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Abstract: This paper examines the computational programming issues that arise from the introduction of GPUs and 
multi-core computer systems. The discussions and analyses examine the implication of two principles (spatial and 
temporal locality) that provide useful metrics to guide programmers in designing and implementing efficient sequential 
and parallel application programs. Spatial and temporal locality represents a science of information flow and is 
relevant in the development of highly efficient computational programs. The art of high performance programming is to 
take combinations of these principles and unravel the bottlenecks and latencies associate with the architecture for each 
manufacturer computer system, and develop appropriate coding and/or task scheduling schemes to mitigate or 
eliminate these latencies.  
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1. INTRODUCTION 
Commodity multithreaded processors in dual- 

and multi-core processors, and the graphic 
processing unit (GPU) comprise today’s computer 
market place. The progress in the nanometer process 
technology has advanced the design and 
manufacturing of these ambitious computer 
architectures. This new era of computing capabilities 
place new demands on the programmers and 
requires potentially new tricks or programming 
techniques for veteran programmers experienced in 
the art of parallel programming. With each new 
generation of more sophisticated processor design, 
the processor structure, the organization of memory 
hierarchy, the implicit and explicit scheduling of 
executable threads (tasks), and the programming 
software environment reappear as a set of new 
criteria that defines the parameter space of 
programming paradigms. Encouraged by the 
promise that these new systems can deliver higher 
performance, a new surge of interest and activity has 
emerged in areas of multi-core and GPU computing. 
As a consequence, the GPU is now manufactured 
with higher precision arithmetic and programming 
software to allow general-purpose computing on 
GPUs (GPGPU), where traditionally the applications 
were handled by the CPU. The GPGPU 
programming paradigm relies on streaming data 
through lightweight threads of execution, where 
banked memory provides non-blocking access of 
operands (data) between competing threads. 

Consequently, hardware support for GPUs and 
multi-core systems require more complex memory 
hierarchies, and hardware technologies to maintain 
memory consistency and cache coherence under a 
dynamic parallel execution model. Cache coherence 
in multicore systems is an example of the hardware 
organizational complexity required to address 
memory latencies. 

New technologies, like the GPU and multi-core 
processor, introduce new challenges to the 
applications programmer. The novelty of these 
systems lies in their hardware organization, where 
an optimal mapping between hardware and software 
can easily be compromised when multithreaded 
parallel execution is introduced. The challenges for a 
parallel code (program) developer is to bend, 
reshape, and retrofit existing codes onto new and 
ever changing architectures. For the novice 
developer, this requires navigating a desperate 
terrain strewn with hidden and undetected detours. 

Fortunately, there are physical principles that can 
provide code developers with a framework to reason 
about multithreaded programming complexities 
exhibited by new and intricate hardware 
configurations. These principles are time and space 
metrics upon which performance is measured. The 
faster the clock cycle, the higher the potential CPU 
performance; or the longer in response (latency) 
time, the lower in performance that can be expected. 
The rate of information flow, ultimately dictates the 
achievable performance whether in the activities of 
the financial markets or the execution of applications 
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on computer systems. Minimizing the time for 
operand access, repeated reuse of data or 
instructions, minimizing latencies between 
input/output (I/O) requests are examples where 
temporal and the spatial locality between references 
play important roles in optimizing performance. 
Temporal and spatial localities are two simple 
principles that all programmers, interested in 
designing and implementing optimally performing 
application codes, should be guided by. 

In the next sections, we introduce the concept of 
spatial and temporal locality and the implied 
consequences to the organization of memory 
hierarchies and coding of the matrix multiplication 
program; the notion of parallelism and Amdahl’s 
law; and architectures of the multi-core and the 
GPU. 

 
2. SPATIAL AND TEMPORAL LOCALITY 

The principle of locality [1, 2] refers to two basic 
types of reference locality. Spatial locality refers to 
the use of data elements stored within a relatively 
close proximity of one another. Temporal locality 
refers to the reuse of data (instructions) or other 
resources within relatively short time periods. These 
principles, in various forms, are applied in 
performance optimization for cache utilization and 
memory prefetching technology, code motion 
affecting memory access patterns, and process 
scoreboarding to enhance processor performance. 
Although there are other specific terminologies of 
locality, those more dynamic predictive assertions 
(branch or most probable access predictor) are 
typically beyond the control of the programmer. 

In this paper, we take the liberty to expand the 
definitions of both spatial and temporal locality as 
measures of both near and distant proximity of data 
references. Under these expanded definitions, spatial 
and temporal localities are principles that 
encapsulate the basic notions of length and time. 
They are measurable and when taken separately or 
in combinations, they can be reasoned about and 
formulated in predictive analysis. 

From a programmer’s perspective, such metrics 
lend themselves in code planning for I/O tasks and 
data layouts, code restructuring for both sequential 
and parallel execution, and reasoning within the 
context of a memory hierarchy with associated 
referencing costs. The programmer must understand 
the hardware organization and resources available to 
the application code. As with every organizational 
structure, computer system has their particular 
idiosyncrasies; however, these peculiarities can be 
measured in both space and time. 

 
 

2.1. MEMORY HIERARCHY 
Hierarchical memory is a hardware organization 

that is arranged to benefit from spatial and temporal 
references. Levels of memory characterize a typical 
memory hierarchy; where caches, populated near the 
CPU, have low latency and low memory capacity 
devices. As the distance between the CPU and the 
levels (from low to high) of the memory hierarchy 
increase, so to do their access latencies and memory 
capacities increase. As the distance between the 
CPU and the levels (from low to high) of the 
memory hierarchy increase, so to do their access 
latencies and memory capacities increase. The 
design of hierarchical memory is organized to read 
blocks of slower (higher) level memory into the next 
successive (lower) level of the memory hierarchy. 
Predictive algorithms (hardware and OS) attempt to 
predict which data might be accessed next or least 
and then react by moving the appropriate data 
through the memory hierarchy as needed. Temporal 
latencies and memory device capacities are 
illustrated in Fig. 1, where the cost of accessing data 
from the memory hierarchy that are more distant 
from the CPU increases from a few clock cycles to 
orders of magnitude. 

 
Fig. 1 – Memory Hierarchy 

The organization of a memory hierarchy 
illustrates a principle of economy of scale. A 
programmer should be aware of this principle when 
dealing with I/O considerations. A cache is designed 
to be faster by restricting operand address lookup to 
within a small memory capacity, and by requiring 
shorter wires (links) to connect to the CPU. In 
exchange for limited cache capacity, cache 
technology employs temporal and spatial locality 
analyses to maintain recently referenced data and/or 
near recently referenced data. Programmers have 
considerable control over the locality of data 
referencing by structuring their codes in ways to 
increase the spatial and temporal locality of both 
operand and instruction references, and the locality 
offered by the various hierarchical storage devices. 
The result of this analysis can lead to a higher cache 
utilization per unit cycle time; translating into higher 
performance. 
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2.2. MATRIX MULTIPLICATION: 
ANALYSIS 

An interesting application of spatial and temporal 
locality is the coding of the matrix multiplication 
operation [3]. In most introductory lectures, the 
multiplication of two matrices is commonly defined 
through the loop structure as illustrated in Fig. 2 (a). 
The inner-loop index K references elements of 
matrix A in a row-wise manner (in cache), whereas, 
the elements of matrix B are referenced column-
wise. In a programming language that assigns the 
elements of a matrix in a row-wise fashion, the 
cache strategy for predicting the most probable next 
reference will load the elements of matrix B in a 
row-wise fashion as well. The affect of program (a) 
and the caching predictive strategy results in an 
inefficient cache utilization for matrix B, where 
fewer elements of its column-wise references are 
available in the cache resulting in more cache 
misses; as compared to cache misses experienced by 
row-wise references of matrix A. In this example, a 
simple remedy requires only an interchange between 
the J and K loop indexes. In this reorganized loop 
structure, matrix B more optimally complies with 
maximizing spatial locality, whereas, the matrix 
element A[I,K] now exhibits temporal locality. Fig. 
2(b) illustrates a blocking technique that further 
improves temporal and spatial locality. In this more 
complicated set of loops, matrix multiplication is 
computed using a series of sub-block calculations 
where sub-blocks of A and B can be used several 
times (increasing temporal and spatial locality) 
before the next sub-blocks are accessed by the cache 
in a block consecutive fashion. 

 
Fig. 2 – Titled Matrix Multiplication (See [3]) 

A simple space-time analysis of program (a) 
resulted in a more optimal sequential 
implementation of the matrix multiplication 
operation. Yet a more surprising result of program 
(b) is that it also represents a parallel formulation of 

matrix multiplication. This is a very rich result as no 
parallel programming considerations are explicitly 
employed. Guided only by the analyses of spatial 
and temporal locality, a rather deep and unexpected 
result has emerged. As a consequence, it is 
challenging to speculate on the applicability of 
spatial and temporal locality as an analysis tool in 
developing more optimal sequential and parallel (not 
necessary more parallel but more optimal in 
performance) algorithms. The notion here is to 
provide distance and time metrics to determine the 
rate or radius of information that influences the final 
solution. Once such an algorithmic analysis is 
completed the details of computer implementation 
then follow. Program (b) represents a blocking 
strategy that parallel algorithms employ in certain 
situations of their implementation. The GPU in 
particular is heavily reliant on this technique termed 
tiled memory to facilitate memory accesses and 
kernel executions. 

 
3. CATEGORIES OF PARALLELISM 

Parallel programming is an optimization 
technique to increase computational performance. 
The idea is as old as human and pre-human activities 
in scavenging for food, where independent journeys 
are made to search and returned to their home base 
with their share of findings. Computational 
parallelism incorporates a similar strategy. The 
solution of a single problem is divided up into as 
many independent tasks (i.e., no information flows 
between these tasks) that can then be executed 
concurrently and then accumulated to obtain the 
final solution. Parallelism may be categorized into 
two broad groups: (1) unbounded and (2) bounded 
parallelism. Unbounded (or near unbounded) 
parallelism requires little or no communication 
(transfer of information) between any of the 
independently executing tasks. The term 
“embarrassingly parallel” is coined to describe such 
parallelism. Unbounded parallelism ushered in the 
notions of scalability and scaled speedup [4] as 
desired characteristics for trends in the future 
development of parallel algorithms. Unbounded 
parallelism may be attained in searches, algorithms 
that use data (information) inefficiently, 
transforming or marshaling data, rendering in 
computer graphics, ray tracing, or brute-force 
searches in cryptography to name a few examples. 
Bounded parallelism represents a more typical class 
of constrained parallelism, where the solution 
specifications requires frequent or nominal exchange 
of solution critical data that are computed 
incrementally among the various parallel tasks. All 
real-world solution-oriented processes represent this 
behavior. Fig. 3 illustrates this point in an analogy of 
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the well-known space-time diagram to the space-
time division between unbounded and bounded 
parallelism. Within the space-time cone of influence, 
solution algorithms are governed by the exchange of 
solution-oriented information. All communication is 
bounded by the speed of communication (C). 
Outside the cone of influence, a region of 
unbounded parallelism reigns; however, for this 
parallelism to make a solution contribution their 
region must collapse into the cone of influence. 

 
Fig. 3 – Regions of Bounded and Unbounded 

Parallelism 

 
3.1. AMDAHL’S LAW 

Amdahl’s law [5] is an algebraic argument that 
parallelism, for a fixed size problem, is limited by 
the percentage of code that cannot be parallelized. 
The argument provides a simple but profound 
insight into the limits of performance that is 
attainable through the application of parallel 
techniques and hardware. Amdahl assumes a simple 
model by neglecting potential bottlenecks such as 
memory bandwidth and I/O bandwidth. Still the 
results provide an ideal upper bound for 
performance expectations. Amdahl’s analysis 
derived the following overall speedup improvement 
when p processors are applied to the portion of a 
sequential algorithm that supports fp percent of 
parallel improvement. 

 

Sp =
1

fs +
fp

p  
 
where fs is the percent of scalar (sequential) code 
and the condition that fp + fp = 1. 

Speedup is a useful metric to assess performance 
improvement; however, it is important to realize that 
it may be misleading as a performance metric since 
performance is a metric measured in time. Equation 
(1) arises from the ratio between the sequential 
execution time of an algorithm over its parallelized 
execution time. As a result, speedup is a 
dimensionless improvement metric, independent of 

time. 
Fig. 4 depicts the comparison of speedups 

between two different algorithms constructed to 
exhibit high and low percentages of parallelism. 
Algorithm 1 is constructed to exhibit 90% 
parallelism, by selecting values for fs and fp to be 0.1 
and 0.9, respectively. Algorithm 2 is constructed to 
exhibit low parallelism at 30%. The corresponding 
values for fs and fp are chosen at 0.7 and 0.3, 
respectively. However, the single processor 
performance of algorithm 2 is adjusted to be five (5) 
times the performance of algorithm 1. As might be 
expected, algorithm 2 never surpasses the speedup 
of algorithm 1. On the other hand, Fig. 5 provides a 
more sobering assessment of performance and 
emphases the pitfalls of the speedup metric. In this 
comparative plot, algorithm 1 fails to attain a 
parallel performance faster than algorithm 2, no 
matter the number of parallel processors employed. 
The constructed algorithms 1 and 2 could very well 
represent two different algorithms for the solution of 
the same computational problem; e.g., variants of 
the Jacobi and Gauss-Seidel iteration schemes. In 
this context, more parallelism does not necessarily 
mean better performance. 

 
Fig. 4 – Speedup Improvement 

 

 
Fig. 5 – Parallel Performance 

The problem with the use of speedup as a metric 
for performance is the introduction of time-
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normalization based on a non-optimal sequential 
algorithm (algorithm 1). Fortunately, speedup can be 
salvaged if the time-normalization is made with 
respect to the best available sequential algorithm [6], 
in this case algorithm 2. In other words, the time 
base applied to the metric of speedup must to 
explicitly stated; otherwise, the use of the metric is 
meaningless. Time, as mentioned earlier, is the 
critical metric that describes performance. 

 
4. GPU AND MULTI-CORE 

ARCHITECTURES 
In this section, an over review of generic 

architectures for both the multi-core and GPU 
processors are provided. Saline issues of the 
architecture are presented and the challenges that 
they pose for programmers to overcome. 

 
4.1. MULTI-CORES 

Traditional processors are designed with only a 
single CPU that performs the reading and executing 
of instructions. A multi-core processor combines 
two or more cores (CPUs) on a single integrated 
circuit (IC). It is also known as a chip 
multiprocessor (CMP), and offers the promise of 
enhanced performance for the processing of 
independent tasks, a reduced power consumption (by 
lowering the clock speed on each core), and low-
level hardware support for the synchronization of 
parallel tasks. Ideally, a dual-core processor should 
have twice the performance as a single core 
processor. In several benchmarks, performance gains 
are found to be in the range of fifty percent to one-
and-a-half times as powerful as a single core 
processor [7]. 

Many-core refers to many cores in a computer. 
They may or may not all populate the same chip. 
They may be organized as many single-core chips, a 
collection of single-core and multi-core chip, or 
many multi-core chips. A typically “many-core” 
might refer to 32 or more cores, while “multi-core” 
are fewer in number. These terminologies are 
technology driven and certain to change over time. 

Fig. 6. depicts a generic dual-core processor with 
CPU-level 1 (L1) caches and a shared level 2 (L2) 
cache. A dual- (multi-) core configuration is 
distinguished from traditional multiprocessor 
systems by the tight shared-coupling of the L2 cache 
between two cores. Although this provides a “faster” 
connection between the coupled cores, it introduces 
a departure from the hierarchical memory strategies 
previously discussed. The capability of high-speed 
accessing of the L2 cache by shared cores presents 
challenges absent in traditional single-core 
multiprocessor systems. The multi-core organization 
places more demands on the predictive data access 

strategies applied to the shared L2 cache. This 
demand has the potential to increase reference 
latencies and increase contention between cores in 
supplying instructions and data; significantly 
degrading performance [8, 9]. As a consequence, 
multi-core designers have provided multiple 
hardware contexts [10, 11] or multithreading. 
Multithreading has the advantage that it can handle 
arbitrarily complex access patterns even in cases 
where it is impossible to predict the accesses before 
hand. Multithreading simply reacts to cache misses 
that occur, rather than attempting to predict them. 
Multithreading tolerates latency by attempting to 
overlap the latency of one context with the 
computation of other concurrent contexts. As with 
all advantages, there are disadvantages: (i) 
multithreading relies on available concurrency 
within an application, which may not exist; (ii) an 
overhead is incurred in switching between contexts; 
and (iii) significant hardware support is required to 
minimize context-switching overhead delays. 

 
Fig. 6 – Generic Dual-core Processor 

In support of multithreading, on-chip 
synchronization primitives are provided in hardware 
and enables low synchronization algorithm 
capabilities [12,13,14]. Low synchronization 
algorithms offer relaxed ordering constraints on 
memory operations and reduce or eliminate the 
synchronization overheads from locking (lock-free) 
[15]. Ultimately, low synchronization algorithms can 
improve efficiency and scalability in multithreading. 
The need for on-chip inter-core communication to 
handle issues like synchronization and data sharing 
are being addressed by the developments in 
Network-on-Chip (NOC) [16,17]. The NOC network 
links (wires) are shared by many signals. This 
capability allows NOC to operate on different data 
packets at one time, achieving a high level of data 
parallelism, and providing separation between 
computation and communication on a multi-core 
processor system. As a consequence, NOC provides 
high throughput performance and scalability when 
compared to point-to-point or shared bus 



Robert E. Hiromoto / Computing, 2012, Vol. 11, Issue 1, 64-72 
 

 69

communication architectures. The benefits of NOC 
to multi-core processors could be considerable. 

As multi-core systems mature, efforts like NOC 
may address the problem of cache coherence for 
which multi-core performance can suffer. The cache 
coherence problem in a parallel multiprocessor 
environment arises when copies of a shared resource 
in memory are maintained in local caches and 
modified without maintaining the consistency 
between the cache and memory [18]. This problem 
is amplified in multi-core and many-core systems 
where the sharing of the cache between cores 
introduces an intervening level of spatial complexity 
between local caches and the multi-core processor 
memory. Temporal locality of cache consistency 
also suffers. 

Sorting out the performance issues of a generic 
multi-core processor system is left in the hands of 
the application’s developer. The details of achieving 
optimal performance on a dual- or multi-core system 
is, in some sense, an extension of code development 
for traditional single-core multiprocessors. One 
difference arises from the hierarchical cache 
organization of multi-core systems. This one 
modification can skew the spatial and temporal 
locality of references depending on the 
multithreaded demands of the application. The 
skewing of references may result in positive or 
negative performance behaviors. However, it is a 
new programming or thread scheduling issue that 
must be confronted by the code developer. The art of 
multi-core programming is to devise multithreaded 
scheduling or throttling schemes to deal with the 
interactions between shared cores and the shared L2 
cache resource. As the multi-core processor industry 
matures, manufacturers and their designers may 
provide better hardware support to facilitate the 
programmer’s tasks. Until that time, it is the 
struggles of the programmer in extracting the last 
ounce of performance, and in so doing provide 
examples that guides the industry in developing new 
and better architectures. 

 
4.2. GPUS 

In this section, the architecture of the Nvidia 
GeForce GTX 280 is described as an example of a 
generic GPU architecture. The GTX 280 supports 
shared memory, atomic operations, double precision 
floating point instructions, 240 cores that run at 
1.3GHz, and manufacturing that uses the 65 nm 
fabrication process. The Nvidia GPU is a streaming 
SIMD processor, whose kernel represent single 
program multiple data (SPMD) programming 
strategies. This interesting hybrid model is flexible 
but introduces constraints that must be understood to 
avoid performance degradations. 

Fig. 7. is a high-level view of the Thread 
Processing Cluster (TPC). The TPC consists of 3 
stream multiprocessors (SM) each with eight (8) 
streaming processors (SPs). Within a SM, each 
block of eight (8) SPs and raster operation 
processors (ROP) for graphics share an Instruction 
Unit (IU), and executes threads in a Single 
Instruction Multiple Data (SIMD) mode. Any 
diverging (branching, data stalling, etc.) threads may 
not execute in parallel. Local shared memory in each 
of the three SMs allows associated SPs to share data 
with other intra-SPs. The shared memory 
organization is essential to the performance of SPs. 
Shared memory is used to minimize the need to read 
or write to/or from the global memory subsystem 
(shown in Fig.8), which are typically very slow. 
Inside each TPC, eight texture-filtering units (TF) 
are provided for graphic rendering tasks. A typical 
memory hierarchy may have 32-bit registers per SP 
(see Fig.9). SMs also have access to constant and 
texture caches. Constant and texture caches are read-
only and important to SMS performance since they 
can be accessed quickly. 

 
Fig. 7 – Thread Processing Cluster (TPC) 

Fig. 8, depicts the GeForce GTX 280 
architecture. The GeForce GTX 280 provides 10 
TPCs, with three (3) SMs per TPC. The GPU 
employs synchronous multithreading. It has a 
hardware-based thread scheduler manages that 
schedules threads across the TPC. If a thread is 
stalled on a memory access, the scheduler can 
context switch to another thread with little overhead. 
A typical GPU has upwards of 30,720 threads on a 
chip. The architecture includes texture caches and 
memory interface units. The texture caches are used 
to combine memory accesses more efficiently and 
provide higher bandwidth memory read/write 
operations. The texture cache is a level 2 (L2) cache 
and is shared by all TPCs. The “atomic” operations 
perform atomic read-modify-write operations to 
global memory and facilitates parallel reductions 
and parallel data structure management. Atomic 
operations are integer operations in global memory 
that provide associative operations on 
signed/unsigned ints; add, sub, min, max, and, or, 
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xor; increment, decrement; exchange; and compare 
and swap operations. Table 1 provides a summary of 
some important parameter values that define the 
Nvidia GTX 200 series [19,20]. 

 
Fig. 8 – GeForce GTX 280 

 
Table 1.– GPU Specifications 

SM Resources 
SP 8 per SM 
Registers 16,384 per SM 
Shared Memory 16KB per SM  

Caches 
Constant Cache 8KB per SM 
Texture Cache 6 – 8KB per SM 
Shared Memory 16KB per SM 

Programming Model 
Wraps 32 threads 
Blocks 512 threads max 
Registers 128 per thread max 
Memory 8 ×128MB, 64-bit 
Constant Memory 64 KB total 

 
CUDA is the synonym for the Compute Unified 

Device Architecture. It is a software specification-
programming platform to assist the GPU program 
developer to interface to the logical GPU processor. 
Using CUDA, the programmer can specify the 
thread layout that are organized in blocks and in turn 
organized into grids. Threads executing within a 
block can synchronize among themselves. Thread 
communication between different blocks must be 
performed through slower global memory. Threads 
in a block have IDs and can be indexed into 1, 2, or 
3 dimensions. A grid consists of multiple thread 
blocks of the same dimension and size. All threads 
in a grid execute the same CUDA kernel (SPMD). 
The CUDA architecture allows a SM to execute 
blocks one at a time. A “warp” of 32 threads or a 
half warp of 16 threads defines the number of 
threads that can execute in parallel. Each block is 
executed in 32 thread Warps. Warps are the 
scheduling units for the SM; and thus, thread 
scheduling is measured in warps. A block size can 
be defined to be 1 to 512 concurrent threads. At any 

time, only one warp is executed by a SM. Warps 
whose next instruction has its operands ready for 
execution are placed into the ready queue. Ready 
warps are selected for execution on a prioritized 
scheduling policy. All threads in a warp execute the 
same instruction (SIMD) when selected. The 
hardware is free to assign blocks to any SM at any 
time. Each block can execute in any order relative to 
other blocks. Threads in the same block share data 
and synchronize while doing their portion of the 
work. Threads in different blocks cannot cooperate. 

Fig. 9, illustrates a CUDA memory architecture 
of the GPU. Global memory (off-chip) is the main 
means of communicating R/W data between host 
and memory. Content and Texture memories (off-
chip) are available to all threads but when cached, 
their access latency is very short. Shared memory 
(on-chip) is shared between threads in the same 
block. Shared memory is divided into “memory 
banks” of equal size and is as fast as register when 
no bank conflicts occur. The amount of shared 
memory per SM is 16 KB organized into 16 banks. 

 
Fig. 9 – CUDA Memory Model 

Since the wrap size is 32 threads, a half wrap size 
of 16 is used for conflict-free bank memory access. 
Each thread has a private local memory (off-chip). 
Local memory is to replace the functionality of 
registers if the kernel requires more registers than 
are available to a thread. Load/store instructions 
swap register memory loads and stores in and out of 
the local memory, which slows down the program 
performance. CUDA threads may access data from 
multiple memory spaces during their execution. 
Finally, all threads have access to the same global 
memory. Registers are very fast and play a 
significant role in performance tuning. 

The CUDA SPs support lightweight threads 
designed to execute in SIMD mode. CUDA cores 
lack their own register files or L1 caches. They do 
not have multiple function units for each data type 
(floating point and integer) or load/store unit for 
accessing memory. Each CUDA core has a pipelined 
floating-point unit (FPU), a pipelined integer unit, 
some logic for dispatching instructions and operands 
to these units, and a queue for holding results. 
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CUDA SPs are optimized for multithreaded 
performance but not optimized for single-threaded 
performance [21]. 

GPUs provide fine-grain multithreading to offset 
the extreme latencies incurred from slow main 
memory accesses. The characteristics of fine-grain 
multithreading require very high thread utilization 
[22,23]. Multithreading for the GPU requires 
explicit optimization of the number of registers used 
by the kernel and the number of threads per block. 
The SIMD nature of each kernel execution, dictates 
that simpler and smaller kernels (that are written in 
SPMD fashion) can provide better performance. 
Smaller computational kernels require less registers 
and are less likely to have data stalls, branching or 
frequent communications. GPU kernels must be 
organized and scheduled to maintain a balance 
between temporal and spatial locality. Application 
programs that exhibit regularity in their 
computational structure are, therefore, prime 
candidates to profit from the use of GPUs as 
general-purpose applications on GPUs (GPGPU). 
The program developers have the primary 
responsibility to perform microsurgery on 
applications for implementation on the GPU. The 
programming task is arduous but can be rewarding. 
The GPU program developers must remind 
themselves that fine-grained SIMD processing can 
return high performance gains but only if there are 
enough resources and allows only limited 
communications. Of course not all program 
applications can support the number of threads 
required to sustain high GPU performance. As a 
consequence, the GPU has emerged as a co-
processor to the CPU [24]. 

In summary, the GPU architecture and the 
multithreading interactions can be a very 
complicated and dynamic environment for which to 
design optimal programs. Multithreading, if poorly 
coordinated, can result in large latencies in operand 
accesses and contenting thread delays. The design of 
efficient GPU programs requires assessing the 
latencies within the components of the memory 
hierarchy; and uses this knowledge to develop a 
mapping of multithreading strategies that accrue 
benefits from the aggregation of data utilization 
according to regular access patterns. Ultimately, it is 
the spatial and temporal localities that include 
read/write accesses, speeds of the different memory 
modules, and the threaded structure of the kernel’s 
execution blocks that dictates the performance that 
can be achieved.  

 
5. CONCLUSION 

Assessing the programming issues of modern 
processors appears to be a confusing and challenging 

task. This presentation argues that by employing two 
simple principles of an expanded notion of spatial 
and temporal locality some of the most intricate 
pitfalls and traps can quickly be exposed and 
reasoned about. This is not to imply that the 
programming techniques will be easy to derive but 
rather that performance issues can be isolated and 
dealt with by using a more rational algorithmic 
approach. In multi-core systems, the sharing of the 
cache between several cores has the unintended 
downside of incurring higher data access congestion 
between cores. In addition, cache coherence also 
becomes a performance consideration over which 
the programmer has some degree of explicit control. 
In future evolutions of multi-core systems, new 
hardware and software technologies may mitigate or 
solve these problems.  

The massively parallel programming paradigm of 
the GPU exemplifies the code developer’s dilemma 
in fully understanding the organization of the 
system’s architecture. Before attempting to write a 
single line of program code, the GPU’s spatial and 
temporal organization should be studied in 
considerable detail. The optimal performance of a 
multithreaded GPU architecture demands that all 
threads be active at any one time and that they are all 
making uniform progress. This is a challenge that 
requires practice and knowledge based upon trial 
and error. GPU programming practices can be 
gained by learning techniques (tricks) from 
experienced GPU program developers; however, it is 
more important to learn how to design one’s own 
programming strategies, as modern computer 
systems will definitely evolve away from current 
technologies and hardware organizations. 

The art of high performance programming is a 
combination of first principles taken as a foundation 
to unravel the bottlenecks and latencies associated 
with the architectures of different systems. Equipped 
with this information, the programmer must 
articulate appropriate coding techniques, task-
scheduling schemes, and resource allocations to 
mitigate or eliminate perceived latencies and 
bottlenecks within the framework of a given 
architecture. 
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