
Mohammed Amoon / Computing, 2012, Vol. 11, Issue 2, 115-121

 115

FAULT TOLERANCE IN GRIDS USING JOB REPLICATION

Mohammed Amoon 1), 2)

1) Computer Science and Eng. Dept., Faculty of Electronic Eng., Menofia University, Egypt

2) Dept. of Computer Science, RCC, King Saud University, P. O. Box: 28095-11437 Riyadh, Saudi Arabia
mamoon@ksu.edu.sa, m_amoon74@yahoo.com

Abstract: As grids consist of a large number of resources, fault tolerance forms an important aspect of the scheduling
process. In this paper, we address the problem of scheduling user jobs in grids so that failures can be avoided in the
presence of resources faults. We employ job replication as an effective mechanism to achieve efficient and fault-tolerant
scheduling system. Most of the existing replication-based algorithms use a fixed number of replications for each job
which consumes more grid resources. We first propose an algorithm to determine adaptively the number of job replicas
according to the grid failure history. Then we propose an algorithm to schedule these replicas. The proposed
algorithms have been evaluated through simulation and have shown better performance in terms of grid load,
throughput and failure tendency.

Keywords: Job scheduling; Fault tolerant; Replication; Grid Computing.

1. INTRODUCTION
Grid Computing enables organization of

geographically distributed computing resources in
different administrative domains into a single,
unified system for solving large-scale applications in
science, engineering and commerce. Resources can
be computers, storage space, peripherals, software
applications, and data. A middleware software layer
should be implemented to provide the basic services
for resource scheduling, monitoring security and so
forth [1].

Since grid resources are highly heterogeneous
and vary dynamically, either by fault or shutdown,
more faults are likely to occur in the grid computing
environments [2-4]. Faults are due to the inherently
unreliable nature of the grid include hardware
failures such as computer crash, link down, etc. and
software failures such as extra load, programs
removal, etc.

Reliable applications are designed in such a way
that grid can automatically recover from failures
without affecting the performance user needs
according to his required Quality of Service (QoS).
Grids should tolerate faults and continue to operate
to complete its computations. Fault-tolerant is the
property that enables grid to carry on its
computations even on individual component’s
failure without terminating the entire computation.
Due to the diverse nature of grid and large-scale

applications on grid, fault-tolerant becomes a
challenge on developing, deploying and running
applications on grid environments [1], [5-7].

In general, handling of failures by scheduling
strategies can occur either before or after the
scheduling of the resources. The first approach is
called Proactive and the second is called Post-active.
Post-active approaches, using techniques of job
monitoring, are relatively easier to implement. On
the other hand, proactive approaches require more
information about grid resources and works in a
probabilistic fashion.

In proactive approaches, such as replication, the
decisions of how to address possible failures in the
grid are made before the job is executed. An
effective proactive approach should provide a way,
with all available information considered, to avoid
any job from any possible failures. This potentially
reduces the failure rates within grid, and also
increases the capacity and throughput. This is unlike
to post-active methods where re-submission of jobs
typically leads to a decrease in throughput [8], [9].

All mechanisms proposed to deal with fault-
tolerant issues in grids are classified into three
categories. The first one is called space redundancy
or job replication. In this category, the same job is
replicated to be executed on multiple undependable
resources to guard the job against a single point of
failure. The second category is called time
redundancy or checkpointing and rollback. In this

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Mohammed Amoon / Computing, 2012, Vol. 11, Issue 2, 115-121

 116

category, the state of a running job is saved to a
stable storage. This state can be used later in case of
any fault to resume execution of the job instead of
restating it. The third category is called adaptive. It
uses both job replication and checkpointing to
achieve the fault-tolerant.

In this paper, the job replication category is
considered in order to create a proactive fault-
tolerant scheduling system. In this system, two
algorithms are proposed. One algorithm is for
determining the number of replicas for each job,
namely, Adaptive Job Replication (AJR). The
second is used for selecting the resources that
execute these replicas, namely, Backup Resources
Selection (BRS). We then compare the proposed
algorithms with existing algorithms based on fixed
number of replicas and others based on dynamic
number of replicas.

2. RELATED WORK

A large number of research efforts have already
been devoted to fault tolerance in the area of
distributed computing. However, a little work has
been done for fault tolerance in grid environments.
Aspects that have been explored include the design
and implementation of fault detection services, as
well as the development of failure prediction, and
recovery strategies. The recovery strategies are often
implemented through job replication, checkpointing
or combined between them.

Replication is a key mechanism for developing
fault-tolerant and highly available grids. Replication
is based on the assumption that the probability of a
single resource failure is much higher than of a
simultaneous failure of multiple resources. It avoids
job recomputation by starting several copies of the
same job on different resources. With redundant
copies of a job, the grid can continue to provide a
service in spite of failure of some grid resources
carrying out job copies without affecting the
performance.

Checkpointing is the ability to save the state of a
running job to secondary storage so that it can later
resume its execution from the time at which it was
last stored. The purpose of checkpointing is to
increase fault-tolerance and to speedup application
execution on unreliable systems.

The work in this paper depends on using the job
replication mechanism. In the proposed system, we
need to determine the degree of over-provisioning or
job replicas as small as possible in order to minimize
the system overhead.

J. Abawajy [10] presented a distributed fault-
tolerant scheduling (DFTS) algorithm that couples

job scheduling with job replication. He assumed that
grid is divided into sites and each site has a
scheduling manager. Each scheduling manager acts
as a backup for another scheduling manager. The
algorithm uses fixed number of replicas for each job.
Each job replica is scheduled to a different site to be
executed. The number of replicas is specified by the
user at the time of job submission.

K. Srinivasa, G. Siddesh and S. Cherian [11]
proposed an adaptive replication middleware which
depends on data replication at different sites of the
grid. The middleware dispatches replicas to different
nodes and enables data synchronization between
multiple heterogeneous nodes in the grid. Data
sources are synchronized by using TCP/IP transfer
protocol.

M. Chetepen et al [12] provided some scheduling
heuristics based on task replication and rescheduling
of failed jobs. Their heuristics do not depend on
particular grid architecture and they are suitable for
scheduling any application with independent jobs.
Scheduling decisions are based on dynamic
information on the grid status and not on the
information about the scheduled jobs.

In [8], C. Jiang and et al proposed a replication
based fault tolerant algorithm which schedules jobs
by matching the user security demand and resource
trust level. The number of job replications changes
adaptively with the security level of the grid
environment.

3. OUR SCOPE

Since grid resources are highly heterogeneous
and dynamic, more failures are likely to occur in
grid environments. These failures affect the time
needed to execute jobs and then degrade the
performance of the grid. This is because if a
resource is unavailable, the system will search for
another suitable resource to execute the job. Thus,
there is a need to minimize the effect of these
failures on performance, when occurred.

Our scope is to use replication strategy to tolerate
failures as it is able to replicate each job to be
executed more than one time on different resources.
Replication provides an efficient way to guarantee
the completion of jobs according to the QoS
required by the user. Most of the existing replication
based algorithms uses a fixed number of replicas
[10], [13]. This fixed number of replicas can lead to
excessive utilization of resources and also to longer
response times of jobs.

The main contribution in this work is to design a
proactive fault-tolerant system using the job
replication strategy and to evaluate its performance.

Mohammed Amoon / Computing, 2012, Vol. 11, Issue 2, 115-121

 117

The design comprises proposing two algorithms.
The first algorithm is for determining the number of
job replicas adaptively, namely, Adaptive Job
Replication (AJR). Adaptive means the number of
replicas is not fixed for all the jobs submitted. The
second algorithm is for selecting resources that will
execute replicas, namely, Backup Resource
Selection (BRS). The proposed algorithms are
compared with the algorithms in [10], [12].

4. GRID SCHEDULING SYSTEM

Most of the existing grid scheduling systems
assumes the same architecture and the same set of
modules. These modules include: a User Interface
(UI) through which users can submit their jobs to the
grid, a Grid Scheduler (GS) assigns jobs received
from users to grid resources, scheduling decisions
taken by the GS are based upon information
provided by the Resource Information Server (RIS),
which collects the resource capability information,
such as CPU capacities, memory size, etc. The
scheduling system acts not only as an interface
between users and grid resources but also provide
reliable service to users. So, in fault-tolerant
architectures, additional component called Fault
Handler (FH) is included to handle failures in the
system. Handling failures include fault detection and
fault recovery.

In this paper, the assumed scheduling architecture
is shown in Fig. 1. It consists of geographically
dispersed resources managed by a single
administration unit. Currently only a grid
environment with a single centralized GS and RIS is
considered. In the grid architecture considered,
resources possess varying failure behavior. So, the
considered architecture contains a fault handler that
can deal with failures if happened.

The proposed scheme in this work considers the
fault occurrence due to resource failure. For
detection of such faults, grid scheduler allocates a
job to a resource once the user QoS requirements are
satisfied on cost, time or cost-time optimization.
After allocating the job the resource, the scheduler
expects the response of executing the job assigned to
that resource within a certain time interval. This time
interval is a function of the speed of that resource,
communication latency between the scheduler and
resource and queue length of the resource. If the
resource could not give the result of job execution to
the scheduler, it realizes that a fault has occurred and
in next step information about that fault is
maintained at resource information server (RIS),
which helps in taking replication decision while
allocating job to that resource in the next time.

5. PROPOSED SYSTEM
The proposed system tries to avoid the

occurrence of failures through applying proactive
scheduling. Also, the system tries to minimize the
effect of the failure if occurred. The system achieves
this through job replication. Replication means
generating multiple copies of the same job and these
copies will be dispatched to be executed on multiple
backup resources in parallel at the same time. So, if
one resource fails the job still has the chance to be
executed without effective delays on another
resource. When any replica of a job completes, all
other replicas of the job are located and terminated,
freeing up the backup resources. The system
determines the number of job replicas according to
the failure tendency of the resources assigned to the
job in the scheduling step. Also, it determines
backup resources that will execute these replicas
according to the current load of the resources
allocated to the job.

Fig. 1 – Architecture of the Proposed System

Thus, the main strategy of our proposed system is
to minimize the effects of resources failures on the
performance of the grid. To achieve this job
replication mechanism is used.

The proposed system contains two main steps.
These steps are allocation step and replication step.
In the allocation step, the scheduler will select a set
of suitable resources for executing the job. The
selection of resources depends on the response time
of the resources. The response time is the summation
of the job transmission time from the scheduler to
the resource on which the job will be executed, the
job queuing time at the resource, the job execution
time on the resource, and the transmission time of
job’s execution results from the recourse to the
scheduler. Fig. 2 shows the operation of the
proposed system.

User
Interface

Grid
Scheduler

Resource
Information

Server

R1

R2

.

.

.

Jobs

Results

Rm

Jobs

Results

Q
ue

ry

R
es

ou
rc

es

li
t

Notify

U
pd

at
e

Grid

Fault
Handler

Mohammed Amoon / Computing, 2012, Vol. 11, Issue 2, 115-121

 118

Fig. 2 – The proposed system’s operation

The Job Scheduler will receive a job from the job
queue along with the QoS required by the user.
Then, it will ask the Resource Information Server for
a list of suitable resources for executing the job
according to the QoS requirements of the user. The
Resource Information Server will reply with a list of
resources and their expected response times for the
job. The scheduler will sort this list according to the
response time of each resource. The first resource in
the sorted list is selected as the primary resource to
execute the job.

As any resource in the grid, this primary resource
may fail executing the job. So, in the replication
step, the system will choose some resources from the
list of allocated resources on which copies of the job
will be executed. These resources are called backup
resources.

Replicating a job can improve performance in
one of two ways. First, by starting a job to run
simultaneously on more than one resource, the job
response time is determined by the earliest
completion time among all replicas. As this can
depend on unpredictable load and usage patterns, the
replica can potentially improve the response time of
the job. Second, replicated job executions can also
help dealing with failure; then when one resource
fails, the adverse effect on performance of the jobs it
runs can be reduced if replicas complete without
failure.

There are two challenges in this work. The first
one is determining the optimal number of replicas in
order to avoid increasing the response time of the
job due to resources failure. The number of replicas
should not be high in order to avoid grid
overloading. The number of replicas or the backup
resources is based on the failure tendency of the
resources selected in the allocation step.

The second challenge is determining the backup
resources that will execute job replicas. So, even in
case of failure of a resource grid will be able to
complete the job and to get results of the job’s

execution from an alternate resource. In this work,
the selection of such resources depends on the
current load of the resources selected in the
allocation step.

6. ADAPTIVE JOB REPLICATION (AJR)

The AJR algorithm determines the number of job
replicas. In the algorithm, the number of replicas is
not fixed for all the jobs but it is dynamic. It is
directly proportional to the tendency of the selected
resources to fail. As the tendency of these resources
to fail increases the number of replicas increases and
vice versa. Thus, the number of replicas is based on
failure history of the grid resources and this it will
vary from job to job.

The failure tendency of a resource measures the
expected degree of it to fail. This measurement
depends on the history of the resource. Assume Nf is
the number of times the resource has failed to
complete jobs assigned to it and Ns is the number of
times the resource has completed jobs successfully.
Each time a resource is failed to complete a job the
value of Nf is increased by 1 and the jobs assigned to
that resource will be distributed to other suitable
resources in the grid. Otherwise, the value of the Ns
is increased by 1. The failure tendency FTj of
resource j is defined by:

fs

f
j NN

N
FT

+
= (1)

Assuming resources R1, R2, ..., Rn are allocated to

the job j in the allocation step. The average failure
tendency of these resources is:

n

FT
FT

n

j
j

n

∑
== 1

 (2)

The number of job replicas, k, is determined to be

proportional to the value of FTn. At least, we must
have one replica to be executed. So, the minimum
number of replicas is 1. Also, the number of replicas
should not exceed the number of suitable resources.
So, the maximum number of replicas is equal to n.

Fig. 3 shows the algorithm used to determine the
number of replicas for each job submitted. For each
job, there will be at least one replica. The algorithm
compares the value of FTj for resource j with the
value of FTn starting from the first resource in the
allocated list. If FTj >= FTn then additional replica is
added. The algorithm stops if FTj<FTn for any
resource j.

For each job submitted by the user
{
Step 1(Allocation):

Receives a job with QoS requirements from the portal;
Requests a list of suitable resources the job from the RIS;
Receives a list of suitable resources from RIS;
Computes response time for each resource;
Sorts resources in an ascending order according to the

response time;
Determine the primary resource;

Step 2(Replication):
Requests the FT for each resource from the Fault Handler;
Requests the LH for each resource from the RIS;
Computes number of replicas for the job;
Determines the backup resources;

}

Mohammed Amoon / Computing, 2012, Vol. 11, Issue 2, 115-121

 119

Fig. 3 – AJR algorithm

7. BACKUP RESOURCES SELECTION

(BRS)
After determining the number of job replicas, the

backup resources will be selected. So, even in case
of failure of a resource grid will be able to complete
the job and to get results of the job’s execution from
an alternate resource. In this work, the selection of
such resources depends on the current load of the
resources selected in the allocation step.

The load of a resource is the size of computations
done by the resource related to the resource speed.
RIS is responsible for storing the load history of grid
resources. The load history of a resource j is defined
as:

,
j

c
j S

WLH = (3)

where Wc is the total computation work, in
instructions, done by the resource j and Sj is the
speed of the resource measured in Million
Instructions per Seconds (MIPS).

Fig. 4 – BRS algorithm

Backup resources will be selected from list of the
allocated resources. The selection is based on the
current load of these resources. Fig. 4 shows the
BRS algorithm used to select the backup resources
for a job. Firstly, the algorithm selects resources
satisfying the condition: FTj < FTn. Then, the
selected resources are sorted according to the current

load of each resource. The sorting is done in
ascending order. The first k resources are selected as
the backup resources.

8. RESULTS AND ANALYSIS

Grid is a complex environment and it is difficult
to build a grid on a real scale to validate and
evaluate scheduling algorithms. Therefore,
simulation is often used. There exist a number of
well-known grid simulators, such as GridSim,
SimGrid and NSGrid. However, all the above
simulators do not support fault-tolerant and they
have limited modeling for grid dynamics [12]. So,
we developed a grid simulator using Java 6 to
validate and evaluate our proposed fault-tolerant
scheduling algorithms.

The simulator provides multiple services. These
services include application composition and grid
configuration through manual inputs from users,
information services for resource discovery and fault
detection, services for assigning application tasks to
resources and managing their execution, and ability
to inject grid with some faults. Also, it allows users
to develop, validate and evaluate their own
algorithms.

The simulator is portable, since it is available for
Windows and Linux, and also other platforms. Also,
it provides extensibility and flexibility to simulate
the dynamic behavior of the grid. The simulator
supports several types of dynamic system
modifications such as alternating resource
availability. The communication between the
simulator’s components is dome through using the
message passing operations.

In this section, the performance of the proposed
algorithms is compared against the performance of
the replication-based algorithms in [10] and [12].
The comparison is performed within grid systems
with varying load and reliability.

In the simulation experiments, application are
modeled with different number of jobs ranges from
1000 to 5000. The size of each job is randomly
selected from 1KB up to 10MB. The number of
resources in the grid is around 1000 resources.

9. GRID LOAD

In this section, we show the performance on grid
load. In Fig 5, we observe that the proposed AJR
algorithm performs better than the DFTS algorithm
[10]. This is because the DFTS algorithm assumed
fixed number of replicas for each submitted job.
This leads to extra unwanted load. On the other
hand, the proposed AJR algorithm assumes a
different number of replicas for each job according
to the failure tendency of the resources. In general,
the grid load of the two algorithms increases with

For each resource j in the allocated list;
{

if(FTj > FTn)
remove j from the list;

}
Sort resources according to LH in ascending order;
j = 1;
while(Replicas > 0)

{
Select j as a backup resource;
Replicas--;
j++;

}

For each job i submitted by the user
{
k = 0;
j = first resource in the allocated list of resources for job i;

 Do
{
k ++;
j = next resource;
}

 While(FTj >= FTn);
}

Mohammed Amoon / Computing, 2012, Vol. 11, Issue 2, 115-121

 120

the increase in the number of jobs submitted. But,
the AJR algorithm introduces a lower rate of
increase than DFTS algorithm. This leads to a better
degree of scalability.

Fig. 6 shows the Grid load comparison between
the proposed AJR algorithm and the TR algorithm
[12]. In TR, the number of replicas for each job
depends on the number of free resources in the grid
suitable. It is shown that the proposed AJR
algorithm performs better than the TR algorithm
[12]. This is because the proposed AJR algorithm
considers the failure history of resources when
determining the number of replicas for each job.

Fig. 5 – Comparison between the proposed AJR

algorithm and DFTS algorithm

Fig. 6 – Comparison between the proposed AJR

algorithm and TR algorithm

10. THROUGHPUT

Throughput is one of the most important standard
metrics used to measure the performance of fault
tolerant systems [9]. It is used to measure the ability

of the grid to accommodate jobs. Throughput is
defined as:

nT
nnThroughput =)(, (4)

where n is the total number of jobs submitted and Tn
is the total amount of time necessary to complete n
jobs.

Fig. 7 and Fig. 8 show the throughput
comparison of the proposed BRS algorithm with the
ATR algorithm in [12] for different number of jobs
submitted. The numbers of jobs are 1000, 2000,
3000, 4000 and 5000. The percentage of faults
injected in the grid is 10% in Fig. 7 and 20% in
Fig. 8.

Fig. 7 – Comparison between the proposed BRS

algorithm and ATR algorithm with 10% injected
faults

Fig. 8 – Comparison between the proposed BRS

algorithm and ATR algorithm with 20% injected
faults

Mohammed Amoon / Computing, 2012, Vol. 11, Issue 2, 115-121

 121

It is shown from figures that the throughput of
the BRS algorithm is better than the ATR algorithm
for the whole range of job numbers. This is because
in the BRS algorithm the failure rate and the current
load of grid resources are taken into account when
selecting the backup resources. On the other hand,
The ATR algorithm selects free resources as the
backup resources regardless of its tendency to fail.
This leads to less faulty resources in the resulting
schedule than the ATR algorithm.

11. CONCLUSION
In this paper, we proposed a fault tolerant

scheduling system for grids that uses job replication
mechanism. The system contains two main steps:
allocation step and replication step. The main
contribution of this paper is in the replication step.
Two algorithms have been proposed and presented.
The first determines the number of job replications
and the second determines the backup resources on
which replications will be executed. The
performance of the two algorithms is evaluated
under different conditions using metrics such as grid
load and throughput. From results of experiments, it
can be concluded that the proposed provides better
performance.

12. REFERENCES

[1] S. Priya, M. Prakash and K. Dhawan, Fault
tolerance-genetic algorithm for grid task
scheduling using check point, Proc. of the sixth
International Conference on Grid and
Cooperative Computing, Urumchi, Xinjiang,
China, August 16-18, 2007, pp. 676-680.

[2] S. S. Sathya and K. S. Babu, Survey of fault
tolerant techniques for grid, Computer Science
Review, (4) 2 (2010). pp. 101-120.

[3] Q. Zheng and B. Veeravalli, On the design of
communication-aware fault-tolerant scheduling
algorithms for precedence constrained tasks in
grid computing systems with dedicated
communication devices, J. Parallel and
Distributed Computing, (69) (2009). pp. 282-
294.

[4] H. Lee et al., A resource management system
for fault tolerance in grid computing, Proc. of
International Conference on Computational
Science and Engineering, Vancouver, Canada,
August 29-31, 2009, pp. 609-614.

[5] F. Khan, K. Qureshi and B. Nazir, Performance
evolution of fault tolerance techniques in grid
computing system, J. Computing and Electrical
Engineering, (36) (2010). pp. 1110-1122.

[6] S. Hwang, C. Kesselman, A flexible framework
for fault tolerance in the grid, J. Grid
Computing, (1) (2003), pp. 251-272.

[7] H. Lee et al., A resource management and fault
tolerance services in grid computing, Journal of
Parallel and Distributed Computing, (65)
(2005), pp. 1305-1317.

[8] B. Khoo and B. Veeravalli, Pro-active failure
handling mechanisms for scheduling in grid
computing environments, J. Parallel and
Distributed Computing, (70) 3 (2010), pp. 189-
200.

[9] M. Huda, H. Schmidt and I. Peake, An agent
oriented proactive fault-tolerant framework for
grid computing, Proc. of International
Conference on e-Science and Grid Computing,
Melbourne, Australia, Dec. 5-8, 2005, pp. 304-
311.

[10] J. Abawajy, Fault-tolerant scheduling policy for
grid computing systems, Proc. of 18th IEEE
International Parallel and Distributed
Processing Symposium, April 26-30, 2004.

[11] K. Srinivasa, G. Siddesh and S. Cherian, Fault-
tolerant middleware for grid computing, Proc.
of 12th IEEE International Conference on High
Performance Computing and Communications,
Melbourne, Australia, Sep. 1-3, 2010б pp. 635-
640.

[12] M. Chtepen, B. Dhoedt, F. Cleays and P. Van-
rolleghem, Evaluation of replication and
rescheduling heuristics for gird systems with
varying resource availability, Proc. of 18th
International Conference on Parallel and
Distributed Computing Systems, Anaheim, CA,
USA, Nov. 13-15, 2006, pp. 622-627.

[13] S. Song, K. Hwang, and Y. Kwok, Risk-
resilient heuristics and genetic algorithms for
security-assured grid job scheduling, IEEE
Trans. Computers, (55) 6 (2006), pp. 703-719.

M. Amoon has received the
B.S. in 1996, M.S. in 2001, and
Ph.D. in 2006 degrees from the
computer science department,
faculty of electronic engi-
neering, Menofia University.
He has been appointed as a
Lecturer in the Department of
Computer Science and
Engineering at Menofia Univer-

sity. Now, he is assistant professor in the
Department of Computer Science at King Saud
University. His research interests include distributed
computing, grid computing, Agent-based systems,
Fault-Tolerant Computing and cloud computing.

