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1. INTRODUCTION 
An intelligence system for a domain with 

complicated structure belongs to knowledge-based 
systems, which allow for accumulating knowledge 
relating to different chapters of the domain as well 
as sub-domains ontologies and data archives in order 
to support solving various applied tasks by domain 
specialists. 

To represent ontology and knowledge, 
developers often use graph-oriented structures [1]. 
Then a graph traversal can help to solve a task since 
access to information stored in a graph leaf requires 
finding a path from the root of graph to this leaf. 
This is time consuming. 

Databases (DBs) give an alternative way to 
represent ontology and knowledge. In this case, we 
formulate a task solving method by means of a query 
language. To accelerate access to information, all 
descriptors of an ontology element including its 
properties, functions and relations, which form its 
knowledge base are stored in one database table. To 
become practically useful for specialists of a 
complicated subject domain, information 
components of a program system have to contain 
data archives, ontology and other domain 
knowledge. A special data ontology provides 
interpretation of information stored in archives [2]. 
Data archives assist in solving different classes of 
applied tasks including various data analysis for 
knowledge acquisition. 

Using of database tools to represent information 
components of an intelligence system for subject 
domains with complicated structure gives a 
possibility to formulate database queries 
representing different integrity restrictions on 

knowledge or/and data as well as rules to coordinate 
knowledge with data and data with knowledge. 

In [3], we considered a method to represent 
ontology and knowledge by database tables and to 
use them for developing an intelligence system. 

Thus, we can state that developers of modern 
intelligence systems face certain challenges resulting 
from fundamentally different approaches used in 
constructing DBs and knowledge bases (KBs). KB 
design is based on a mathematical system that is 
named by a number of terms: formal approach, 
axiomatic method, symbolic logic, theory of formal 
systems (TFS). In TFS, inference rules are defined 
in the way that allows to interpret new symbol 
constructions as corollaries to or new theorems from 
the symbol constructions or statements that are 
axioms or theorems in the given formal system. 
Algebraic techniques, e.g. those of relational algebra 
are most commonly used in constructing data 
processing systems. 

Ontology-based systems also have problems with 
integration their subsystems into a common software 
environment. In our opinion, algebraic approach 
seems to be a rational supplement to traditional 
formal methods in logic in order to unify 
information representation and processing as well as 
to improve logical analysis techniques. Below we 
will mostly dwell on the first part of these problems, 
namely the unification. As a mathematical and 
software basis, we use n-tuple algebra (NTA) [4, 5] 
briefly introduced below in Section 5. Then we 
describe NTA capabilities in dealing with graphs 
and semantic networks (see Section 6). To 
exemplify theoretical statements, we refer to 
chemical subject domain [6] and some training tasks 
for intelligence systems in this domain. 
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2. TWO PARTS OF THE DOMAIN 
ONTOLOGY 

Domain ontologies for development of 
intelligence systems able to not only store, search 
and edit subject domain ontologies and knowledge 
but to solve other types of applied tasks as well, 
have to contain a definition of a notion system used 
to determine input data for the applied tasks and 
represent results of solving these tasks. For example, 
such a notion system for chemistry must allow for 
describing different properties of physical and 
chemical processes that take place at a certain period 
of time and under certain external conditions (see 
Fig. 1). 

 
Fig. 1 – Two parts of a chemistry ontology 

 
Thus, the domain ontology can comprise two 

parts. The first one consists of terms representing the 
subject domain knowledge. These terms allow us to 
describe different properties of subject domain 
objects and to define names of their sets or subsets. 
For example, terms Chemical substances, Chemical 
reactions are names of nonempty sets; terms Metal 
oxides, Metals are names of subsets. Terms Atomic 
weight, Current number specify properties of 
chemical elements. As another example, let us 
define the term Reagents of reaction as an own 
property of a chemical reaction. So the definitional 
domain of the function defining this property is the 
set of chemical reactions, and the value area is the 
set of all subsets of all chemical substances. If the 
term is defined as a property of a reagent of a 
reaction, then its first argument designates the name 
of reaction, the second one is the name of a reagent 
of this reaction. 

The second part of the subject domain ontology 
includes terms, which are used describe different 
properties of physical and chemical processes that 

take place at a certain period of time and under 
certain external conditions. Process descriptions 
represent results of experiments realized by 
chemistry researchers. A set of descriptions of such 
experiments forms data archives, which are 
information components of intelligence chemistry 
systems. Data archives allow for testing the 
regularity of knowledge stored inside an intelligence 
system during monitoring of information 
components. 

Let us now describe some examples of terms 
belonging to the second part of the domain ontology. 
The term Process reactions is a function. Its 
argument is a number of the process step, and the 
result of the function is a set of reactions that take 
place at this step. It is obvious that the result of the 
function is a subset of the set with the name 
Chemical reactions. 

Archives can also be used to analyze and 
generalize experiment results in order to discover 
new domain knowledge. In this case, data archives 
either provide input data for a system that 
automatically realizes such generalizations or take 
part in regularity tests of the generalizations carried 
out manually and added to information components 
of an intelligence system [7]. 

 
3. DATABASE STRUCTURE 

Information representation structure in a 
knowledge base is defined by means of the first part 
of ontology. The subject domain ontology allows to 
specify the database schema as a set of terms and 
their interconnections. If a term is defined in the 
ontology model as a set, it will be represented in a 
database as a table containing two fields: unique ID 
(key field) and a value. If the term is defined as a 
function, it will be expressed as a table where the 
number of fields is by one greater then the sum of 
arguments numbers plus the number of elements in 
the representation of the result (if the result is a 
Cartesian product rather than a single value, then 
each element of this product corresponds to one 
table field). If the result is a predicate, it is regarded 
as a function with Boolean output. 

The type of each field is specified by means of 
value restrictions from the ontology model [7]. 

 
4. TASK TYPES 

Here we analyze the constraints, which graph-
oriented formalisms of knowledge representation 
impose on solutions of applied tasks in different 
subject domains. 

In such a case, the constraints, by which the 
domain ontology may constrain the knowledge 
contents, have to be expressed as restrictions of 
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types “part-whole”, “set-subset” and so on. Task 
solving methods are represented by graph traversal 
algorithms. Therefore World Wide Web Consortium 
(W3C) has developed a special formalism to 
represent other task solving methods as rules [8] for 
ontology-based program systems. 

Let us now consider possibilities we have if we 
use algebraic methods to represent knowledge. 

There are agreements belonging to a set of 
domain ontological agreements, which can be 
expressed by equalities. They define relations among 
values of several terms. Such equalities can be used 
to automatically manage information components of 
the intelligence system. They allow to compute 
values of some terms using given values of all other 
terms of an equality. This kind of computations can 
be easily represented by a database query language. 

Some typical examples of tasks for finding ways 
to synthesize substances look as follows. Input data 
of the tasks can specify: 

- a substance to synthesize; 
- a set of initial substances (starting points of the 

synthesis); 
- a set of intermediate substances, which can be 

used during the synthesis. 
If a goal substance is specified, the task result can 

be obtained by a query to the database, which stores 
information about reactants and results of chemical 
reactions. 

If a set of initial substances is fixed, the task 
result is a set of reactions whose set of reactants has 
initial substances as a subset and whose set of 
reaction results contains the goal substance. If no 
suitable reactions exist in the database, the task 
result is a set of reactions’ sequences. The reactants 
of the first reaction of each sequence contain initial 
substances as a subset. The results of the last 
reaction of each sequence contain the goal 
substance. Each sequence is the result of a query to 
the database. 

A set of intermediate substances forms additional 
conditions for queries to the database. 

Having the structures of the domain ontology and 
database described, we are going to demonstrate that 
all necessary structures can be expressed in similar 
algebraic objects, and the latter ones can be 
processed by unified algebraic procedures to solve 
standard tasks of an ontology-based modeling 
system. However, previously we have to introduce 
the mathematical basis of these representations and 
processing procedures. 

In the two following sections, we will briefly 
describe possibilities to use an algebraic system, 
namely NTA, for solving the problems under 
discussion. 

 

5. BASICS OF N-TUPLE ALGEBRA 
NTA was developed for modelling and analysis 

of multiplace relations. Unlike relational algebra 
used for formalization of databases, NTA can use all 
mathematical logic’s means for logic modelling and 
analysis of systems, namely logical inference, 
corollary trueness’ check, analysis of hypotheses, 
abductive inference, etc. NTA is based on the known 
properties of Cartesian products of sets, which 
correspond to the fundamental laws of mathematical 
logic. In NTA, transitional results can be obtained 
without representation the NTA structures as sets of 
elementary n-tuples since every NTA operation uses 
sets of components of attributes or n-tuples of 
components [9, 10]. 

Definition 1. N-tuple algebra is an algebraic 
system whose support is an arbitrary set of 
multiplace relations expressed by specific structures, 
namely elementary n-tuple, C-n-tuple, C-system,  
D-n-tuple, and D-system, called n-tuple algebra 
objects.  

So, apart from the elementary n-tuple, NTA 
contains additional structures providing a compact 
expression for sets of elementary n-tuples. 

Names of NTA objects consist of a name proper, 
sometimes appended with a string of names of 
attributes in square brackets; these attributes 
determine the relation diagram in which the n-tuple 
is defined. For instance, if an elementary n-tuple 
T[XYZ] = (a, b, c) is given, then T is the name of the 
elementary n-tuple (a, b, c), X, Y, Z are names of 
attributes, and [XYZ] is the relation diagram (i.e. 
space of attributes), a ∈ X, b ∈ Y и c ∈ Z. A domain 
is a set of all values of an attribute. Hereafter 
attributes are denoted by capital Latin letters which 
may sometimes have indices, and the values of these 
attributes are denoted by the lower-case Latin letters. 
A set of attributes representing the same domain is 
called a sort. Structures defined on the same relation 
diagram are called homotypic ones. Any totality of 
homotypic NTA objects is an algebra of sets. 

N-tuple algebra is based on the concept of a 
flexible universe. A flexible universe consists of a 
certain totality of partial universes that are Cartesian 
products of domains for a given sequence of 
attributes. A relation diagram determines a certain 
partial universe. 

In a space of properties S with attributes Xi (i.e. 
S = X1×X2×…×Xn), the flexible universe will be 
comprised of different projections, i.e. subspaces 
that use a part of attributes from S. Every such 
subspace corresponds to a partial universe. 

Definition 2. An elementary n-tuple is a sequence 
of elements each belonging to the domain of the 
corresponding attribute in the relation diagram. An 
example of an elementary n-tuple T[XYZ] is given 
above. 
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Definition 3. A C-n-tuple is an n-tuple of sets 
(components) defined in a certain relation diagram; 
each of these sets is a subset of the domain of the 
corresponding attribute. 

A C-n-tuple is a set of elementary n-tuples; this 
set can be enumerated by calculating the Cartesian 
product of the C-n-tuple’s components. C-n-tuples 
are denoted with square brackets. For example, 
R[XYZ] = [A, B, C] means that A ⊆ X, B ⊆ Y, C ⊆ Z 
and R[XYZ] = A×B×C. 

Definition 4. A C-system is a set of homotypic 
C-n-tuples that are denoted as a matrix in square 
brackets. The C-n-tuples that such a matrix contains 
are rows of this matrix. 

A C-system is a set of elementary n-tuples. This 
set equals to the union of sets of elementary n-tuples 
that the corresponding C-n-tuples contain. 

In order to combine relations defined on different 
projections within a single algebraic system 
isomorphic to algebra of sets, NTA introduces 
dummy attributes formed by using dummy 
components. There are two types of these 
components. One of them called a complete 
component is used in C-n-tuples and is denoted by 
“*”. A dummy component “∗” added in the i-th 
place in a C-n-tuple or in a C-system equals to the 
set corresponding to the whole range of values of the 
attribute Xi. In other words, the domain of this 
attribute is the value of the dummy component. 
Another dummy component (∅) called an empty set 
is used in D-n-tuples. 

A C-n-tuple that has at least one empty 
component is empty. 

Below, we will show that usage of dummy 
components and attributes in NTA allows to 
transform relations with different relation diagrams 
into ones of the same type, and then to apply 
operations of theory of sets to these transformed 
relations. The proposed technique of defining 
dummy attributes differs from the known techniques 
essentially because new data are inputted into 
multiplace relations as sets rather than elementwise 
which significantly reduces both computational 
laboriousness and memory capacity for 
representation of the structures. 

Operations (intersection, union, complement) and 
checks of relations of inclusion or equality for these 
NTA objects correspond to the known properties of 
Cartesian products. 

Theorem 1. P ∩ Q = [P1 ∩ Q1  P2 ∩ Q2  …  Pn ∩ 
Qn]. 

Theorem 2. P ⊆ Q, if and only if Pi ⊆ Qi for all 
i = 1, 2, …, n. 

Theorem 3. P ∪ Q ⊆ [P1 ∪  Q1  P2 ∪ Q2  …  Pn ∪ 
Qn], equality is possible in two cases only: 

(i) P ⊆ Q or Q ⊆ P; 

(ii) Pi = Qi for all corresponding pairs of 
components except one pair. 

Note that in NTA, according to Definition 4, 

equality P ∪ Q = ⎥
⎦

⎤
⎢
⎣

⎡

n

n

QQQ
PPP

...

...

21

21 is true for all 

cases. 
Theorem 4. Intersection of two homotypic 

C-systems equals to a C-system that contains all 
non-empty intersections of each C-n-tuple of the 
first C-system with each C-n-tuple of the second 
C-system. 

Theorem 5. Union of two homotypic C-systems 
equals to a C-system that contains all C-n-tuples of 
the operands. 

To introduce some algorithms for calculating 
complements of the NTA objects, we need the 
following 

Definition 5. A complement (
jP ) of any 

component Pj of an NTA object is defined as a 
complement to the domain of the attribute 
corresponding to this component. 

Theorem 6. For an arbitrary C-n-tuple 
P = [P1 P2 … Pn] 

P  = 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∗∗

∗∗
∗∗

nP

P
P

...
............

...

...

2

1

.  (1) 

In the above C-system (1) whose dimension is 
n ×  n, all the components except the diagonal ones 
are dummy components. We shall call such 
C-systems diagonal C-systems. To denote diagonal 
C-systems as one n-tuple of sets, we use reversed 
square brackets. Such a “reduced” expression for a 
diagonal C-system makes up a new NTA structure 
called a D-n-tuple. 

Definition 6. A D-n-tuple is an n-tuple of 
components enclosed in reversed square brackets 
which equals a diagonal C-system whose diagonal 
components equal the corresponding components of 
the D-n-tuple. 

According to Definition 6, the complement of a 
C-n-tuple can be directly recorded as a D-n-tuple. 

Definition 7. A D-system is a structure that 
consists of a set of homotypic D-n-tuples and equals 
the intersection of sets of elementary n-tuples that 
these D-n-tuples contain. 

Theorem 7. The complement of a C-system is a 
D-system of the same dimension, in which each 
component is equal to the complement of the 
corresponding component in the initial C-system. 

It is easy to see that relations between C-objects 
(C-n-tuples and C-systems) and D-objects 
(D-n-tuples and D-systems) are in accordance with 
de Morgan’s laws of duality. Due to this fact, they 
are called alternative classes. Let us now introduce 
some theorems regulating this transformation. 
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Theorem 8. Every C-n-tuple (D-n-tuple) P can be 
transformed into an equivalent D-system (C-system) 
in which every non-dummy component pi 
corresponding to an attribute Xi of the initial n-tuple 
is expressed by a D-n-tuple (C-n-tuple) that has pi in 
the attribute Xi and dummy components in all the 
rest attributes. 

Theorem 9. A D-system P containing m 
D-n-tuples is equivalent to a C-system equal to the 
intersection of m C-systems obtained by 
transformation every D-n-tuple belonging to P into a 
C-system. 

Theorem 10. A C-system P containing m 
C-n-tuples is equivalent to a D-system equal to the 
union of m D-systems obtained by transforming 
every C-n-tuple belonging to P into a D-system. 

Transformations of NTA objects into ones of 
alternative classes allow to realize all operations of 
theory of sets on NTA objects without having to 
represent the objects as sets of elementary n-tuples. 

Let us call relations and operations of algebra of 
sets with preliminary addition of missing attributes 
to NTA objects generalized operations and relations 
and denote them in this way: G∩ , G∪ , G\ , G⊆ , G= , 
etc. The first two operations completely correspond 
to logical operations ∧ and ∨. NTA relation G⊆  
corresponds to deducibility relation in predicate 
calculus. Relation G=  means that two structures are 
equal if they have been transformed to the same 
relation diagram by adding certain attributes. This 
technique offers a fundamentally new approach to 
constructing logical inference and deducibility 
checks [5, 8, 9, 10]. 

 
6. NTA: DATA AND KNOWLEDGE 

REPRESENTATION 
6.1. GRAPHS AND SEMANTIC 
NETWORKS 

In artificial intelligence systems, logical 
inference in graphs and semantic networks is 
implemented through algorithms of search for 
accessible vertices or through construction of the 
transitive closure of a graph. However, such 
algorithms are not efficient enough and hard to 
parallel. Let us now consider the way graphs are 
expressed in NTA. We will use the graph presented 
in Fig. 2 as an example. 

 

 
Fig. 2 – Example of a graph 

 

This graph can be expressed as a C-system 

G[XY] = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

},,,{}{
}{}{

},,,{}{

edbac
db

edcba
 isomorphic to the 

adjacency matrix of this graph. 
Composition of graphs GoG, e.g. composition of 

a graph with itself, is used quite often. This 
operation is shortly denoted as G2. Greater “degrees” 
of composition can also be used, e.g. G3 = GoG oG 
and so on. 

It is often necessary to determine the set of all the 
accessible vertices for each vertex of a graph G. This 
information is contained in the transitive closure of 
the graph (suppose that it contains n vertices), which 
is the graph G+ each of whose vertices is connected 
with all its accessible vertices with an arc. Transitive 
closure can be constructed with the following 
sequence of operations: 

 
G+ = G ∪ G2∪ G3∪…∪ Gk, 

 
where k ≤ n. Practically in all cases, the operation of 
transformation of a finite graph G into graph G+ 
ends before the last “degree” Gk is found. The reason 
for ending this operation early is the fact that at 
some step the next “degree” of the graph does not 
have any arcs that have not been in the graph before. 

Let us consider the way inference in semantic 
networks is implemented in NTA [4]. Any semantic 
network can be represented as a totality of binary 
relations. In semantic networks, inference rules are 
expressed as productions whose left part contains 
joins or compositions of some of these relations, and 
the right part is a relation that is substituted for the 
left part in the semantic network or is added to the 
semantic network as a new relation. Suppose that in 
an initial semantic network, existing relations R1 and 
R2 (see Fig. 3) infers an additional link R3 between 
the domain of the relation R1 (vertex K) and the co-
domain of the relation R2 (vertex N) as it is shown in 
Fig. 4 where А, В, С are variables whose values can 
be the vertices of the described semantic networks. 

 
 

R3 R1 L 

К 

R2 

N T R2 

S 

 
Fig. 3 – Initial semantic network 

 
 

 
R1 B 

A 

R2 

C 
R3 

R1 B 

A 

R2 

C 
 

Fig. 4 – Example of a transformation rule for a 
network 
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In NTA language, this network can be recorded 
as a totality of C-systems, namely 
R1[XY] = [{K},{L}], R2[YW] = [{L,T},{N}], 
R3[X,W] = [{S},{N}]. 

 
6.2. CORRESPONDENCE BETWEEN N-
TUPLE ALGEBRA AND PREDICATE 
CALCULUS 

In trivial case (when individual attributes do not 
correspond to multiplace relations), an n-tuple 
corresponds to conjunction of one-place predicates 
with different variables. For example, a C-n-tuple 
P[XYZ] = [P1 P2 P3] where P1 ⊆ X; P2 ⊆ Y; P3 ⊆ Z 
corresponds to a logical formula H = P1(x) ∧ P2(y) ∧ 
P3(z). A D-n-tuple P = ] 1P 2P 3P [ corresponds to the 
negation of the formula H (disjunction of one-place 
predicates) ¬H = ¬P1(x) ∨ ¬P2(y) ∨ ¬P3(z). An 
elementary n-tuple that is a part of a non-empty 
NTA object corresponds to a satisfying substitution 
in a logical formula. An empty NTA object 
corresponds to an identically false formula. An NTA 
object that equals any particular universe 
corresponds to a valid formula, or a tautology. A 
non-empty NTA object corresponds to a satisfiable 
formula. 

In NTA, attribute domains can be any arbitrary 
sets that are not necessarily equal to each other. This 
means that NTA structures correspond to formulas 
of many-sorted predicate calculus. One can find 
rules of quantification in NTA in [8]. 

 
7. VERY SIMPLE CASE STUDY 

To clarify the general idea of using NTA in 
chemistry, we imagined a very simple set of 
reactions, namely: 

 
R1) MgO + H2 = Mg + H2O; 

R2) CuO + H2 = Cu + H2O;               (2) 
R3) Zn + H2SO4 = ZnSO4 + H2. 

 
For the given example, these reactions form the 

set Chemical reactions described above in Section 2. 
Formalization of this set uses the following 

attributes and domains corresponding to sorts in 
predicate calculus and to the term Chemical 
substances from Section 2: 

 
S1) Metal oxides X = {MgO, CuO}; 

S2) Water Y = {H2O}; 
S3) Metals Z = {Mg, Cu, Zn};        (3) 

S4) Salts W = {ZnSO4}; 
S5) Gases V = {H2}; 

S6) Acids U = {H2SO4}. 
 
 

Let us also define elementary types (elements) 
producing substances (3): 

 
E1) Oxidizers P = {O}; 

E2) Acid balances Q = {SO4}.             (4) 
 

The reactions (2) describe two types of relations 
among Reagents and resulting substances with the 
following diagrams corresponding to the concept of 
Chemical reactions defined as a function in Section 
2: 

F1) Metal reduction X × V → Z × Y; 
F2) Metal oxidation Z × U → W × V.         (5) 

 
Considering (4), the diagrams (5) look like 
 

F1’) Metal reduction Z × P × V → Z × Y; 
F2’) Metal oxidation Z × V × Q → Z × Q × V. 

(6) 
 

These relations constitute the flexible universe 
[5] of the problem under investigation and form the 
knowledge base for this example. 

Actually, representations (5) and (6) reflect the 
way to minimize the number of relations in the 
knowledge base by using variables instead of 
constants the way that is typical for expert systems. 
Since our case study is very simple, it requires no 
variables. So, we will use equations (2), (3) directly. 

In NTA terms, reactions (2) look as follows. 
 

R1: the left part R1in[XV] = ]{MgO} {H2}[, 
the right part R1out[ZY] = ]{Mg} {H2O}[;    (7) 
R2: the left part R2in[XV] = ]{CuO} {H2}[, 
the right part R2out[ZY] = ]{Cu} {H2O}[;    (8) 

R3: the left part R3in[ZU] = ]{Zn} {H2SO4}[, 
the right part R3out[WV] = ]{ZnSO4} {H2}[.(9) 

 
Here we analyze two types of task settings from 

the set described in Section 4, which are similar to 
forward and backward inference in expert systems. 
They are: 

T1) Database contains reagents {Zn, H2SO4, 
MgO, CuO}; we need to find all possible resulting 
reactions and substances; 

T2) It is necessary to find out whether {Mg} can 
be produced from the given reagents {MgO, Zn, 
H2SO4}. 

T1 implementation 
Initial data stored in the DB can be recorded as a 

D-n-tuple because they can be used independently: 
 
DBase[XZU] = ]{MgO, CuO}{Zn}{H2SO4)[. (10) 
 
To apply each of the rules (2), we need to pass 

through two stages. First, the solver compares the 
left part of a rule Riin with the current DB contents 
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Dbase. If they match, the DB is modified according 
to the right part of the rule Riout. Let us assume that 
we just add substances from the right part into the 
DB. 

To check truthfulness of the left side of a rule in 
NTA, we have to find out whether the relation  

 
Riin ⊆G Dbase                             (11) 

 
is true. If it is true, the solver corrects the DB this 
way: 
 

Dbase:= Dbase ∪G Riout.                    (12) 
 
If the solver checks the rules (2) similarly to 

Markov’s algorithm (starting from the first rule and 
applying the first applicable one), it will decide that 
the first and the second rule are not applicable as the 
check of the relation (11) for them gives the negative 
result. For instance, for the first rule this check will 
look like 

 
]{MgO} {H2} ∅ ∅[ ⊆ ]{MgO, CuO} ∅ {Zn} (H2SO4}[ (13) 

 
where relations are reduced to the same diagram 
[XVZU]. 

Checking the third rule within the diagram 
[XZU]: 

 
]∅ Zn H2SO4[ ⊆ ]{MgO, CuO} Zn H2SO4[   (14) 
 

will give the positive answer, and the DB will be 
modified according to (12): 
 

DBase[XZUWV] = [DBase[XZU] ∪G R3out[WV] =      
= ]{MgO, CuO} {Zn} {H2SO4} {ZnSO4} {H2}[.    (15) 
 
T2 implementation 
In NTA, this task is realized by recursive passing 

through the following steps. 
1. Setting the initial data. 
2. Setting the goal data. 
3. Inclusion check of the goal data in right parts 

of rules. If the result is negative, backtrack to the 
closest previous fork of the derivation tree. If there 
is no possible backtracking, the inference is over 
with the negative answer. 

4. If the inclusion check finds a suitable rule, its 
left part has to replace its right part in the set of 
goals. When the set of goals contains initial (leaf) 
data only, its inclusion into the DB is checked. The 
positive (negative) result of the inclusion check 
witnesses the positive (negative) reply to the query. 

For our example, the initial data can be expressed 
as a D-n-tuple 

 

S = ]{MgO} {Zn} {H2SO4}[,                (16) 
 

and the initial set of goals (at the step number 0) 
equals 
 

G0 = ]{Mg}[.                              (17) 
 
Comparing (17) with the right parts of the rules 

(2), the solver finds the only suitable rule (7), for 
which 

 
G0 ⊆G R1out[ZY]                            (18) 

 
is true and forms the next goal set as 
 

G1 = ]{MgO} {H2}[.                        (19) 
 
Then the solver finds {H2} in R3out[WV] (9) and 

forms 
 

G2 = ]{MgO} {Zn} {H2SO4} [.                (20) 
 
The set (20) contains leaf data only (no its 

components belong to right parts of the rules (2)), 
and G2 ⊆G S is true. So, the inference answers “yes” 
to the query. 

For tasks T1 and T2, consequences of admissible 
reactions can be formed by saving numbers of 
applied rules. 

 
8. CONCLUSION 

NTA provides storing and processing of both 
data and knowledge structures by similar techniques. 
The novelty of NTA lies in creating some new 
mathematical structures allowing to represent both 
data and knowledge. This feature simplifies 
combining data and knowledge bases within a single 
software system. In NTA, the subject domain 
ontology and various factual information can be 
recorded as a number of multiplace relations, and 
different queries are expressed by some operations 
analogous to those of theory of sets. The main idea 
of this processing is as follows. An initial relation 
defined on a Cartesian product D can be often split 
into blocks corresponding to relations on some 
projections of D, which greatly reduces 
laboriousness of operations on this relation by using 
its matrix properties. This allows to process every 
block separately using known features of Cartesian 
products, for instance, by paralleling the necessary 
operations. This idea provides new opportunities to 
express complex methods of reasoning by 
comparatively simple algorithms, which can be 
easily modelled in the computer. 

If all information is stored in NTA objects of the 
same class (like D-n-tuples used for the case study in 



Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63 
 

 62 

Section 6), these operations are polynomially 
complex [4]. Generally speaking, traversals of a 
derivation tree in NTA results in NP-complete 
algorithms just as in conventional approaches. 
Besides usage of matrix properties of NTA objects, 
new structural and statistical classes of conjunctive 
normal forms with polynomially identifiable 
satisfiability properties were discovered in NTA. 
Consequently, we can implement many algorithms 
whose complexity evaluation is theoretically high, 
e.g. exponential, in polynomial time, on the average. 
As for making databases more intelligent, NTA can 
be considered an extension of relational algebra to 
knowledge processing. In the authors’ opinion, NTA 
can become a methodological basis for creating 
knowledge processing languages. 

NTA structures provide expressing multiplace 
predicates but have ordinary sets as components, 
these sets corresponding to unary predicates. 
Algebra of conditional n-tuples [9] was developed to 
expand abilities of NTA by dealing with binary 
predicates. 

In this paper, we have illustrated solving of 
comparatively simple tasks in chemical synthesis 
when only initial and goal substances are fixed. 
Solving some harder tasks where we must use 
certain intermediate products during the synthesis, 
will probably require for abductive-like reasoning 
[5], but this matter needs additional studies we plan 
to conduct in near future. 
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