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Abstract: Our research group has been studying data-analysis based techniques in decision support and visualization. 
We had a long industrial research project in co-operation with a Finnish nuclear power plant Olkiluoto. We developed 
many decision support schemes based on Self-Organizing Map (SOM) method combined with other methodologies. Also 
several visualizations based on various data-analysis methods were developed. Data from the Olkiluoto plant and 
training simulator was used in the analysis. In this paper some of these visualizations are presented, analyzed, and 
assessed with a psychological framework. Measuring the information value of the visualizations is a real challenge. The 
developed visualizations and visualization techniques are also compared with some existing visualizations and 
techniques in current plants and research laboratories. The visualizations and the visualization techniques are 
developed further, and completely new visualizations and techniques are developed. We point out what additional value 
the new visualization techniques can produce. A detailed test case of using Self-Organizing Map (SOM) method with 
Olkiluoto plant data is presented. With this practical example the information value of this method is shown, and it is 
also pointed out how it can be assessed, and what are the most reliable criteria in this assessment. 
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1. INTRODUCTION 
The visualization in process industry is a tricky 

issue. The need for presenting the information 
content in the control rooms has changed along the 
developing technology and with time. In nuclear 
industry, many modernization projects have been 
carried out. For instance, wide monitoring screens 
set up many new requirements for the presentation 
techniques, and open new possibilities as well. 

Early fault detection is an important research 
issue in the nuclear industry. The earlier the 
abnormal behaviour in the process is detected, the 
better possibilities there are to identify the problem 
in time and handle the recovery procedure properly. 
We have developed tools for helping operators in 
their work, and to help experts to understand better 
different phenomena in the process [1]. 

Prototyping has been one important research 
methodology used in our research group. In many 
prototypes a neural method self-organizing map is 
used and combined with other more or less 
traditional methods [1]. We have also done 
traditional data analysis with nuclear power plant 
data and training simulator data, and developed 

methods and tools for helping decision support in 
the nuclear field. Visualization is an important part 
of this research. Many tools and methods could be 
easily generalized or modified to other application 
areas as well. 

Process failure detection with complex data 
analysis methods is a widely studied research area. 
Also about process presentation and visualization 
other studies are made. For instance, in the nuclear 
field [2] and other industrial branches [3], [4] many 
techniques have been developed. Decision support 
visualizations [5], [6] are also presented in the 
literature.  

In this paper, we study the use of the self-
organizing map [7] in visualization of process data 
in dynamic systems. Also user interface and 
visualization assessment are discussed. Assessment 
criteria are presented and compared. In a case 
example with the Olkiluoto nuclear power plant 
data, we show the information value of the method 
also in more practical sense. Two data sets from the 
same transient event are studied: one from the 
turbine section and one from the reheater section of 
the plant. 
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2. SELF-ORGANIZING MAP IN DYNAMIC 
SYSTEMS 

Self-organizing map (SOM) is an effective 
method in neural computing for the analysis and 
visualization of multidimensional data. The SOM 
algorithm [7] resembles vector quantization (VQ) 
algorithms. The difference with regard to VQ 
techniques is that the neurons are organized on a 
regular grid and along with the selected neurons also 
its neighbours are updated. The SOM performs an 
ordering of the neurons. The SOM is a 
multidimensional scaling method projecting data 
from input space to a lower, typically 2-dimensional 
output space. 

A SOM consists of neurons organized in an 
array. The number of neurons may vary. Each 
neuron is represented by an n-dimensional weight 
vector, m = [m1, … , mn], where n is equal to the 
dimension of the input vector. The neurons are 
connected to adjacent neurons by a neighbourhood 
relation, which defines the structure of the map. 
Rectangular and hexagonal neighbourhoods are the 
most used topologies. 

The SOM is trained iteratively. In each training 
step, one sample vector x from the input data set is 
chosen randomly and the distance between it and all 
the weight vectors of the SOM are calculated using 
some distance measure. The neuron c whose weight 
vector is closest to the input vector x is called the 
Best-Matching Unit (BMU): 

 
x m x mc

i
i− = −min{ }

  
(1) 

 
where || . || is the distance measure. 

Since BMU is found, the weigh vectors of SOM 
are updated so that the BMU is moved closer to the 
input vector in the input space. The topological 
neighbours of the BMU are treated in a similar way. 
The adaptation procedure stretches the BMU and its 
topological neighbours toward the sample vector. 
The SOM update rule for the weight vector of the 
unit i is: 

 
m t m t h t x t m ti i ci i( ) ( ) ( )[ ( ) ( )]+ = + −1  (2) 

 
where t is time. The x(t) is the input vector randomly 
drawn from the input data set t and hci(t) the 
neighbourhood kernel around the winner unit c at 
time t. The neighbourhood kernel is a non-increasing 
function of time and the distance of unit i from the 
winner unit c. It defines the region influence that the 
input sample has on the SOM. 

Originally the SOM algorithm was not designed 
for changing time. The SOM is able to analyze 
ideally only static data sets. Many attempts to use 

the SOM method in the analysis of dynamic data 
have been done. It has been used in many time-
related problems especially in process modelling and 
monitoring. These issues are discussed for instance 
in [8]. 

One possibility to describe dynamical behaviour 
is the visualization of trajectories, which link 
together the adjacent winner neurons (BMU) in the 
SOM grid. The SOM trajectories have such features 
as linked BMUs, where each BMU represents a 
certain instant of time. The operator can learn to 
adjust the control variables according to the visual 
impression so that the process stays in the desired 
regions of the map. 

An example of using trajectory expression in a 
dynamic system is in Figure 1. Here the trajectory of 
the U-matrix shows visually how an imaginary 
accident scenario proceeds in a nuclear power plant. 
The data come from the Finnish Olkiluoto nuclear 
power plant training simulator. In normal operation 
the trajectory stays in a certain region in the U-
matrix, but when the transient becomes big enough 
the trajectory moves out to another region. In the 
example of Figure 1 there is a leak in the main 
circulation. Different scenarios are somewhat 
separable in the U-matrix [9]. 

 

 
Fig. 1 – Dynamical behavior in the process is show by 

U-matrix trajectory 

More examples about handling spatio-temporal 
problems with the SOM method are written in [1]. In 
section V we go through an industrial case example 
where the SOM method is used with data from a 
Finnish nuclear power plant. 

 
3. USER INTERFACE AND 

VISUALIZATION ASSESSSMENT 
In control room various things need to be shown 

to the operator. Typical displays in the control rooms 
of process industry are such as process chart, task 
display, trend chart, alarm list, event display, report 
chart, sequence display, maintenance display and 
diagnostic display [10]. 
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In many psychological studies operators decision 
making is looked from several points of view. In 
cognitive ergonomics, the model of operator 
decision making is defined by the following steps: 
activation, detection, recognition, interpretation, task 
definition, selection of performance rule and task 
realization [10]. 

The situation awareness of an operator may be 
restricted by attention reduction, limitations of short 
memory, work load, threat, fatigue, stress, 
information overload, complexity, flaw mental 
model, out of the loop, etc. The requirements for 
process control are based on dynamical issues, 
complexity issues and uncertainty issues. The state 
properties are physical, social and virtual. [10] 

Assessment is a part of the design process. To 
ensure that the ergonomic requirements are taken 
into account, following things are concerned: 
systematic approach, ergonomics part of the 
interdisciplinary design process, operation concept 
as design core, assessment enabling iterative 
operations, and user organization participation. 

There are certain principles to the coherence and 
recognition in the displays. Functionality is one 
property in visual expression. The functionalities 
between human and computer can be divided 
according to security criteria, competence, cognitive 
and affective criteria, tasks, etc. The displays should 
be clear and readable, and adequate. 

Assessment is done in many phases in the design 
process. Important assessment criteria are 
compatibility, information clarity, situation 
awareness, controllability, mental load, support 
group work, understandability, error density, limit 
marginal, and the structure of control room [10]. 

Commonly used assessment methods are “walk 
through” and “talk through” observation. Other 
methods are such as expert opinion, experimental 
methods, physical measurements, assessment of 
alteration, and paper and pen techniques: ergonomic 
check lists, use of history data, task analysis and 
qualitative reliability analysis. 

Commonly accepted principles in the assessment 
are: verification and validation should be part of the 
design process, importance of preplanning, realistic, 
coverage, availability of assessment material, 
expertise; practical, systematic, and well 
documented methods, quantitative methods when 
possible, and documentation. [10] 

Detailed requirements of displays are defined in 
standards. Alarm handling is one special case. Risk 
analysis is one method used. Safety in abnormal 
situations is very important. 

Basic criteria for usability are productivity, 
efficiency and pleasure [11]. Five quality 
components are defined as learning, efficiency, 
memory, error rate, pleasure and profit. Availability, 

attractiveness, ease of use, accessibility, user 
experience and use experience are also important. 

Ten usability heuristics are defined as [11]: 
Visibility of system status, match between system 
and the real world, user control freedom, consistency 
and standards, error prevention, recognition rather 
than recall, flexibility and efficiency of use, aesthetic 
and minimalistic design, user help in recognition, 
diagnose and recover from errors, help and 
documentation. These heuristics are not used in our 
examples, unless they overlap with the other criteria 
mentioned in this paper. 

The measurement of usability is based on 
satisfaction, learning, remembering, errors and 
efficiency. In addition conservation, flexibility, 
tiredness, concentration and various positions can be 
measured. 

A user interface can be consistent or innovative. 
The assessment can be done by cognitive methods, 
scenario based or by empirical testing. 

In assessment the following things are checked: 
observable options, understandability, data ordering, 
data consistency, control equipment, interaction, 
performance and load, acceptability, assembly and 
connectivity, other information and guidance. 
Assessment tools are tools for testing, checking, 
requesting, modeling and simulation. Automation of 
assessment is difficult.  

 
4. ASSESSMENT CRITERIA AND THEIR 

COMPARISON 
Some assessment criteria have been listed already 

in the previous section. In [12] is defined a 
comprehensive “placeness profile”, which includes a 
large amount of user interface properties. Part of 
them can be considered as criteria for user interface 
and visualization assessment as well. Three types of 
control room concepts (or metaphors) are used: 
illustrative control room, interactive control room 
and boundless control room.  

In [12] there are defined more than fifty 
properties, but here we concentrate on only the most 
interesting ones. We have picked up real-time 
information, trend information, illustration of 
parameter relations, some criteria about transients, 
predictive information, history of events, monitoring 
and set point criteria, accuracy and feedback of 
operation, spatial relations, multi-unit connections, 
remote operations, allocation of tasks and 
operational experience for our analysis. Some of 
these properties and criteria are paid more attention 
than the others. These properties and criteria partly 
overlap with the criteria mentioned already in the 
previous section. 

In Figure 2 is seen a component plain 
representation of a trained SOM in a leak scenario, 
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where the process starts in normal state and progress 
to partial reactor shutdown state. The component 
planes are corresponding (a) normal state, (b) 
leakage state, (c) partial reactor shut down state, (d) 
reactor shutdown state, and (e) progress. Dark colour 
on a shell indicates high component value. The 
trajectory depicts a sequence of observations from a 
data set from Finnish nuclear power plant Olkiluoto 
training simulator mapped on the SOM. This 
example is presented more in detail in [1]. 

 

(a) (b) (c)

(d) (e)  
Fig. 2. – Our visualization where a trajectory shows 

the dynamical behavoiur in a SOM map 

 
Reflecting our visualization example against the 

defined assessment criteria, it can be noticed that 
certainly general criteria information clarity and 
understandability are very important. Also 
compatibility, error density and limit marginal make 
sense. If the operator is familiar with this concept, 
this visualization also increases the situation 
awareness. On the other hand it is very difficult to 
estimate the mental load or the structure of the 
control room, which need completely different 
methods and tools to be measured. 

From the placeness profile properties the most 
interesting ones for the example are real-time 
information, transients, predictive information, 
history of events and monitoring. The rest of the 
criteria are here for less interest. The placeness 
profile as a whole could be considered as one 
potential psychological method to be used in the 
assessment of SOM visualizations in general, and in 
production of some kind of measurement framework 
for this purpose as well. 

 
 
 
 
 

5. USING INDUSTRIAL DATA IN A CASE 
EXAMPLE 

In our newest research, real data from the reactor 
unit 1 of Olkiluoto nuclear power plant (NPP) have 
been used. In April 2009, more than 700 signals 
were stored, every tenth second. In a six-hour 
period, a change in a valve position was performed. 
Changes of the process signals in the reheater 
section and other parts of the NPP were captured in 
the recorded data. In this example, signal 
measurements at the main pipelines of turbine 
section (413x) are analyzed. These signals are 
located after the reheater. The position of the control 
valve at the reheater was changed. At 8 – 10 p.m. 
process was controlled manually, at 10 – 12 p.m. 
after the first part of the measurements the process 
was stabilized. Then the control valve was opened 
for two hours. 

In this example it is shown how to use the SOM 
method to observe changes between the process 
signals. Which are the signal values in each state? 
Which signals depend on the others? In the variable 
selection phase, all signals from the turbine section 
were selected, totally 42 signals. In our visualization 
10 signals were selected from the turbine, see Table 
1 and Figure 3.  
Table 1. Explanation for the Signal Measurements and 

Their Units in the Turbine Section 

Signal name Explanation Unit 
413K567 steam temperature before reheater 1 C 
413K568 steam temperature before reheater 2 C 
413K576 water pipes C 
413V501 valve position % 
413V505OM control piston position % 
413V513 control piston position % 
413K573 water pipes C 
413K574 water pipes C 
413V501OM control piston position % 
413V503 valve position % 

 
The effect of the control valve test in the reheater 

part is visualized by SOM component planes. Signal 
dependencies can be examined. Roughly, it seems 
that the steam temperatures before the reheater are 
negatively correlated with the control piston and the 
valve positions. However, the control piston position 
413V513 correlates positively with temperatures. 
The component planes show the limits for current 
process signal values.  

The visual inspection of the U-matrix and 
labeling is shown in Figure 4. From the U-matrix 
visualization, it can be seen that there are essentially 
three clusters: manual control, the first hour of 
stabilization period and in the same cluster the 
second hour of stabilization, and when the control 
valve is open. 
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Fig. 3 – In the turbine section 10 process signals were 

monitored. Denormalized scales are shown on the 
right side of the component planes 

 

 
Fig. 4 – In the labels, m: the process was controlled 

manually, o: the control valve is open, 1: the first hour 
of the stabilization period, and 2: the second hour of 

the stabilization period. The U-matrix reveals that the 
process states ‘m’, ‘1’ and ‘2 & o’ are clustered very 

clearly 

Interesting remarks are that variable 413K573 has 
the lowest values when the control valve is open or 
controlled manually. Signal 413V513, control 
piston, and temperatures before the reheater get the 
highest values when the control valve is open. 

A similar study has been carried out for the 
reheater section. In the variable selection phase all 
signals from the reheater section were selected, 
totally 125 signals. In our visualization eleven 
signals were selected from the reheater area and 
three were selected elsewhere for the analysis, see 
Table 2.  

Table 2. Explanations for the signal measurements 
and their units in the Reheater Section 

'412K571' 
'412K584' 
'412K576' 
 
'412K466' 
'412K720' 
'412K301' 
'412K490' 
'412K188' 
'412K705' 
'412K517D' 
'412K513D' 
'431K457' 
'431K551'  
 
'413V501xM' 

'temperature after 412T23' 
'steam temperature before V5' 
'412T22 emergency dump 
V22' 
'level 412T15' 
'V312 position' 
'412T9 and 445T302 flow' 
'level 412T15' 
'412T11 pressure' 
'V41 position' 
'rate of change 412E1 phase 2'
'rate of change 412E2 phase 1'
'condenser 431E1 level' 
'condenser 431E1 
temperature' 
‘average of piston positions’ 

'C' 
'C' 
'C' 
 
'%' 
'%' 
'kg/s' 
'%' 
'BAR G' 
'%' 
'C/MIN' 
'C/MIN' 
'm' 
'C' 
 
'%' 
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The control valve test in the reheater part did not 
affect to the reactor pressure and steam flows. They 
are situated before the reheater and many other 
process parts. The condenser is located after the 
reheater and before the reactor. Three signals shown 
in the last rows of Table II were selected, because 
signal measurements are after the reheater. Last 
signal is derived from the redundant measurement. 
Four measurements are averaged. Next step in the 
analysis is the visual inspection of the U-matrix, 
component planes and labeling, see Figure 5. 

From the U-matrix visualization, it can be seen 
that there are essentially three clusters (process was 
controlled manually, the stabilization period and the 
control valve is open). The component planes show 
the limits for current process signal values. Also 
'412K571', '412K584' and '412K576' in the reheater 
part have high linear correlation with the condenser 
and the vacuum system part signal '431K551'. Other 
interesting remark is that another variable '431K457' 
from this area has the highest values in the end of 
the stabilization period. In other words, the level of 
the condenser is the highest after four hours the 
experiments were started, although the highest 
temperature was detected at the end of the 
experiments.  

More exact analysis can be done by the principal 
component projection, see Figure 6. For example, 
'412K466' and '412K490' get higher values when the 
control valve is open than when it is controlled 
manually. 

Both data sets in this case example are from the 
same event. Logical behaviour in both components 
in this respect can be identified. The similarities 
noticed have a clear basis. 

 
6. DISCUSSION 

With the SOM method the dynamical 
development of the process can be seen by using the 
U-matrix trajectories, and the clustering structure of 
the data with the U-matrix itself [1]. The correlations 
of certain variables are seen with the component 
plane SOM maps. The faulty development in the 
data can be detected for instance with the 
quantization error. 

The shape of the SOM map also reveals 
important things about the distribution of the data, if 
the shape of the map is not restricted or prohibited. 
Detecting the pre-stage of the fault is possible with 
various ways [1]. The visualization of the process 
and its progression with SOM maps, and leak 
detection with an adaptive process model are also 
discussed in [1]. 

 
Fig. 5 – In the reheater section 14 process signals were 
monitored. In the labels, m: the process was controlled 
manually, o: the control valve is open. 1: the first hour 

of stabilization period and 2: the second hour of the 
stabilization period. The U-matrix reveals that the 
process states 'm' and 'o' are clustered very clearly. 

The SOM component planes show the values for each 
process state 
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Comparing the SOM method with the PCA 
(Principal Component Analysis) method [13] we 
noticed that with the SOM method the non-linear 
behavior is seen better than with the PCA method, 
which is able to show only the linear dependence. 

To assess the information value of SOM maps 
and other visualizations that we have used is very 
difficult. To find out concrete measurable criteria 
here is almost impossible. Qualitative assessment 
with qualified criteria is more tempting option than 
trying to develop systematic quantitative measuring 
methods. This kind of analysis we have done with 
some example visualizations. 

The assessment criteria we have used in Section 
III and Section IV can be applied also with the SOM 

concept used in the industrial case example in 
Section V. As we did not discover very many new 
observations compared with the already earlier 
analyzed example, we did not complete that analysis 
here any further. Interesting viewpoints were 
detected though to be realized in becoming further 
studies. 

Some further co-operation is planned with a 
psychology group in the Finnish Technical Research 
Centre, and research groups in the Norwegian 
OECD Halden Reactor Project (Institutt for 
Energiteknikk) within this topic. 

 

 

 
Fig. 6 – A principal component projection (PCP). The color map is another type of visualization for U-matrix. 

Distance matrix information is shown as zero hits for each part of the map (number inside the object). The 
longer distances are visualized by smaller objects. From the PCP three different clusters can be detected. The 

first and the last points of the stabilization cluster are situated near to the other two clusters 

 
7. CONCLUSION 

We have shown with a case example by using 
industrial data the information value of the self-
organizing map in the process visualization. With 
some verbal comparisons, we have tried to 
differentiate this method from some other commonly 
used methods. The information value can be clearly 
seen although the use of this method in a real control 

room would need special attention and capabilities 
from the operators. The operator training would 
therefore meet new challenges. 

The measurement of the information value with 
any concrete way is a very difficult task. Some 
useful criteria can be found to estimate these values. 
We have made some reflections to psychological 
studies in this respect. 
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There are a lot of open questions and demanding 
challenges studying this issue further in the future. 
The SOM method alone is not enough to find out all 
necessary information out of the process, but it can 
add additional information value compared with 
many more traditional methods. The best results can 
be achieved by using many different methodologies 
in a well-selected combination. 
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