater than the fitness level of 
place 1. But these places are neighbors of place 2, 
which is already occupied by 50 firms. That is why 
no firm from place 1 has incentive to move to place 
3 or 4. 
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Table 2. Numerical values of the example. 

place’s number fitness number of firms 
1 .574 9 
2 .704 50 
3 .626 0 
4 .612 0 

 
The main purpose of the model from [13] was to 

answer the question about the impact of the 
environment’s complexity on the level of 
competition established between homogeneous 
agents. The most important results obtained are 
presented at the beginning of the next section.  

In this model some heterogeneity between agent 
is included. Firms differ in two parameters. First one 
is firm-size – bigger firms gain bigger market share. 
This requires modification of the formula (2). Let F’ 
be the sum of the sizes of all firms and let ci’ be the 
level of competition calculated as the sum of the 
sizes of firms with the same value at the i-th position 
of their inner structure. Then utility of agent A is 
defined as: 
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where fsA is agent’s A firm-size. According to 
formula (3) when two agents occupy the same place, 
firm with greater size gains more utility. 

The second parameter is firm-agility which 
represents the ability of agent to perform bigger 
change in its inner structure in a single simulation 
step. Firms with firm-agility greater than 1 can 
monitor and choose between more distant places 
when choosing new place. 

The results presented below were performed with 
the full knowledge of other agents (in [13] there 
were two variants considered – in the first one firms 
did not take into consideration their rivals when they 
decided whether to change place, but because of the 
little differences in performance this variant is 
abandoned here).  

 
4. SIMULATION RESULTS AND 

DISCUSSION 
The main results from [13] show that the level of 

competition between homogeneous agents 
(measured as the number of different places 
occupied by agents – less places mean stronger 
competition) depends from parameter K 
(representing complexity of the environment). But 
the relation between K and the number of occupied 
places is not linear. Greater level of competition (i.e. 

less occupied places) occurs with moderate values of 
K, while the extreme values of K correspond with 
lower levels of competition. Fig. 4 presents the 
average number (from 10 series of simulation runs) 
of occupied places when N = 10, the number of 
agents F was 20, 50 and 100 and K varied from 0 
to 9. Fig. 5 presents the same results normalized to F 
which gives relative level of competition. Here 
100% means the lowest possible competition (i.e. all 
firms occupy different places). 

 

 
Fig. 4 – Average number of occupied places in the 

simulation runs [13] 

 

 
Fig. 5 – Firm differentiation in the simulation 

runs [13] 

These results were used to limit the range of 
parameter K which controls the complexity of the 
environment. The following experiments were 
conducted for N = 10, K = {0, 2, 5, 8} and number 
of firms F = 100. All results are average values from 
30 simulation runs. Parameter firm-size was equal 1 
for normal firms and 10 for bigger firms. 

The aim of the first experiment was to check on 
the difference in utility gained between bigger and 
normal firms. The results are presented in Fig. 6 
which shows the percentage difference between 
utility of bigger and normal firms. For example, the 
first triangle mark on the left means that when 5 
bigger firms (firms with size = 10) were in the 
market, their utility was about 18% greater than 
other firms (i.e. firms with size = 1). 
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Fig. 6 – Difference between utility of bigger and 

normal firms (in %) 

As one can notice, the advantage of bigger firms 
is greater with less bigger firms in the market. This 
is quite obvious – with more bigger firms each firm 
faces tougher competition and its utility calculated 
according to formula (3) is smaller. The advantage 
also drops with more complex environment because 
of the many local optima and more unpredictable 
way in which they are distributed. In more complex 
environment it is harder to find global optima, which 
explains why the differences in the advantage 
between different number of bigger firms for greater 
K are smaller as well. 

In the second experiment all firms had the same 
size, but they were divided into two groups – the 
first one had firm-agility equal 1 (they could only 
move to neighboring places) and the second one had 
firm-agility = 2 (they could monitor and move to 
places at distance 2, i.e. differing in two elements 
from the place they were currently occupying). 
Fig. 7 presents the difference in average and total 
utility gained by these two groups (total utility is the 
sum of all the utility gained during simulation). 

 
Fig. 7 – Difference in utilities between firms with 

different level of firm-agility (in %) 

As one can see, the more complex the 
environment, the greater is the advantage of firms 
which have the possibility to make more radical 
change in single step. 

In the last experiment it was assumed that smaller 
firms can make faster decisions and are able to 
change and adapt to new condition much quicker 
than bigger firms [18]. This variant was similar to 

the first experiment, with one exception – all bigger 
firms had firm-agility equal 1 and all normal firms 
had firm-agility equal 2. The aim was to check if 
greater ability to make radical changes could 
compensate smaller sizes of firms.  

Fig. 8 presents the advantage in utility of bigger 
firms for different values of K and different number 
of firms with size 10 present in the market. The 
results show that the difference in utility gained by 
bigger and “agile” firms declines with more complex 
environment. For K = 8 (very complex environment) 
the average utility is very similar and with 20 bigger 
firms in the market it is even better to be smaller but 
“agile” firm. 

 
Fig. 8 – Difference in utilities between bigger firms 

and firms with firm-agility=2 (in %) 

These results support our intuition. In more stable 
and predictable environment bigger firms perform 
explicitly better. When the complexity of the 
environment increases, the ability to make quicker 
decisions is a great advantage and it allows smaller 
firms (which can faster adapt to new conditions) to 
win their chances. 

 
5. CONCLUSIONS AND DIRECTIONS 

FOR FURTHER RESEARCH 
The aim of the article was to check on the 

performance of firms with different size and 
different ability of adaptation to new conditions 
operating in complex environment. It proves that the 
agent-based simulation model presented in [13] is 
easy to extend and can be used for further, more 
advanced analysis. But, as noticed by R. M. Burton 
B. Obel, using simulation modeling is tricky and the 
right balance between the purpose, the complexity of 
the model and its analysis must be kept [19]. That is 
why any modifications should be performed with 
caution and with respect to the research question one 
wants to answer. We believe that two new 
parameters presented in the model are enough to 
catch the essence of the problem solved here.  

The results show “relational equivalence” [20] 
with other works [18], which is another 
encouragement for its further development. In the 
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future one can try to calibrate it with some empirical 
data to achieve “distributional equivalence”, but this 
can be really challenging [21]. Among some other 
modifications one can think of making the 
interactions between agents more sophisticated, for 
example with some game-theoretic mechanisms, as 
suggested in [13]. Also, the NK model is supposed to 
simulate the complexity of the environment. The 
problem however is, that it is static, once established 
the environment does not change. Adding some 
uncertainty and dynamism could give us maybe 
more insights into agents’ performance in truly 
complex and uncertain environment. 
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