
Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72

 64

THE ART AND SCIENCE OF GPU AND MULTI-CORE PROGRAMMING

Robert E. Hiromoto

University of Idaho, 1776 Science Center Drive, Idaho 83402, USA,
hiromoto@cs.uidaho.edu

Abstract: This paper examines the computational programming issues that arise from the introduction of GPUs and
multi-core computer systems. The discussions and analyses examine the implication of two principles (spatial and
temporal locality) that provide useful metrics to guide programmers in designing and implementing efficient sequential
and parallel application programs. Spatial and temporal locality represents a science of information flow and is
relevant in the development of highly efficient computational programs. The art of high performance programming is to
take combinations of these principles and unravel the bottlenecks and latencies associate with the architecture for each
manufacturer computer system, and develop appropriate coding and/or task scheduling schemes to mitigate or
eliminate these latencies.

Keywords: Performance, Speedup, Parallelism, Temporal Spatial Locality.

1. INTRODUCTION
Commodity multithreaded processors in dual-

and multi-core processors, and the graphic
processing unit (GPU) comprise today’s computer
market place. The progress in the nanometer process
technology has advanced the design and
manufacturing of these ambitious computer
architectures. This new era of computing capabilities
place new demands on the programmers and
requires potentially new tricks or programming
techniques for veteran programmers experienced in
the art of parallel programming. With each new
generation of more sophisticated processor design,
the processor structure, the organization of memory
hierarchy, the implicit and explicit scheduling of
executable threads (tasks), and the programming
software environment reappear as a set of new
criteria that defines the parameter space of
programming paradigms. Encouraged by the
promise that these new systems can deliver higher
performance, a new surge of interest and activity has
emerged in areas of multi-core and GPU computing.
As a consequence, the GPU is now manufactured
with higher precision arithmetic and programming
software to allow general-purpose computing on
GPUs (GPGPU), where traditionally the applications
were handled by the CPU. The GPGPU
programming paradigm relies on streaming data
through lightweight threads of execution, where
banked memory provides non-blocking access of
operands (data) between competing threads.

Consequently, hardware support for GPUs and
multi-core systems require more complex memory
hierarchies, and hardware technologies to maintain
memory consistency and cache coherence under a
dynamic parallel execution model. Cache coherence
in multicore systems is an example of the hardware
organizational complexity required to address
memory latencies.

New technologies, like the GPU and multi-core
processor, introduce new challenges to the
applications programmer. The novelty of these
systems lies in their hardware organization, where
an optimal mapping between hardware and software
can easily be compromised when multithreaded
parallel execution is introduced. The challenges for a
parallel code (program) developer is to bend,
reshape, and retrofit existing codes onto new and
ever changing architectures. For the novice
developer, this requires navigating a desperate
terrain strewn with hidden and undetected detours.

Fortunately, there are physical principles that can
provide code developers with a framework to reason
about multithreaded programming complexities
exhibited by new and intricate hardware
configurations. These principles are time and space
metrics upon which performance is measured. The
faster the clock cycle, the higher the potential CPU
performance; or the longer in response (latency)
time, the lower in performance that can be expected.
The rate of information flow, ultimately dictates the
achievable performance whether in the activities of
the financial markets or the execution of applications

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72

 65

on computer systems. Minimizing the time for
operand access, repeated reuse of data or
instructions, minimizing latencies between
input/output (I/O) requests are examples where
temporal and the spatial locality between references
play important roles in optimizing performance.
Temporal and spatial localities are two simple
principles that all programmers, interested in
designing and implementing optimally performing
application codes, should be guided by.

In the next sections, we introduce the concept of
spatial and temporal locality and the implied
consequences to the organization of memory
hierarchies and coding of the matrix multiplication
program; the notion of parallelism and Amdahl’s
law; and architectures of the multi-core and the
GPU.

2. SPATIAL AND TEMPORAL LOCALITY

The principle of locality [1, 2] refers to two basic
types of reference locality. Spatial locality refers to
the use of data elements stored within a relatively
close proximity of one another. Temporal locality
refers to the reuse of data (instructions) or other
resources within relatively short time periods. These
principles, in various forms, are applied in
performance optimization for cache utilization and
memory prefetching technology, code motion
affecting memory access patterns, and process
scoreboarding to enhance processor performance.
Although there are other specific terminologies of
locality, those more dynamic predictive assertions
(branch or most probable access predictor) are
typically beyond the control of the programmer.

In this paper, we take the liberty to expand the
definitions of both spatial and temporal locality as
measures of both near and distant proximity of data
references. Under these expanded definitions, spatial
and temporal localities are principles that
encapsulate the basic notions of length and time.
They are measurable and when taken separately or
in combinations, they can be reasoned about and
formulated in predictive analysis.

From a programmer’s perspective, such metrics
lend themselves in code planning for I/O tasks and
data layouts, code restructuring for both sequential
and parallel execution, and reasoning within the
context of a memory hierarchy with associated
referencing costs. The programmer must understand
the hardware organization and resources available to
the application code. As with every organizational
structure, computer system has their particular
idiosyncrasies; however, these peculiarities can be
measured in both space and time.

2.1. MEMORY HIERARCHY
Hierarchical memory is a hardware organization

that is arranged to benefit from spatial and temporal
references. Levels of memory characterize a typical
memory hierarchy; where caches, populated near the
CPU, have low latency and low memory capacity
devices. As the distance between the CPU and the
levels (from low to high) of the memory hierarchy
increase, so to do their access latencies and memory
capacities increase. As the distance between the
CPU and the levels (from low to high) of the
memory hierarchy increase, so to do their access
latencies and memory capacities increase. The
design of hierarchical memory is organized to read
blocks of slower (higher) level memory into the next
successive (lower) level of the memory hierarchy.
Predictive algorithms (hardware and OS) attempt to
predict which data might be accessed next or least
and then react by moving the appropriate data
through the memory hierarchy as needed. Temporal
latencies and memory device capacities are
illustrated in Fig. 1, where the cost of accessing data
from the memory hierarchy that are more distant
from the CPU increases from a few clock cycles to
orders of magnitude.

Fig. 1 – Memory Hierarchy

The organization of a memory hierarchy
illustrates a principle of economy of scale. A
programmer should be aware of this principle when
dealing with I/O considerations. A cache is designed
to be faster by restricting operand address lookup to
within a small memory capacity, and by requiring
shorter wires (links) to connect to the CPU. In
exchange for limited cache capacity, cache
technology employs temporal and spatial locality
analyses to maintain recently referenced data and/or
near recently referenced data. Programmers have
considerable control over the locality of data
referencing by structuring their codes in ways to
increase the spatial and temporal locality of both
operand and instruction references, and the locality
offered by the various hierarchical storage devices.
The result of this analysis can lead to a higher cache
utilization per unit cycle time; translating into higher
performance.

Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72

 66

2.2. MATRIX MULTIPLICATION:
ANALYSIS

An interesting application of spatial and temporal
locality is the coding of the matrix multiplication
operation [3]. In most introductory lectures, the
multiplication of two matrices is commonly defined
through the loop structure as illustrated in Fig. 2 (a).
The inner-loop index K references elements of
matrix A in a row-wise manner (in cache), whereas,
the elements of matrix B are referenced column-
wise. In a programming language that assigns the
elements of a matrix in a row-wise fashion, the
cache strategy for predicting the most probable next
reference will load the elements of matrix B in a
row-wise fashion as well. The affect of program (a)
and the caching predictive strategy results in an
inefficient cache utilization for matrix B, where
fewer elements of its column-wise references are
available in the cache resulting in more cache
misses; as compared to cache misses experienced by
row-wise references of matrix A. In this example, a
simple remedy requires only an interchange between
the J and K loop indexes. In this reorganized loop
structure, matrix B more optimally complies with
maximizing spatial locality, whereas, the matrix
element A[I,K] now exhibits temporal locality. Fig.
2(b) illustrates a blocking technique that further
improves temporal and spatial locality. In this more
complicated set of loops, matrix multiplication is
computed using a series of sub-block calculations
where sub-blocks of A and B can be used several
times (increasing temporal and spatial locality)
before the next sub-blocks are accessed by the cache
in a block consecutive fashion.

Fig. 2 – Titled Matrix Multiplication (See [3])

A simple space-time analysis of program (a)
resulted in a more optimal sequential
implementation of the matrix multiplication
operation. Yet a more surprising result of program
(b) is that it also represents a parallel formulation of

matrix multiplication. This is a very rich result as no
parallel programming considerations are explicitly
employed. Guided only by the analyses of spatial
and temporal locality, a rather deep and unexpected
result has emerged. As a consequence, it is
challenging to speculate on the applicability of
spatial and temporal locality as an analysis tool in
developing more optimal sequential and parallel (not
necessary more parallel but more optimal in
performance) algorithms. The notion here is to
provide distance and time metrics to determine the
rate or radius of information that influences the final
solution. Once such an algorithmic analysis is
completed the details of computer implementation
then follow. Program (b) represents a blocking
strategy that parallel algorithms employ in certain
situations of their implementation. The GPU in
particular is heavily reliant on this technique termed
tiled memory to facilitate memory accesses and
kernel executions.

3. CATEGORIES OF PARALLELISM

Parallel programming is an optimization
technique to increase computational performance.
The idea is as old as human and pre-human activities
in scavenging for food, where independent journeys
are made to search and returned to their home base
with their share of findings. Computational
parallelism incorporates a similar strategy. The
solution of a single problem is divided up into as
many independent tasks (i.e., no information flows
between these tasks) that can then be executed
concurrently and then accumulated to obtain the
final solution. Parallelism may be categorized into
two broad groups: (1) unbounded and (2) bounded
parallelism. Unbounded (or near unbounded)
parallelism requires little or no communication
(transfer of information) between any of the
independently executing tasks. The term
“embarrassingly parallel” is coined to describe such
parallelism. Unbounded parallelism ushered in the
notions of scalability and scaled speedup [4] as
desired characteristics for trends in the future
development of parallel algorithms. Unbounded
parallelism may be attained in searches, algorithms
that use data (information) inefficiently,
transforming or marshaling data, rendering in
computer graphics, ray tracing, or brute-force
searches in cryptography to name a few examples.
Bounded parallelism represents a more typical class
of constrained parallelism, where the solution
specifications requires frequent or nominal exchange
of solution critical data that are computed
incrementally among the various parallel tasks. All
real-world solution-oriented processes represent this
behavior. Fig. 3 illustrates this point in an analogy of

Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72

 67

the well-known space-time diagram to the space-
time division between unbounded and bounded
parallelism. Within the space-time cone of influence,
solution algorithms are governed by the exchange of
solution-oriented information. All communication is
bounded by the speed of communication (C).
Outside the cone of influence, a region of
unbounded parallelism reigns; however, for this
parallelism to make a solution contribution their
region must collapse into the cone of influence.

Fig. 3 – Regions of Bounded and Unbounded

Parallelism

3.1. AMDAHL’S LAW

Amdahl’s law [5] is an algebraic argument that
parallelism, for a fixed size problem, is limited by
the percentage of code that cannot be parallelized.
The argument provides a simple but profound
insight into the limits of performance that is
attainable through the application of parallel
techniques and hardware. Amdahl assumes a simple
model by neglecting potential bottlenecks such as
memory bandwidth and I/O bandwidth. Still the
results provide an ideal upper bound for
performance expectations. Amdahl’s analysis
derived the following overall speedup improvement
when p processors are applied to the portion of a
sequential algorithm that supports fp percent of
parallel improvement.

Sp =
1

fs +
fp

p

where fs is the percent of scalar (sequential) code
and the condition that fp + fp = 1.

Speedup is a useful metric to assess performance
improvement; however, it is important to realize that
it may be misleading as a performance metric since
performance is a metric measured in time. Equation
(1) arises from the ratio between the sequential
execution time of an algorithm over its parallelized
execution time. As a result, speedup is a
dimensionless improvement metric, independent of

time.
Fig. 4 depicts the comparison of speedups

between two different algorithms constructed to
exhibit high and low percentages of parallelism.
Algorithm 1 is constructed to exhibit 90%
parallelism, by selecting values for fs and fp to be 0.1
and 0.9, respectively. Algorithm 2 is constructed to
exhibit low parallelism at 30%. The corresponding
values for fs and fp are chosen at 0.7 and 0.3,
respectively. However, the single processor
performance of algorithm 2 is adjusted to be five (5)
times the performance of algorithm 1. As might be
expected, algorithm 2 never surpasses the speedup
of algorithm 1. On the other hand, Fig. 5 provides a
more sobering assessment of performance and
emphases the pitfalls of the speedup metric. In this
comparative plot, algorithm 1 fails to attain a
parallel performance faster than algorithm 2, no
matter the number of parallel processors employed.
The constructed algorithms 1 and 2 could very well
represent two different algorithms for the solution of
the same computational problem; e.g., variants of
the Jacobi and Gauss-Seidel iteration schemes. In
this context, more parallelism does not necessarily
mean better performance.

Fig. 4 – Speedup Improvement

Fig. 5 – Parallel Performance

The problem with the use of speedup as a metric
for performance is the introduction of time-

Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72

 68

normalization based on a non-optimal sequential
algorithm (algorithm 1). Fortunately, speedup can be
salvaged if the time-normalization is made with
respect to the best available sequential algorithm [6],
in this case algorithm 2. In other words, the time
base applied to the metric of speedup must to
explicitly stated; otherwise, the use of the metric is
meaningless. Time, as mentioned earlier, is the
critical metric that describes performance.

4. GPU AND MULTI-CORE

ARCHITECTURES
In this section, an over review of generic

architectures for both the multi-core and GPU
processors are provided. Saline issues of the
architecture are presented and the challenges that
they pose for programmers to overcome.

4.1. MULTI-CORES

Traditional processors are designed with only a
single CPU that performs the reading and executing
of instructions. A multi-core processor combines
two or more cores (CPUs) on a single integrated
circuit (IC). It is also known as a chip
multiprocessor (CMP), and offers the promise of
enhanced performance for the processing of
independent tasks, a reduced power consumption (by
lowering the clock speed on each core), and low-
level hardware support for the synchronization of
parallel tasks. Ideally, a dual-core processor should
have twice the performance as a single core
processor. In several benchmarks, performance gains
are found to be in the range of fifty percent to one-
and-a-half times as powerful as a single core
processor [7].

Many-core refers to many cores in a computer.
They may or may not all populate the same chip.
They may be organized as many single-core chips, a
collection of single-core and multi-core chip, or
many multi-core chips. A typically “many-core”
might refer to 32 or more cores, while “multi-core”
are fewer in number. These terminologies are
technology driven and certain to change over time.

Fig. 6. depicts a generic dual-core processor with
CPU-level 1 (L1) caches and a shared level 2 (L2)
cache. A dual- (multi-) core configuration is
distinguished from traditional multiprocessor
systems by the tight shared-coupling of the L2 cache
between two cores. Although this provides a “faster”
connection between the coupled cores, it introduces
a departure from the hierarchical memory strategies
previously discussed. The capability of high-speed
accessing of the L2 cache by shared cores presents
challenges absent in traditional single-core
multiprocessor systems. The multi-core organization
places more demands on the predictive data access

strategies applied to the shared L2 cache. This
demand has the potential to increase reference
latencies and increase contention between cores in
supplying instructions and data; significantly
degrading performance [8, 9]. As a consequence,
multi-core designers have provided multiple
hardware contexts [10, 11] or multithreading.
Multithreading has the advantage that it can handle
arbitrarily complex access patterns even in cases
where it is impossible to predict the accesses before
hand. Multithreading simply reacts to cache misses
that occur, rather than attempting to predict them.
Multithreading tolerates latency by attempting to
overlap the latency of one context with the
computation of other concurrent contexts. As with
all advantages, there are disadvantages: (i)
multithreading relies on available concurrency
within an application, which may not exist; (ii) an
overhead is incurred in switching between contexts;
and (iii) significant hardware support is required to
minimize context-switching overhead delays.

Fig. 6 – Generic Dual-core Processor

In support of multithreading, on-chip
synchronization primitives are provided in hardware
and enables low synchronization algorithm
capabilities [12,13,14]. Low synchronization
algorithms offer relaxed ordering constraints on
memory operations and reduce or eliminate the
synchronization overheads from locking (lock-free)
[15]. Ultimately, low synchronization algorithms can
improve efficiency and scalability in multithreading.
The need for on-chip inter-core communication to
handle issues like synchronization and data sharing
are being addressed by the developments in
Network-on-Chip (NOC) [16,17]. The NOC network
links (wires) are shared by many signals. This
capability allows NOC to operate on different data
packets at one time, achieving a high level of data
parallelism, and providing separation between
computation and communication on a multi-core
processor system. As a consequence, NOC provides
high throughput performance and scalability when
compared to point-to-point or shared bus

Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72

 69

communication architectures. The benefits of NOC
to multi-core processors could be considerable.

As multi-core systems mature, efforts like NOC
may address the problem of cache coherence for
which multi-core performance can suffer. The cache
coherence problem in a parallel multiprocessor
environment arises when copies of a shared resource
in memory are maintained in local caches and
modified without maintaining the consistency
between the cache and memory [18]. This problem
is amplified in multi-core and many-core systems
where the sharing of the cache between cores
introduces an intervening level of spatial complexity
between local caches and the multi-core processor
memory. Temporal locality of cache consistency
also suffers.

Sorting out the performance issues of a generic
multi-core processor system is left in the hands of
the application’s developer. The details of achieving
optimal performance on a dual- or multi-core system
is, in some sense, an extension of code development
for traditional single-core multiprocessors. One
difference arises from the hierarchical cache
organization of multi-core systems. This one
modification can skew the spatial and temporal
locality of references depending on the
multithreaded demands of the application. The
skewing of references may result in positive or
negative performance behaviors. However, it is a
new programming or thread scheduling issue that
must be confronted by the code developer. The art of
multi-core programming is to devise multithreaded
scheduling or throttling schemes to deal with the
interactions between shared cores and the shared L2
cache resource. As the multi-core processor industry
matures, manufacturers and their designers may
provide better hardware support to facilitate the
programmer’s tasks. Until that time, it is the
struggles of the programmer in extracting the last
ounce of performance, and in so doing provide
examples that guides the industry in developing new
and better architectures.

4.2. GPUS

In this section, the architecture of the Nvidia
GeForce GTX 280 is described as an example of a
generic GPU architecture. The GTX 280 supports
shared memory, atomic operations, double precision
floating point instructions, 240 cores that run at
1.3GHz, and manufacturing that uses the 65 nm
fabrication process. The Nvidia GPU is a streaming
SIMD processor, whose kernel represent single
program multiple data (SPMD) programming
strategies. This interesting hybrid model is flexible
but introduces constraints that must be understood to
avoid performance degradations.

Fig. 7. is a high-level view of the Thread
Processing Cluster (TPC). The TPC consists of 3
stream multiprocessors (SM) each with eight (8)
streaming processors (SPs). Within a SM, each
block of eight (8) SPs and raster operation
processors (ROP) for graphics share an Instruction
Unit (IU), and executes threads in a Single
Instruction Multiple Data (SIMD) mode. Any
diverging (branching, data stalling, etc.) threads may
not execute in parallel. Local shared memory in each
of the three SMs allows associated SPs to share data
with other intra-SPs. The shared memory
organization is essential to the performance of SPs.
Shared memory is used to minimize the need to read
or write to/or from the global memory subsystem
(shown in Fig.8), which are typically very slow.
Inside each TPC, eight texture-filtering units (TF)
are provided for graphic rendering tasks. A typical
memory hierarchy may have 32-bit registers per SP
(see Fig.9). SMs also have access to constant and
texture caches. Constant and texture caches are read-
only and important to SMS performance since they
can be accessed quickly.

Fig. 7 – Thread Processing Cluster (TPC)

Fig. 8, depicts the GeForce GTX 280
architecture. The GeForce GTX 280 provides 10
TPCs, with three (3) SMs per TPC. The GPU
employs synchronous multithreading. It has a
hardware-based thread scheduler manages that
schedules threads across the TPC. If a thread is
stalled on a memory access, the scheduler can
context switch to another thread with little overhead.
A typical GPU has upwards of 30,720 threads on a
chip. The architecture includes texture caches and
memory interface units. The texture caches are used
to combine memory accesses more efficiently and
provide higher bandwidth memory read/write
operations. The texture cache is a level 2 (L2) cache
and is shared by all TPCs. The “atomic” operations
perform atomic read-modify-write operations to
global memory and facilitates parallel reductions
and parallel data structure management. Atomic
operations are integer operations in global memory
that provide associative operations on
signed/unsigned ints; add, sub, min, max, and, or,

Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72

 70

xor; increment, decrement; exchange; and compare
and swap operations. Table 1 provides a summary of
some important parameter values that define the
Nvidia GTX 200 series [19,20].

Fig. 8 – GeForce GTX 280

Table 1.– GPU Specifications

SM Resources
SP 8 per SM
Registers 16,384 per SM
Shared Memory 16KB per SM

Caches
Constant Cache 8KB per SM
Texture Cache 6 – 8KB per SM
Shared Memory 16KB per SM

Programming Model
Wraps 32 threads
Blocks 512 threads max
Registers 128 per thread max
Memory 8 ×128MB, 64-bit
Constant Memory 64 KB total

CUDA is the synonym for the Compute Unified

Device Architecture. It is a software specification-
programming platform to assist the GPU program
developer to interface to the logical GPU processor.
Using CUDA, the programmer can specify the
thread layout that are organized in blocks and in turn
organized into grids. Threads executing within a
block can synchronize among themselves. Thread
communication between different blocks must be
performed through slower global memory. Threads
in a block have IDs and can be indexed into 1, 2, or
3 dimensions. A grid consists of multiple thread
blocks of the same dimension and size. All threads
in a grid execute the same CUDA kernel (SPMD).
The CUDA architecture allows a SM to execute
blocks one at a time. A “warp” of 32 threads or a
half warp of 16 threads defines the number of
threads that can execute in parallel. Each block is
executed in 32 thread Warps. Warps are the
scheduling units for the SM; and thus, thread
scheduling is measured in warps. A block size can
be defined to be 1 to 512 concurrent threads. At any

time, only one warp is executed by a SM. Warps
whose next instruction has its operands ready for
execution are placed into the ready queue. Ready
warps are selected for execution on a prioritized
scheduling policy. All threads in a warp execute the
same instruction (SIMD) when selected. The
hardware is free to assign blocks to any SM at any
time. Each block can execute in any order relative to
other blocks. Threads in the same block share data
and synchronize while doing their portion of the
work. Threads in different blocks cannot cooperate.

Fig. 9, illustrates a CUDA memory architecture
of the GPU. Global memory (off-chip) is the main
means of communicating R/W data between host
and memory. Content and Texture memories (off-
chip) are available to all threads but when cached,
their access latency is very short. Shared memory
(on-chip) is shared between threads in the same
block. Shared memory is divided into “memory
banks” of equal size and is as fast as register when
no bank conflicts occur. The amount of shared
memory per SM is 16 KB organized into 16 banks.

Fig. 9 – CUDA Memory Model

Since the wrap size is 32 threads, a half wrap size
of 16 is used for conflict-free bank memory access.
Each thread has a private local memory (off-chip).
Local memory is to replace the functionality of
registers if the kernel requires more registers than
are available to a thread. Load/store instructions
swap register memory loads and stores in and out of
the local memory, which slows down the program
performance. CUDA threads may access data from
multiple memory spaces during their execution.
Finally, all threads have access to the same global
memory. Registers are very fast and play a
significant role in performance tuning.

The CUDA SPs support lightweight threads
designed to execute in SIMD mode. CUDA cores
lack their own register files or L1 caches. They do
not have multiple function units for each data type
(floating point and integer) or load/store unit for
accessing memory. Each CUDA core has a pipelined
floating-point unit (FPU), a pipelined integer unit,
some logic for dispatching instructions and operands
to these units, and a queue for holding results.

Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72

 71

CUDA SPs are optimized for multithreaded
performance but not optimized for single-threaded
performance [21].

GPUs provide fine-grain multithreading to offset
the extreme latencies incurred from slow main
memory accesses. The characteristics of fine-grain
multithreading require very high thread utilization
[22,23]. Multithreading for the GPU requires
explicit optimization of the number of registers used
by the kernel and the number of threads per block.
The SIMD nature of each kernel execution, dictates
that simpler and smaller kernels (that are written in
SPMD fashion) can provide better performance.
Smaller computational kernels require less registers
and are less likely to have data stalls, branching or
frequent communications. GPU kernels must be
organized and scheduled to maintain a balance
between temporal and spatial locality. Application
programs that exhibit regularity in their
computational structure are, therefore, prime
candidates to profit from the use of GPUs as
general-purpose applications on GPUs (GPGPU).
The program developers have the primary
responsibility to perform microsurgery on
applications for implementation on the GPU. The
programming task is arduous but can be rewarding.
The GPU program developers must remind
themselves that fine-grained SIMD processing can
return high performance gains but only if there are
enough resources and allows only limited
communications. Of course not all program
applications can support the number of threads
required to sustain high GPU performance. As a
consequence, the GPU has emerged as a co-
processor to the CPU [24].

In summary, the GPU architecture and the
multithreading interactions can be a very
complicated and dynamic environment for which to
design optimal programs. Multithreading, if poorly
coordinated, can result in large latencies in operand
accesses and contenting thread delays. The design of
efficient GPU programs requires assessing the
latencies within the components of the memory
hierarchy; and uses this knowledge to develop a
mapping of multithreading strategies that accrue
benefits from the aggregation of data utilization
according to regular access patterns. Ultimately, it is
the spatial and temporal localities that include
read/write accesses, speeds of the different memory
modules, and the threaded structure of the kernel’s
execution blocks that dictates the performance that
can be achieved.

5. CONCLUSION

Assessing the programming issues of modern
processors appears to be a confusing and challenging

task. This presentation argues that by employing two
simple principles of an expanded notion of spatial
and temporal locality some of the most intricate
pitfalls and traps can quickly be exposed and
reasoned about. This is not to imply that the
programming techniques will be easy to derive but
rather that performance issues can be isolated and
dealt with by using a more rational algorithmic
approach. In multi-core systems, the sharing of the
cache between several cores has the unintended
downside of incurring higher data access congestion
between cores. In addition, cache coherence also
becomes a performance consideration over which
the programmer has some degree of explicit control.
In future evolutions of multi-core systems, new
hardware and software technologies may mitigate or
solve these problems.

The massively parallel programming paradigm of
the GPU exemplifies the code developer’s dilemma
in fully understanding the organization of the
system’s architecture. Before attempting to write a
single line of program code, the GPU’s spatial and
temporal organization should be studied in
considerable detail. The optimal performance of a
multithreaded GPU architecture demands that all
threads be active at any one time and that they are all
making uniform progress. This is a challenge that
requires practice and knowledge based upon trial
and error. GPU programming practices can be
gained by learning techniques (tricks) from
experienced GPU program developers; however, it is
more important to learn how to design one’s own
programming strategies, as modern computer
systems will definitely evolve away from current
technologies and hardware organizations.

The art of high performance programming is a
combination of first principles taken as a foundation
to unravel the bottlenecks and latencies associated
with the architectures of different systems. Equipped
with this information, the programmer must
articulate appropriate coding techniques, task-
scheduling schemes, and resource allocations to
mitigate or eliminate perceived latencies and
bottlenecks within the framework of a given
architecture.

6. REFERENCES

[1] P.J. Denning, S.C. Schwartz, Properties of the
working-set model, Communications of the
ACM, (15) 3 (1972), pp. 191-198.

[2] P.J. Denning, The locality principle,
Communications of the ACM, (48) 7 (2005),
pp. 19-24.

[3] M. Wolfe, High-Performance Compilers for
Parallel Computing, Addison Wesley, June 16,
1995.

Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72

 72

[4] J.L. Gustafson, Reevaluating Amdahl’s law,
Communications of the ACM, (31) 5 (1988),
pp. 532-533.

[5] G. Amdahl, Validity of the single processor
approach to achieving large-scale computing
capabilities, AFIPS Conference Proceedings,
(30) (1967), pp. 483-485.

[6] D.H. Bailey, Twelve Ways to Fool the Masses
When Giving Performance Results on Parallel
Computers, RNR Technical Report RNR-91-
020, June 11, 1991.

[7] S. Saini, D. Talcott, D. Jespersen, J. Djomehri,
H. Jin, and R. Biswas, scientific application-
based performance comparison of SGI Altix
4700, IBM POWER5+, and SGI ICE 8200
Supercomputers, Proceedings of the
ACM/IEEE conference on Supercomputing,
SC’08, 2008.

[8] S. Hily and A. Seznec, Contention on 2nd level
cache may limit the effectiveness of
simultaneous multithreading, Technical Report
PI-1086, IRISA, 1997.

[9] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger,
and S.W. Keckler, A NUCA substrate for
flexible CMP cache sharing, Proceedings of the
19th annual international conference on
Supercomputing ICS’05, 2005, pp. 31-40.

[10] W.-D. Weber and A. Gupta, Exploring the
benefits of multiple hardware contexts in a
multiprocessor architecture: Preliminary
results, Proceedings of the 16th Annual
International Symposium on Computer
Architecture, June 1989, pp. 273-280.

[11] B.J. Smith, Architecture and applications of the
HEP multiprocessor computer system, SPIE,
(298) (1981), pp. 241-248.

[12] G.R. Andrews, Paradigms for process
interaction in distributed programs, ACM
Computing Surveys, 1991.

[13] P.E. McKenney and J. Slingwine, Efficient
kernel memory allocation on shared-memory
multiprocessors, In USENIX Conference
Proceedings, Berkeley CA, February 1993.

[14] M.I. Reiman and P.E. Wright, Performance
analysis of concurrent-read exclusive-write,
ACM, (February 1991), pp. 168-177.

[15] J. Sartori and R. Kumar, Low-overhead, high-
speed multi-core barrier synchronization, high
performance embedded architectures and
compilers, Lecture Notes in Computer Science,
(5952) (2010), pp. 18-34.

[16] M. Amde, T. Felicijan, A. Efthymiou,
D. Edwards, and L. Lavagno, Asynchronous
on-chip networks, IEE Proceedings Computers
and Digital Techniques, (152) 02 (2005).

[17] A.O. Balkan, M.N. Horak, G. Qu, U. Vishkin,
Layout-accurate design and implementation of

a high-throughput interconnection network for
single-chip parallel processing, Proc. IEEE
Symp. on High Performance Interconnection
Networks (Hot Interconnects), August 2007.

[18] P. Stenstrom, A survey of cache coherence
schemes for multiprocessors, Computer, (23) 6
(1990), pp. 12-24.

[19] Nvidia, “Compute Unified Device Architecture
Programming Guide Version 2.0,”
http://developer.download.nvidia.com/compute
/ cuda/2 0/docs/NVIDIA CUDA Programming
Guide 2.0.pdf.

[20] Nvidia, “NVIDIA GeForce GTX 200 GPU
Architectural Overview,” http://www.nvidia.
com/docs/IO/55506/GeForce GTX 200 GPU
Technical Brief.pdf, May 2008.

[21] T. Halfhill, Looking Beyond Graphics
NVIDIA’s Next-Generation CUDA Compute
and Graphics Architecture, http://www.nvidia.
com/content/PDF/fermi_white_papers/T.Half
hill_Looking_Beyond_Graphics.pdf

[22] A. Kumar, Tips for speeding up your algorithm
in the CUDA programming, http://www.
mindfiresolutions.com/Tips-for-speed-up-your-
algorithm-in-the-CUDA-programming-
399.php.

[23] N. Satish, M. Harris and M. Garland,
Designing efficient sorting algorithms for
manycore GPUs, Proc. 23rd IEEE
International Parallel and Distributed
Processing Symposium, May 2009.

[24] A. Lippert, NVIDIA GPU Architecture for
General Purpose Computing,
http://www.cs.wm.
edu/~kemper/cs654/slides/nvidia.pdf

Dr. Robert E. Hiromoto,
received his Ph.D. degree in
Physics from University of
Texas at Dallas. He is
professor of computer science
at the University of Idaho. His
areas of research include
information-based design of
sequential and parallel
algorithms, decryption
techniques using set theoretic

estimation, parallel graphics rendering algorithms for
cluster-based systems, and secure wireless
communication protocols.

