
Volodymyr A. Luzhetsky, Yuriy V. Baryshev / Computing, 2012, Vol. 11, Issue 3, 302-308

 302

THE GENERALIZED CONSTRUCTION
OF PSEUDONONDETERMINISTIC HASHING

Volodymyr A. Luzhetsky, Yuriy V. Baryshev

Information protection department of Vinnytsia National Technical University,

Khmelnytske shosse, 95, Vinnytsia, Ukraine,
yuriy.baryshev@gmail.com

Abstract: This article is devoted to the development of hash constructions, which are based on the
pseudonondeterministic hash conception. The conception allows to design hash functions with improved infeasibility to
cryptanalysis. Both proposed constructions and known ones are generalized as pseudonondeterministic constructions.

Keywords: hashing, multipipe, the pseudonondeterminancy,the automaton, the cryptography.

1. INTRODUCTION
The requirement of the cryptographic algorithms

publicity is brought forward by the cryptographic
tools market. It is caused by the customer's desire of
being able to insure these tools efficiency before
they buy them. At once it is known that the private
cryptographic algorithm is more difficult to break
than the public one [1]. If algorithm infeasibility is
proven theoretically, then this publicity doesn't cause
problems, but algorithms of this type seldom gain
much popularity and spreading within practical
implementations, because they are based on
operations, that are unnatural for the computing
machinery. The publicity of cryptographic
algorithms, infeasibility of which isn't theoretically
proven, let talk about their practical infeasibility in
the case these algorithms weren't broken by known
methods. Still this kind of infeasibility couldn't be
guaranteed in the future, when new methods of
breaking appear. Thereafter the cryptanalytic's
knowledge of round transformation, which
infeasibility is proven only practically, makes it
easier to study and break the hash function. That's
why the development of hash functions, which
would provide both the publicity of algorithms,
those implement it, and round transformation
nondeterminancy to the intruder during certain
round cryptanalysis is topical.

The goal of the research is improving of hash
infeasibility by public hashing approaches
development, which would provide round
transformation nondeterminancy to a cryptanalytic,
and their implementation by the generalized hash
construction.

The following tasks are to be solved to achieve
the goal:

- known hash approaches analysis;
- the development of the new hash conception,

which is based on the nondeterministic automaton;
- the development of the generalized hash

construction which is based on the
pseudonondeterministic hash conception.

2. ANALYSIS OF MODERN HASH

APPROACHES
The majority of modern hash approaches reaches

by their roots the Merkle-Damgaard construction
[2], which became the classical one. In
correspondence with the construction hashing is to
be meant process of gaining fixed length hash digit
according to the arbitrary length message, which is
spitted up to the l data blocks of the same length.
The initialization vector 0h usually is used as a key.
Thus the hash iteration has the following view [2]:

()iii mhfh ,1−= , (1)

where ih – the intermediate hash digit, that is
obtained after the і-th data block processing;

im – the і-th data block (li ,1=);
()⋅f – the reduction function, which provides fixed

length of the output value.
The hash digit of the whole message would be lh

[2]. A lot of other hash constructions are known,
which differ from the Merkle-Damgaard

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Volodymyr A. Luzhetsky, Yuriy V. Baryshev / Computing, 2012, Vol. 11, Issue 3, 302-308

 303

construction, but all of them stipulate fixed sequence
of actions, that are to be performed for hash digit
computing. It allows cryptanalytics to analyze
algorithms and find weaknesses in hashing, which
appeared at the constructions level.

Several works were performed to avoid these
weaknesses within hashing [3-5]. The work [3] is
devoted to the hash construction development, that
contains two nonstandard hash parameters and could
be formalized in this way:

()cbitsmhfh iii ,#,,1−= , (2)

where bits# – the quantity of data hashed so far;
c – the certain constant – the cryptographic salt.

According to the work [3] the constant c in the
hash construction (2) is new for an each hash
process. Thus the construction has certain parameter,
which is to be chosen at random. That's why it is
more difficult for the cryptanalytic to prepare attack
beforehand, when the parameter's value is unknown.
Nevertheless, the hash algorithm, because of being
known, could be an object of cryptanalytic's research
and known methods of breaking or their
modifications could be implemented. Moreover, the
approach reduces hashing rapidity comparatively
with the construction (1), because the additional data
is to be processed.

The work [4] contains the brief description of
two hash functions Dynamic SHA and Dynamic
SHA-2, the peculiarity of which is using of the data
driven shift. Also cryptanalysis of these functions is
performed at the work [4] and the attack, that allows
to break them, is proposed. The attack could succeed
through fixed structure of hash algorithms and their
publicity.

The work [5] is devoted to the hashing, based on
data driven primitives: permutations and
substitutions. These primitives have two types of
inputs: one – for a data to be hashed, other – for
driven data, which value determines the type of the
substitution or the permutation is to be performed
under the data from the former input at each round.
The driven hash primitives, which manipulate input
data of a small width (2-3 bits of input/output data
and 1-2 bits of driven data), are considered at the
work [5]. These primitives are cascaded in order to
implement more complicated elements. The data
permutation is used for correspondence maintaining
between different bits of a data block and for
arbitrary dependence gaining between each input
data bit and output bits. Thereby authors of the work
[5] use several reduction functions, each of them is
chosen at the certain round depending on the driven
vector value:

()iivi mhfh
i

,1−= , (3)

where iv – the driven vector, which value is
computed using the following function:

()iii mkvgv ,,1−= , (4)

where k – the key data.

The peculiarity of the hash construction (3) is
composed of forming driven vector using both the
key and input data, that allows authors of the work
[4] to achieve nonlinearity of functions based on
these primitives usage. Notwithstanding the large
amount of developed substitution-permutation
networks and the generalized methodology of their
developing, the work [4] has a weakness – it also
could be an object of the cryptanalysis, because the
driven vector is formed with the participation of the
input data. In the other hand there wouldn't be much
correlation between the input and output data of the
reduction function without the participation and this
is rather unwanted for cryptographic hash functions
[1, 2].

3. THE CONCEPTION OF

PSEUDONONDETERMINISTIC HASHING
The conception, which is based on the

pseudonondeterministic approach [6], was proposed
to avoid weaknesses of modern approaches of round
transformation hiding from cryptanalytics, which
was described supra. The hash algorithm is
considered as an actions sequence, that is performed
by the automaton, states of which are intermediate
hash values { }ih , and input signals are data blocks
{ }im , those are to be hashed. Thereafter the set of all
possible data blocks is the alphabet of the
automaton, and all possible sets of data blocks –
rows of the alphabet.

An automaton is deterministic one if it proceeds
the one and only one state from any current state for
any input symbol of its alphabet [7]. A deterministic
automaton is described by the set { }DAS ,, 0s,, δ ,
where S – the set of the automaton's states; A – the
alphabet of input symbols; δ – the function, that
implements the mapping SS →× A , 0s – the initial
state of the automaton (S∈0s); D – the subset of
the set S , which is called set of final states [8]. Thus
an automaton, that performs deterministic hashing
could be described as the set (){ }lhhf ,,, 0⋅MH, ,
where H – the set of all intermediate hash values;
M – the set of all data blocks values; lh – the final

Volodymyr A. Luzhetsky, Yuriy V. Baryshev / Computing, 2012, Vol. 11, Issue 3, 302-308

 304

hash state, which is obtained after finishing of the
last lth data block of the input message processing,

H∈lh .
It is obvious, that the infeasibility of modern key

hash algorithms is based on the point, that an
intruder doesn't know the initial state 0h of the
deterministic automaton, gaining which the intruder
breaks the hash function. The intruder deals with the
deterministic automaton, while trying to break hash
algorithms, those don't use a key, the main difficulty
in the case concerns finding a path of the same
length as the original message l { }lhhh ′′′ ,...,, 21 ,
(where ()iii mhfh ′′=′ − ,1 , and 00 hh =′), which has
the same final state ll hh =′ . The situation, that hash
breaking task adds up to this one is caused by the
determinancy of the automaton – each instant
automaton's state ()ii mh , causes unambiguous
automaton proceeding into the next state 1+ih . This
feature of hashing makes effective the set of attacks,
which use precomputation and are considered in
particular at the work [3].

A nondeterministic automaton is the one, the
proceeding rule of which isn't obligatory described
by a function. The automaton could proceed several
different states, when it stands at the certain state is
and the same input symbol is processed [7]. Let ε
be an empty message (zero-length), then a
nondeterministic automaton is described by the set
{ }DAS ,, 0s,, δ ′ , which is analogical to the one of a
deterministic automaton, where δ ′ is mapping

{ }() SS →∪× εA [8]. It is obviously, that
deterministic automaton is the special case of the
nondeterministic one.

The task of hash breaking could be more difficult
if hashing process would be described by the
nondeterministic automaton model. In the case it is
more difficult to an intruder to find collisions,
because he doesn't have the information about
automaton proceeding to the next state, while he
knows the instant state ()ii mh , . It is clear that the
nondeterministic automaton couldn't be used for the
hash digit computation in the pure state (as is),
because the same message would have several hash
digits in this case, that contradicts the definition and
the purpose of the hashing process. That's why the
methods of pseudonondeterministic hashing are
proposed. The hashing process is described for the
intruder by the model similar to the nondeterministic
automaton model according to these methods. So the
automaton, which implements
pseudonondeterministic hashing is describe by the
set { }lhh ,,, 0FMH, , where F – the set of

functions (){ }⋅
ivf , which could be performed by the

automaton at the each round depending on the
driven vector's value iv . The vector should be
hidden from the intruder in the case of keyed
hashing, and it should significantly depend on the
input data in the case of unkeyed hashing.

4. PSEUDONONDETERMINISTIC HASH

CONSTRUCTIONS
The construction (3) could be similar to the

Merkle-Damgaard construction for
pseudonondeterministic hashing, because it
anticipates several reduction functions which are
chosen according to the driven vector's value.
However it is needed to exclude driven vector
depending on its previous value and the input data
from the formula (4). Instead, it is proposed to
generate driven vector using intermediate hash
values to keep the dependence on the input data. So
the vector forming function has the following view:

()1−= ii hgv . (5)

As both the reduction function and the vector

forming function at the construction, which is
described by formulas (3) and (5), consider output
receiving depending on the intermediate hash value
received at the previous iteration, that's why it is
impossible for the hashing process based on the
construction (3), (5) to achieve pure
pseudonondeterminancy, because the same round
transformation would be always performed for the
certain intermediate hash value. It is proposed to
avoid the undesirable dependence by vector forming
and the hash value computation depending on
different intermediate hash values. In the simplest
case the hash construction is the following:

()
()⎩

⎨
⎧

=
=

−

−

.
;,

2

1

ii

iii

hgv
mhfh

 (6)

The construction (6) is generalized in the

following way:

()
()⎪⎩

⎪
⎨
⎧

=

=

,

;,
**

*

ii

iivi

gv

mfh
i

H

H
 (7)

where *

iH , { }110
** ,....,, −⊂ ii hhhH and

∅=∩ ***
ii HH .

The construction (7) is inconvenient from the
practical point of view, because in the case of keyed

Volodymyr A. Luzhetsky, Yuriy V. Baryshev / Computing, 2012, Vol. 11, Issue 3, 302-308

 305

hashing the key should have the length exceeded the
output hash value's one. That's why authors find it
more perspective to implement
pseudonondeterministic hashing for the multipiped
case of hashing. The instance of the proposed
approach implementation for the double-pipe
hashing is the following:

()
()

()()
()

()
()()

() () ()()
() () ()()⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=

=

=

−

−

−

−

,

;

;,

;,

1
1

22

2
1

11

2
1

2

1
1

1

2

1

ii

ii

iivi

iivi

hgv

hgv

mhfh

mhfh

i

i

 (8)

where ()j

ih – the intermediate hash value, which is
received at the jth pipe at the ith iteration.

The generalization of the construction (8) for the
arbitrary number of pipes q ()2≥q is the following:

()

()
()()

()
()

()()

()
()

()()
() () ()()
() () ()()

() () ()()⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=

=

=

=

=

,
...

;

;

;,
...

;,

;,

**

2**22

1**11

*

2*2

1*1

2

1

q
i

qq
i

ii

ii

i
q

iv
q

i

iivi

iivi

gv

gv

gv

mfh

mfh

mfh

q
i

i

i

H

H

H

H

H

H

 (9)

where ()j

i
*H , () () () (){ () ,,,....,, 2

0
1
1

1
1

1
0

** hhhh i
j

i −⊂H
() ()}q

ihh 1
2

1 ,...., − and () () ∅=∩ j
i

j
i

*** HH , qj ,1= .
The construction (9), as most known hash

constructions [2, 3, 5, 9-12], considers consequent
data block processing – one block is processed at the
one iteration. The approach simplifies the hash
methods implementation, but simultaneously it
facilitates to the cryptanalytic the task of the
breaking automaton design. That's why it is
proposed to use several data blocks at the each
iteration. For instance, the following construction is
proposed to "bond" the data block to their positions
at the message, that would complicate the part of the
message replacement task for the cryptanalytic:

()
()

()
()()

()
()

()
()()

()
()

()
()()

() () ()()
() () ()()

() () ()()⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=

=

=

=

=

−

−

−

,
...

;

;

;,,
...

;,,

;,,

**

2**22

1**11

*

2*2

1*1

2

1

q
i

qq
i

ii

ii

mrandii
q

iv
q

i

mrandiiivi

mrandiiivi

gv

gv

gv

mmfh

mmfh

mmfh

iq
i

ii

ii

H

H

H

H

H

H

 (10)

where ()⋅rand – the function of random number
sequence generating.

Using of the construction (10) considers
processing of two data blocks at the each iteration,
but in the general case all data blocks could be
processed in the following way:

()

()
()()

()
()

()()

()
()

()()
() () ()()
() () ()()

() () ()()⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=

=

=

=

=

.
...

;

;

;,...,,,
...

;,...,,,

;,...,,,

**

2**22

1**11

21
*

21
2*2

21
1*1

2

1

q
i

qq
i

ii

ii

l
q

iv
q

i

livi

livi

gv

gv

gv

mmmfh

mmmfh

mmmfh

q
i

i

i

H

H

H

H

H

H

 (11)

The cryptographic salt (a random number) could

be used as the argument of the reduction
function ()⋅f in addition to data blocks and
intermediate hash values, which are used at the
construction (11), as it was proposed at the work [3].
However it was proposed to use the same salt value
at the each iteration at the work [3], so the
cryptographic salt is the static one. The static
cryptographic salt is generalized by the dynamic
one, so it is proposed to input new pseudorandom
number at the each iteration [13, 14]:

Volodymyr A. Luzhetsky, Yuriy V. Baryshev / Computing, 2012, Vol. 11, Issue 3, 302-308

 306

()
()

()()
()

()
()()

()
()

()()
() () ()()
() () ()()

() () ()()
()⎪

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=
=

=

=

=

=

=

− ,
;

...
;

;

;,,...,,,
...

;,,...,,,

;,,...,,,

1

**

2**22

1**11

21
*

21
2*2

21
1*1

2

1

ii

q
i

qq
i

ii

ii

il
q

iv
q

i

ilivi

ilivi

rrandr
gv

gv

gv

rmmmfh

rmmmfh

rmmmfh

q
i

i

i

H

H

H

H

H

H

 (12)

where ir – the dynamic cryptographic salt and 0r is
determined before beginning of the hash process in
the same way as the static salt is determined.

The dynamic cryptographic salt is the same for
each pipe at the construction (12), but it could be
different for the each pipe in the general case:

()

()
() ()()

()
()

() ()()

()
()

() ()()
() () ()()
() () ()()

() () ()()
() () ()()
() () ()()

() () ()()⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=

=

=

=

=

=

=

=

−

−

−

.
...

;

;

;
...

;

;

;,,...,,,
...

;,,...,,,

;,,...,,,

1

2
1

22

1
1

11

**

2**22

1**11

21
*

2
21

2*2

1
21

1*1

2

1

q
i

qq
i

ii

ii

q
i

qq
i

ii

ii

q
il

q
iv

q
i

ilivi

ilivi

rrandr

rrandr

rrandr

gv

gv

gv

rmmmfh

rmmmfh

rmmmfh

q
i

i

i

H

H

H

H

H

H

 (13)

The dynamic cryptographic salt could be used

several times at the each iteration similar to the data
blocks at the construction (11). Consequently the
construction (13) is generalized by the following
construction:

()
()

() ()()
()

()
() ()()

()
()

() ()()
() () ()()
() () ()()

() () ()()⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=

=

=

=

=

,
...

;

;

;,,...,,,
...

;,,...,,,

;,,...,,,

**

2**22

1**11

21
*

2
21

2*2

1
21

1*1

2

1

q
i

qq
i

ii

ii

q
l

q
iv

q
i

livi

livi

gv

gv

gv

mmmfh

mmmfh

mmmfh

q
i

i

i

H

H

H

RH

RH

RH

 (14)

where ()jR – the set of pseudorandom numbers,
which is used at the jth hashing pipe.

Let us use the following parametric description of
hashing, which is based on the construction (14)

()φγ ; ; ; ; zdkPNDH q (PseudoNonDeterministic
Hashing), where the following denotations are used:
q – the quantity of hashing pipes;
k – the quantity of intermediate hash values, which
are arguments of the reduction function () ()⋅jf at

the jth ()qj ,1= pipe;
d – the quantity of data blocks, which are processed
for the intermediate hash values computation at the
jth pipe ()ld ,1= ;
z – the quantity of pseudorandom numbers, which
are used at the each iteration at the one pipe;
γ – the correlation between the intermediate hash
value width and the output hash digit width;
φ – the quantity of intermediate hash values, which
are used to form the driven vector at the jth pipe.

The construction (14) was received by the
sequential generalization of hash constructions,
that's why it generalized all constructions considered
supra. Parametric descriptions of the known hash
constructions is presented at the table 1 to prove,
that the construction (14) is generalized for other
constructions and deterministic hashing is particular
case of the pseudonondeterministic one.

Table 1. Parametric descriptions of known hash
constructions

The hash construction The parametric
description

Merkle-Damgaard [2] PNDH1(1; 1; 0; 1; 0)
Cascading [2] PNDHq(1; 1; 0; 1; 0)
HAIFA [3] PNDH1(1; 1; 1; 1; 0)
Hirose [10] PNDH2(2; 1; 1; 2; 0)
Double-pipe [11] PNDH2(2; 1; 0; 2; 0)
Wilde pipe [11] PNDH1(1; 1; 0; 2; 0)
3С [9] PNDH2(2/1; 0/1; 0; 2; 0)
Sponge [12] PNDH1(1; 1; 0; γ; 0)

Volodymyr A. Luzhetsky, Yuriy V. Baryshev / Computing, 2012, Vol. 11, Issue 3, 302-308

 307

Parameters k and d at the table 1 for the
construction 3C are described using slash because of
different arguments of pipes reduction functions. For
the first pipe they are the data block and the
intermediate hash value from the pipe, for the
second pipe – intermediate hash values from both
pipes.

5. AN EXAMPLE OF

PSEUDONONDETERMINISTIC HASH
FUNCTION IMPLEMENTATION

Several hash functions were developed to
implement hash constructions described above [15].
These hash functions are based on well-known non-
linear functions of three arguments 321 ,, xxx (in
particular first pair of them is used at the hashing
standard SHA-2 [16]):

() ()3121 xxxxy ∧¬⊕∧= , (15)

() () ()323121 xxxxxxy ∧⊕∧⊕∧= , (16)
() ()3121 xxxxy ∨¬⊕∨= , (17)

() () ()323121 xxxxxxy ∨⊕∨⊕∨= . (18)

Each iteration of hashing is supposed to use one

of functions (15-18) according to the driven vector
value. Also it is proposed to use circular shift
operation for each argument before it would be used
by one of these non-linear functions.

For instance the hash function was developed,
which implements hashing ()3 ;1 ;0 ;1 ;58PNDH
with output hash digest length of 256 bits. At the
start of each iteration the driven vector value is
computed according to the function:

() ()() ()() ()()qj

i
qj

i
qj

i
j

i hhhv mod7
1

mod4
1

mod1
1

+
−

+
−

+
− ⊕⊕= . (19)

Then the driven vector ()j

iv is divided into seven
parts: one part of 2 bits length c and six parts of 5
bits length 621 ...,,, sss . The reduction function is
chosen according to the c value:

- "11" – the function (15);
- "10" – the function (16);
- "01" – the function (17);
- "00" – the function (18).
At each iteration reduction function arguments

im , ()j
ih 1− , ()()qj

ih mod2
1
+

− , ()()qj
ih mod3

1
+

− , ()()qj
ih mod5

1
+

− ,
()()qj

ih mod6
1
+

− are circular shifted rightwards to

654321 ,,,,, ssssss bits respectively. For example
if the driven vector value is 0x01234567 it would be
divided in binary form into codes: 00 00000 10010
00110 10001 01011 00111. The following reduction

function () ()⋅j
if is to be performed at this iteration:

() ()()

()()()
()() ()()()

()() ()()().
7

mod6
117

mod3
1

11

mod5
117

mod3
1

6

mod2
1

181

>>>

+
−>>>

+
−

>>>

+
−>>>

+
−

>>>

+
−

>>>−

∧¬⊕

⊕∧⊕

⊕∧¬⊕

⊕∧=

qj
i

qj
i

qj
i

qj
i

qj
ii

j
ii

j
i

hh

hh

hm

hmh

 (20)

The hash function was tested by Known answer

tests, which were used by NIST (USA) for SHA-3
competitors [15, 17]. For instance, the results of
extremely long message testing are the following:

Repeat = 163840
Text = abcdefghbcdefghicdefghijdefghijkefghijklfgh
ijklmghijklmnhijklmno
MD = 611D589256CD92FCE44225A445B6DC1
729F953851F4DAE07D204EDC8FAF40AE9

The short message test results are the following:

Len = 0
Msg = 00
MD = C4377DE5D712E89EFF4AB66FB2D635FE3
43A6B9869C06295468D483199D4AFC8

Len = 1
Msg = 00
MD = D89E7E9FD569456A989333B4B3A3B3AB
E882E038E3C3F4FE690808596F16ACDE

Len = 2
Msg = C0
MD = 66B816FF6E5EC2D52A78B31BE896D980
76EBB323A55F878139F333B8ACDF88A2

Len = 3
Msg = C0
MD = 54D4B72538B7A5D72736EE8C53A18141
7E343B34A9B134FC605E5D607CF12447

…

Results of testing showed that the hash function

doesn't degenerate while extremely long or short
messages are processed.

6. CONCLUSIONS

The performed analysis of known hash
approaches showed, that they could be described by
the deterministic automaton model, moreover it is
the very feature used by cryptanalytics for many
attacks performing. That's why the conception of
pseudonondeterministic hashing is proposed by

Volodymyr A. Luzhetsky, Yuriy V. Baryshev / Computing, 2012, Vol. 11, Issue 3, 302-308

 308

authors. The conception is generalization of the
deterministic hashing one. While hash algorithms
are developed according to the conception, an
intruder is unavailable to perform cryptanalysis of
round transformations, because he doesn't know
operations, which are performed to process the
certain data block. Moreover the approach is
proposed, which allows to hide the information
about the data block being processed at the certain
iteration from an intruder. The set of hash
constructions is proposed to implement the
pseudonondeterministic hash conception. These
constructions provide hash infeasibility improving
towards known attacks.

7. REFERENCES

[1] S. Burnett, S. Paine, RSA Security's Official
Guide to Cryptography, Binom-press, Moscow,
2002, p. 384. (in Russian)

[2] B. Preneel, Analysis and Design of
Cryptographic Hash Functions, Katholieke
Universiteit Leuven, 1993, p. 323.
http://homes.esat.kuleuven.be/
~preneel/phd_preneel_feb1993.pdf

[3] E. Biham, O. Dunkelman, A framework for
iterative hash functions, 2007, p. 9.
http://csrc.nist.gov/groups/ST/hash/documents/
DUNKELMAN_NIST3.pdf

[4] J-P. Aumasson, O. Dunkelman, S. Indesteege
and B. Preneel, Cryptanalysis of Dynamic
SHA(2), COmputer Security and Industrial
Cryptography publications, 2009, p. 18.
https://www.cosic.esat.kuleuven.be/
publications/article-1277.pdf

[5] N. A. Moldovyan, A. A. Moldovyan,
M. A. Eremeev, Cryptography: from Primitives
to the Algoritms Synhesis, BHV-Petersburgh,
St. Petersburgh, 2004, p. 448. (in Russian)

[6] V. A. Luzhetsky, Y. V. Baryshev, The pseudo-
nondeterministic hashing conception, Systems
of Control, Navigation and Communications,
(3) (2010), pp. 94-98. (in Ukrainian)

[7] J. A. Anderson, Discrete Mathematics with
Combinatorics, Williams Publishing House,
Moscow, 2004, p. 960. (in Russian)

[8] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The
Design and Analysis of Computer Algoritms,
Mir, Moscow, 1979, p. 536. (in Russian)

[9] P. Gauravaram, Cryptographic Hash
Functions: Cryptanalysis, Design and
Applications, Thesis submitted in accordance
with the regulations for Degree of Doctor of

Philosophy, 2009, p. 298, http://eprints.qut.
edu.au/16372/1/Praveen_Gauravaram_Thesis.
pdf

[10] S. Hirose, Some Plausible Constructions of
Double-Block-Length Hash Functions, 2006,
p. 13. www.iacr.org/archive/fse2006/404702
13/40470213.pdf

[11] S. Lucks, Design principles for iterated hash
functions, Cryptology ePrint Archive, 2004,
p. 22. http://eprint.iacr.org/2004/253.pdf

[12] G. Bertoni, J. Daemen, M. Peeters, G. Van
Assche, Sponge Functions, 2007, p. 22,
http://sponge.noekeon.org/SpongeFunctions.
pdf

[13] Y. V. Baryshev, Methods of multipipe hash
function infeasibility improving against generic
attacks, Computer Science and Engineering –
2010, Lviv Polytechnic Publishing, Lviv, 2010,
pp. 338-339. (in Ukrainian)

[14] Y. V. Baryshev. Pseudonondeterministic has-
hing mathematical model and cryptographic
primitives for its implementation, Information
technologies and computer engineering – 2010,
VNTU, Vinnytsia, pp. 268-269. (in Ukrainian)

[15] Y. V. Baryshev, Methods and software means
of multipipe driven hashing, Methods and tools
of coding, protection and compression of
information-2011, VNTU, Vinnytsia, pp. 100-
101. (in Ukrainian)

[16] Secure Hash Standard: Federal Information
Processing Publication Standard Publication
180-3. – Gaithersburg, 2008, p. 27,
http://csrc.nist.gov/publications/fips/fips180-
3/fips180-3_final.pdf

[17] Test files and Source Code for Conducting
KAT and MCT, NIST, http://csrc.nist.gov/
groups/ST/hash/sha-3/documents/KAT1.zip

Volodymyr A. Luzhetsky, Dr. of Science,

professor, head of the information protection
department of Vinnytsia National Technical
University.

Scientific interests: the cryptography, data
compression methods, Fibonacci codes.

Yuriy V. Baryshev, phD, member of the
information protection department of Vinnytsia
National Technical University.

Scientific interests: multipipe hashing and generic
attacks, the evaluation of information protection.

