
Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63

 55

ALGEBRAIC APPROACH TO INFORMATION FUSION
IN ONTOLOGY-BASED MODELING SYSTEMS

Irina Artemieva 1), Alexander Zuenko 2), Аlexander Fridman 2)

1) Far Eastern State University, 8 Sushanova str., 690950 Vladivostok, Russia; iartemeva@mail.ru

2) Institute for Informatics and Mathematical Modelling of Technological Processes of the Russian Academy of
Sciences, 24A Fersman str., 184209 Apatity, Russia; {fridman, zuenko}@iimm.kolasc.net.ru

Abstract: In this paper we discuss the possibilities to use algebraic methods (in particular, n-tuple algebra developed
by the authors) to improve the functioning of convenient ontology-based modeling systems. An illustrative example
shows the ways to unify representation and processing of two major parts of subject domain ontologies.

Keywords: ontology-based system, modeling system, subject domain ontology, n-tuple algebra.

1. INTRODUCTION
An intelligence system for a domain with

complicated structure belongs to knowledge-based
systems, which allow for accumulating knowledge
relating to different chapters of the domain as well
as sub-domains ontologies and data archives in order
to support solving various applied tasks by domain
specialists.

To represent ontology and knowledge,
developers often use graph-oriented structures [1].
Then a graph traversal can help to solve a task since
access to information stored in a graph leaf requires
finding a path from the root of graph to this leaf.
This is time consuming.

Databases (DBs) give an alternative way to
represent ontology and knowledge. In this case, we
formulate a task solving method by means of a query
language. To accelerate access to information, all
descriptors of an ontology element including its
properties, functions and relations, which form its
knowledge base are stored in one database table. To
become practically useful for specialists of a
complicated subject domain, information
components of a program system have to contain
data archives, ontology and other domain
knowledge. A special data ontology provides
interpretation of information stored in archives [2].
Data archives assist in solving different classes of
applied tasks including various data analysis for
knowledge acquisition.

Using of database tools to represent information
components of an intelligence system for subject
domains with complicated structure gives a
possibility to formulate database queries
representing different integrity restrictions on

knowledge or/and data as well as rules to coordinate
knowledge with data and data with knowledge.

In [3], we considered a method to represent
ontology and knowledge by database tables and to
use them for developing an intelligence system.

Thus, we can state that developers of modern
intelligence systems face certain challenges resulting
from fundamentally different approaches used in
constructing DBs and knowledge bases (KBs). KB
design is based on a mathematical system that is
named by a number of terms: formal approach,
axiomatic method, symbolic logic, theory of formal
systems (TFS). In TFS, inference rules are defined
in the way that allows to interpret new symbol
constructions as corollaries to or new theorems from
the symbol constructions or statements that are
axioms or theorems in the given formal system.
Algebraic techniques, e.g. those of relational algebra
are most commonly used in constructing data
processing systems.

Ontology-based systems also have problems with
integration their subsystems into a common software
environment. In our opinion, algebraic approach
seems to be a rational supplement to traditional
formal methods in logic in order to unify
information representation and processing as well as
to improve logical analysis techniques. Below we
will mostly dwell on the first part of these problems,
namely the unification. As a mathematical and
software basis, we use n-tuple algebra (NTA) [4, 5]
briefly introduced below in Section 5. Then we
describe NTA capabilities in dealing with graphs
and semantic networks (see Section 6). To
exemplify theoretical statements, we refer to
chemical subject domain [6] and some training tasks
for intelligence systems in this domain.

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63

 56

2. TWO PARTS OF THE DOMAIN
ONTOLOGY

Domain ontologies for development of
intelligence systems able to not only store, search
and edit subject domain ontologies and knowledge
but to solve other types of applied tasks as well,
have to contain a definition of a notion system used
to determine input data for the applied tasks and
represent results of solving these tasks. For example,
such a notion system for chemistry must allow for
describing different properties of physical and
chemical processes that take place at a certain period
of time and under certain external conditions (see
Fig. 1).

Fig. 1 – Two parts of a chemistry ontology

Thus, the domain ontology can comprise two

parts. The first one consists of terms representing the
subject domain knowledge. These terms allow us to
describe different properties of subject domain
objects and to define names of their sets or subsets.
For example, terms Chemical substances, Chemical
reactions are names of nonempty sets; terms Metal
oxides, Metals are names of subsets. Terms Atomic
weight, Current number specify properties of
chemical elements. As another example, let us
define the term Reagents of reaction as an own
property of a chemical reaction. So the definitional
domain of the function defining this property is the
set of chemical reactions, and the value area is the
set of all subsets of all chemical substances. If the
term is defined as a property of a reagent of a
reaction, then its first argument designates the name
of reaction, the second one is the name of a reagent
of this reaction.

The second part of the subject domain ontology
includes terms, which are used describe different
properties of physical and chemical processes that

take place at a certain period of time and under
certain external conditions. Process descriptions
represent results of experiments realized by
chemistry researchers. A set of descriptions of such
experiments forms data archives, which are
information components of intelligence chemistry
systems. Data archives allow for testing the
regularity of knowledge stored inside an intelligence
system during monitoring of information
components.

Let us now describe some examples of terms
belonging to the second part of the domain ontology.
The term Process reactions is a function. Its
argument is a number of the process step, and the
result of the function is a set of reactions that take
place at this step. It is obvious that the result of the
function is a subset of the set with the name
Chemical reactions.

Archives can also be used to analyze and
generalize experiment results in order to discover
new domain knowledge. In this case, data archives
either provide input data for a system that
automatically realizes such generalizations or take
part in regularity tests of the generalizations carried
out manually and added to information components
of an intelligence system [7].

3. DATABASE STRUCTURE

Information representation structure in a
knowledge base is defined by means of the first part
of ontology. The subject domain ontology allows to
specify the database schema as a set of terms and
their interconnections. If a term is defined in the
ontology model as a set, it will be represented in a
database as a table containing two fields: unique ID
(key field) and a value. If the term is defined as a
function, it will be expressed as a table where the
number of fields is by one greater then the sum of
arguments numbers plus the number of elements in
the representation of the result (if the result is a
Cartesian product rather than a single value, then
each element of this product corresponds to one
table field). If the result is a predicate, it is regarded
as a function with Boolean output.

The type of each field is specified by means of
value restrictions from the ontology model [7].

4. TASK TYPES

Here we analyze the constraints, which graph-
oriented formalisms of knowledge representation
impose on solutions of applied tasks in different
subject domains.

In such a case, the constraints, by which the
domain ontology may constrain the knowledge
contents, have to be expressed as restrictions of

Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63

 57

types “part-whole”, “set-subset” and so on. Task
solving methods are represented by graph traversal
algorithms. Therefore World Wide Web Consortium
(W3C) has developed a special formalism to
represent other task solving methods as rules [8] for
ontology-based program systems.

Let us now consider possibilities we have if we
use algebraic methods to represent knowledge.

There are agreements belonging to a set of
domain ontological agreements, which can be
expressed by equalities. They define relations among
values of several terms. Such equalities can be used
to automatically manage information components of
the intelligence system. They allow to compute
values of some terms using given values of all other
terms of an equality. This kind of computations can
be easily represented by a database query language.

Some typical examples of tasks for finding ways
to synthesize substances look as follows. Input data
of the tasks can specify:

- a substance to synthesize;
- a set of initial substances (starting points of the

synthesis);
- a set of intermediate substances, which can be

used during the synthesis.
If a goal substance is specified, the task result can

be obtained by a query to the database, which stores
information about reactants and results of chemical
reactions.

If a set of initial substances is fixed, the task
result is a set of reactions whose set of reactants has
initial substances as a subset and whose set of
reaction results contains the goal substance. If no
suitable reactions exist in the database, the task
result is a set of reactions’ sequences. The reactants
of the first reaction of each sequence contain initial
substances as a subset. The results of the last
reaction of each sequence contain the goal
substance. Each sequence is the result of a query to
the database.

A set of intermediate substances forms additional
conditions for queries to the database.

Having the structures of the domain ontology and
database described, we are going to demonstrate that
all necessary structures can be expressed in similar
algebraic objects, and the latter ones can be
processed by unified algebraic procedures to solve
standard tasks of an ontology-based modeling
system. However, previously we have to introduce
the mathematical basis of these representations and
processing procedures.

In the two following sections, we will briefly
describe possibilities to use an algebraic system,
namely NTA, for solving the problems under
discussion.

5. BASICS OF N-TUPLE ALGEBRA
NTA was developed for modelling and analysis

of multiplace relations. Unlike relational algebra
used for formalization of databases, NTA can use all
mathematical logic’s means for logic modelling and
analysis of systems, namely logical inference,
corollary trueness’ check, analysis of hypotheses,
abductive inference, etc. NTA is based on the known
properties of Cartesian products of sets, which
correspond to the fundamental laws of mathematical
logic. In NTA, transitional results can be obtained
without representation the NTA structures as sets of
elementary n-tuples since every NTA operation uses
sets of components of attributes or n-tuples of
components [9, 10].

Definition 1. N-tuple algebra is an algebraic
system whose support is an arbitrary set of
multiplace relations expressed by specific structures,
namely elementary n-tuple, C-n-tuple, C-system,
D-n-tuple, and D-system, called n-tuple algebra
objects.

So, apart from the elementary n-tuple, NTA
contains additional structures providing a compact
expression for sets of elementary n-tuples.

Names of NTA objects consist of a name proper,
sometimes appended with a string of names of
attributes in square brackets; these attributes
determine the relation diagram in which the n-tuple
is defined. For instance, if an elementary n-tuple
T[XYZ] = (a, b, c) is given, then T is the name of the
elementary n-tuple (a, b, c), X, Y, Z are names of
attributes, and [XYZ] is the relation diagram (i.e.
space of attributes), a ∈ X, b ∈ Y и c ∈ Z. A domain
is a set of all values of an attribute. Hereafter
attributes are denoted by capital Latin letters which
may sometimes have indices, and the values of these
attributes are denoted by the lower-case Latin letters.
A set of attributes representing the same domain is
called a sort. Structures defined on the same relation
diagram are called homotypic ones. Any totality of
homotypic NTA objects is an algebra of sets.

N-tuple algebra is based on the concept of a
flexible universe. A flexible universe consists of a
certain totality of partial universes that are Cartesian
products of domains for a given sequence of
attributes. A relation diagram determines a certain
partial universe.

In a space of properties S with attributes Xi (i.e.
S = X1×X2×…×Xn), the flexible universe will be
comprised of different projections, i.e. subspaces
that use a part of attributes from S. Every such
subspace corresponds to a partial universe.

Definition 2. An elementary n-tuple is a sequence
of elements each belonging to the domain of the
corresponding attribute in the relation diagram. An
example of an elementary n-tuple T[XYZ] is given
above.

Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63

 58

Definition 3. A C-n-tuple is an n-tuple of sets
(components) defined in a certain relation diagram;
each of these sets is a subset of the domain of the
corresponding attribute.

A C-n-tuple is a set of elementary n-tuples; this
set can be enumerated by calculating the Cartesian
product of the C-n-tuple’s components. C-n-tuples
are denoted with square brackets. For example,
R[XYZ] = [A, B, C] means that A ⊆ X, B ⊆ Y, C ⊆ Z
and R[XYZ] = A×B×C.

Definition 4. A C-system is a set of homotypic
C-n-tuples that are denoted as a matrix in square
brackets. The C-n-tuples that such a matrix contains
are rows of this matrix.

A C-system is a set of elementary n-tuples. This
set equals to the union of sets of elementary n-tuples
that the corresponding C-n-tuples contain.

In order to combine relations defined on different
projections within a single algebraic system
isomorphic to algebra of sets, NTA introduces
dummy attributes formed by using dummy
components. There are two types of these
components. One of them called a complete
component is used in C-n-tuples and is denoted by
“*”. A dummy component “∗” added in the i-th
place in a C-n-tuple or in a C-system equals to the
set corresponding to the whole range of values of the
attribute Xi. In other words, the domain of this
attribute is the value of the dummy component.
Another dummy component (∅) called an empty set
is used in D-n-tuples.

A C-n-tuple that has at least one empty
component is empty.

Below, we will show that usage of dummy
components and attributes in NTA allows to
transform relations with different relation diagrams
into ones of the same type, and then to apply
operations of theory of sets to these transformed
relations. The proposed technique of defining
dummy attributes differs from the known techniques
essentially because new data are inputted into
multiplace relations as sets rather than elementwise
which significantly reduces both computational
laboriousness and memory capacity for
representation of the structures.

Operations (intersection, union, complement) and
checks of relations of inclusion or equality for these
NTA objects correspond to the known properties of
Cartesian products.

Theorem 1. P ∩ Q = [P1 ∩ Q1 P2 ∩ Q2 … Pn ∩
Qn].

Theorem 2. P ⊆ Q, if and only if Pi ⊆ Qi for all
i = 1, 2, …, n.

Theorem 3. P ∪ Q ⊆ [P1 ∪ Q1 P2 ∪ Q2 … Pn ∪
Qn], equality is possible in two cases only:

(i) P ⊆ Q or Q ⊆ P;

(ii) Pi = Qi for all corresponding pairs of
components except one pair.

Note that in NTA, according to Definition 4,

equality P ∪ Q = ⎥
⎦

⎤
⎢
⎣

⎡

n

n

QQQ
PPP

...

...

21

21 is true for all

cases.
Theorem 4. Intersection of two homotypic

C-systems equals to a C-system that contains all
non-empty intersections of each C-n-tuple of the
first C-system with each C-n-tuple of the second
C-system.

Theorem 5. Union of two homotypic C-systems
equals to a C-system that contains all C-n-tuples of
the operands.

To introduce some algorithms for calculating
complements of the NTA objects, we need the
following

Definition 5. A complement (
jP) of any

component Pj of an NTA object is defined as a
complement to the domain of the attribute
corresponding to this component.

Theorem 6. For an arbitrary C-n-tuple
P = [P1 P2 … Pn]

P =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∗∗

∗∗
∗∗

nP

P
P

...
............

...

...

2

1

. (1)

In the above C-system (1) whose dimension is
n × n, all the components except the diagonal ones
are dummy components. We shall call such
C-systems diagonal C-systems. To denote diagonal
C-systems as one n-tuple of sets, we use reversed
square brackets. Such a “reduced” expression for a
diagonal C-system makes up a new NTA structure
called a D-n-tuple.

Definition 6. A D-n-tuple is an n-tuple of
components enclosed in reversed square brackets
which equals a diagonal C-system whose diagonal
components equal the corresponding components of
the D-n-tuple.

According to Definition 6, the complement of a
C-n-tuple can be directly recorded as a D-n-tuple.

Definition 7. A D-system is a structure that
consists of a set of homotypic D-n-tuples and equals
the intersection of sets of elementary n-tuples that
these D-n-tuples contain.

Theorem 7. The complement of a C-system is a
D-system of the same dimension, in which each
component is equal to the complement of the
corresponding component in the initial C-system.

It is easy to see that relations between C-objects
(C-n-tuples and C-systems) and D-objects
(D-n-tuples and D-systems) are in accordance with
de Morgan’s laws of duality. Due to this fact, they
are called alternative classes. Let us now introduce
some theorems regulating this transformation.

Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63

 59

Theorem 8. Every C-n-tuple (D-n-tuple) P can be
transformed into an equivalent D-system (C-system)
in which every non-dummy component pi
corresponding to an attribute Xi of the initial n-tuple
is expressed by a D-n-tuple (C-n-tuple) that has pi in
the attribute Xi and dummy components in all the
rest attributes.

Theorem 9. A D-system P containing m
D-n-tuples is equivalent to a C-system equal to the
intersection of m C-systems obtained by
transformation every D-n-tuple belonging to P into a
C-system.

Theorem 10. A C-system P containing m
C-n-tuples is equivalent to a D-system equal to the
union of m D-systems obtained by transforming
every C-n-tuple belonging to P into a D-system.

Transformations of NTA objects into ones of
alternative classes allow to realize all operations of
theory of sets on NTA objects without having to
represent the objects as sets of elementary n-tuples.

Let us call relations and operations of algebra of
sets with preliminary addition of missing attributes
to NTA objects generalized operations and relations
and denote them in this way: G∩ , G∪ , G\ , G⊆ , G= ,
etc. The first two operations completely correspond
to logical operations ∧ and ∨. NTA relation G⊆
corresponds to deducibility relation in predicate
calculus. Relation G= means that two structures are
equal if they have been transformed to the same
relation diagram by adding certain attributes. This
technique offers a fundamentally new approach to
constructing logical inference and deducibility
checks [5, 8, 9, 10].

6. NTA: DATA AND KNOWLEDGE

REPRESENTATION
6.1. GRAPHS AND SEMANTIC
NETWORKS

In artificial intelligence systems, logical
inference in graphs and semantic networks is
implemented through algorithms of search for
accessible vertices or through construction of the
transitive closure of a graph. However, such
algorithms are not efficient enough and hard to
parallel. Let us now consider the way graphs are
expressed in NTA. We will use the graph presented
in Fig. 2 as an example.

Fig. 2 – Example of a graph

This graph can be expressed as a C-system

G[XY] =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

},,,{}{
}{}{

},,,{}{

edbac
db

edcba
 isomorphic to the

adjacency matrix of this graph.
Composition of graphs GoG, e.g. composition of

a graph with itself, is used quite often. This
operation is shortly denoted as G2. Greater “degrees”
of composition can also be used, e.g. G3 = GoG oG
and so on.

It is often necessary to determine the set of all the
accessible vertices for each vertex of a graph G. This
information is contained in the transitive closure of
the graph (suppose that it contains n vertices), which
is the graph G+ each of whose vertices is connected
with all its accessible vertices with an arc. Transitive
closure can be constructed with the following
sequence of operations:

G+ = G ∪ G2∪ G3∪…∪ Gk,

where k ≤ n. Practically in all cases, the operation of
transformation of a finite graph G into graph G+
ends before the last “degree” Gk is found. The reason
for ending this operation early is the fact that at
some step the next “degree” of the graph does not
have any arcs that have not been in the graph before.

Let us consider the way inference in semantic
networks is implemented in NTA [4]. Any semantic
network can be represented as a totality of binary
relations. In semantic networks, inference rules are
expressed as productions whose left part contains
joins or compositions of some of these relations, and
the right part is a relation that is substituted for the
left part in the semantic network or is added to the
semantic network as a new relation. Suppose that in
an initial semantic network, existing relations R1 and
R2 (see Fig. 3) infers an additional link R3 between
the domain of the relation R1 (vertex K) and the co-
domain of the relation R2 (vertex N) as it is shown in
Fig. 4 where А, В, С are variables whose values can
be the vertices of the described semantic networks.

R3 R1 L

К

R2

N T R2

S

Fig. 3 – Initial semantic network

R1 B

A

R2

C
R3

R1 B

A

R2

C

Fig. 4 – Example of a transformation rule for a
network

Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63

 60

In NTA language, this network can be recorded
as a totality of C-systems, namely
R1[XY] = [{K},{L}], R2[YW] = [{L,T},{N}],
R3[X,W] = [{S},{N}].

6.2. CORRESPONDENCE BETWEEN N-
TUPLE ALGEBRA AND PREDICATE
CALCULUS

In trivial case (when individual attributes do not
correspond to multiplace relations), an n-tuple
corresponds to conjunction of one-place predicates
with different variables. For example, a C-n-tuple
P[XYZ] = [P1 P2 P3] where P1 ⊆ X; P2 ⊆ Y; P3 ⊆ Z
corresponds to a logical formula H = P1(x) ∧ P2(y) ∧
P3(z). A D-n-tuple P =] 1P 2P 3P [corresponds to the
negation of the formula H (disjunction of one-place
predicates) ¬H = ¬P1(x) ∨ ¬P2(y) ∨ ¬P3(z). An
elementary n-tuple that is a part of a non-empty
NTA object corresponds to a satisfying substitution
in a logical formula. An empty NTA object
corresponds to an identically false formula. An NTA
object that equals any particular universe
corresponds to a valid formula, or a tautology. A
non-empty NTA object corresponds to a satisfiable
formula.

In NTA, attribute domains can be any arbitrary
sets that are not necessarily equal to each other. This
means that NTA structures correspond to formulas
of many-sorted predicate calculus. One can find
rules of quantification in NTA in [8].

7. VERY SIMPLE CASE STUDY

To clarify the general idea of using NTA in
chemistry, we imagined a very simple set of
reactions, namely:

R1) MgO + H2 = Mg + H2O;

R2) CuO + H2 = Cu + H2O; (2)
R3) Zn + H2SO4 = ZnSO4 + H2.

For the given example, these reactions form the

set Chemical reactions described above in Section 2.
Formalization of this set uses the following

attributes and domains corresponding to sorts in
predicate calculus and to the term Chemical
substances from Section 2:

S1) Metal oxides X = {MgO, CuO};

S2) Water Y = {H2O};
S3) Metals Z = {Mg, Cu, Zn}; (3)

S4) Salts W = {ZnSO4};
S5) Gases V = {H2};

S6) Acids U = {H2SO4}.

Let us also define elementary types (elements)
producing substances (3):

E1) Oxidizers P = {O};

E2) Acid balances Q = {SO4}. (4)

The reactions (2) describe two types of relations
among Reagents and resulting substances with the
following diagrams corresponding to the concept of
Chemical reactions defined as a function in Section
2:

F1) Metal reduction X × V → Z × Y;
F2) Metal oxidation Z × U → W × V. (5)

Considering (4), the diagrams (5) look like

F1’) Metal reduction Z × P × V → Z × Y;
F2’) Metal oxidation Z × V × Q → Z × Q × V.

(6)

These relations constitute the flexible universe
[5] of the problem under investigation and form the
knowledge base for this example.

Actually, representations (5) and (6) reflect the
way to minimize the number of relations in the
knowledge base by using variables instead of
constants the way that is typical for expert systems.
Since our case study is very simple, it requires no
variables. So, we will use equations (2), (3) directly.

In NTA terms, reactions (2) look as follows.

R1: the left part R1in[XV] =]{MgO} {H2}[,
the right part R1out[ZY] =]{Mg} {H2O}[; (7)
R2: the left part R2in[XV] =]{CuO} {H2}[,
the right part R2out[ZY] =]{Cu} {H2O}[; (8)

R3: the left part R3in[ZU] =]{Zn} {H2SO4}[,
the right part R3out[WV] =]{ZnSO4} {H2}[.(9)

Here we analyze two types of task settings from

the set described in Section 4, which are similar to
forward and backward inference in expert systems.
They are:

T1) Database contains reagents {Zn, H2SO4,
MgO, CuO}; we need to find all possible resulting
reactions and substances;

T2) It is necessary to find out whether {Mg} can
be produced from the given reagents {MgO, Zn,
H2SO4}.

T1 implementation
Initial data stored in the DB can be recorded as a

D-n-tuple because they can be used independently:

DBase[XZU] =]{MgO, CuO}{Zn}{H2SO4)[. (10)

To apply each of the rules (2), we need to pass

through two stages. First, the solver compares the
left part of a rule Riin with the current DB contents

Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63

 61

Dbase. If they match, the DB is modified according
to the right part of the rule Riout. Let us assume that
we just add substances from the right part into the
DB.

To check truthfulness of the left side of a rule in
NTA, we have to find out whether the relation

Riin ⊆G Dbase (11)

is true. If it is true, the solver corrects the DB this
way:

Dbase:= Dbase ∪G Riout. (12)

If the solver checks the rules (2) similarly to

Markov’s algorithm (starting from the first rule and
applying the first applicable one), it will decide that
the first and the second rule are not applicable as the
check of the relation (11) for them gives the negative
result. For instance, for the first rule this check will
look like

]{MgO} {H2} ∅ ∅[⊆]{MgO, CuO} ∅ {Zn} (H2SO4}[(13)

where relations are reduced to the same diagram
[XVZU].

Checking the third rule within the diagram
[XZU]:

]∅ Zn H2SO4[⊆]{MgO, CuO} Zn H2SO4[(14)

will give the positive answer, and the DB will be
modified according to (12):

DBase[XZUWV] = [DBase[XZU] ∪G R3out[WV] =
=]{MgO, CuO} {Zn} {H2SO4} {ZnSO4} {H2}[. (15)

T2 implementation
In NTA, this task is realized by recursive passing

through the following steps.
1. Setting the initial data.
2. Setting the goal data.
3. Inclusion check of the goal data in right parts

of rules. If the result is negative, backtrack to the
closest previous fork of the derivation tree. If there
is no possible backtracking, the inference is over
with the negative answer.

4. If the inclusion check finds a suitable rule, its
left part has to replace its right part in the set of
goals. When the set of goals contains initial (leaf)
data only, its inclusion into the DB is checked. The
positive (negative) result of the inclusion check
witnesses the positive (negative) reply to the query.

For our example, the initial data can be expressed
as a D-n-tuple

S =]{MgO} {Zn} {H2SO4}[, (16)

and the initial set of goals (at the step number 0)
equals

G0 =]{Mg}[. (17)

Comparing (17) with the right parts of the rules

(2), the solver finds the only suitable rule (7), for
which

G0 ⊆G R1out[ZY] (18)

is true and forms the next goal set as

G1 =]{MgO} {H2}[. (19)

Then the solver finds {H2} in R3out[WV] (9) and

forms

G2 =]{MgO} {Zn} {H2SO4} [. (20)

The set (20) contains leaf data only (no its

components belong to right parts of the rules (2)),
and G2 ⊆G S is true. So, the inference answers “yes”
to the query.

For tasks T1 and T2, consequences of admissible
reactions can be formed by saving numbers of
applied rules.

8. CONCLUSION

NTA provides storing and processing of both
data and knowledge structures by similar techniques.
The novelty of NTA lies in creating some new
mathematical structures allowing to represent both
data and knowledge. This feature simplifies
combining data and knowledge bases within a single
software system. In NTA, the subject domain
ontology and various factual information can be
recorded as a number of multiplace relations, and
different queries are expressed by some operations
analogous to those of theory of sets. The main idea
of this processing is as follows. An initial relation
defined on a Cartesian product D can be often split
into blocks corresponding to relations on some
projections of D, which greatly reduces
laboriousness of operations on this relation by using
its matrix properties. This allows to process every
block separately using known features of Cartesian
products, for instance, by paralleling the necessary
operations. This idea provides new opportunities to
express complex methods of reasoning by
comparatively simple algorithms, which can be
easily modelled in the computer.

If all information is stored in NTA objects of the
same class (like D-n-tuples used for the case study in

Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63

 62

Section 6), these operations are polynomially
complex [4]. Generally speaking, traversals of a
derivation tree in NTA results in NP-complete
algorithms just as in conventional approaches.
Besides usage of matrix properties of NTA objects,
new structural and statistical classes of conjunctive
normal forms with polynomially identifiable
satisfiability properties were discovered in NTA.
Consequently, we can implement many algorithms
whose complexity evaluation is theoretically high,
e.g. exponential, in polynomial time, on the average.
As for making databases more intelligent, NTA can
be considered an extension of relational algebra to
knowledge processing. In the authors’ opinion, NTA
can become a methodological basis for creating
knowledge processing languages.

NTA structures provide expressing multiplace
predicates but have ordinary sets as components,
these sets corresponding to unary predicates.
Algebra of conditional n-tuples [9] was developed to
expand abilities of NTA by dealing with binary
predicates.

In this paper, we have illustrated solving of
comparatively simple tasks in chemical synthesis
when only initial and goal substances are fixed.
Solving some harder tasks where we must use
certain intermediate products during the synthesis,
will probably require for abductive-like reasoning
[5], but this matter needs additional studies we plan
to conduct in near future.

9. ACKNOWLEDGEMENTS

This work was supported in part by the Russian
Foundation for Basic Researches (grant 11-08-
00641), OITVS of the Russian Academy of Sciences
(RAS) (project # 2.3) and the Chair of RAS (project
4.3 of the Programme # 15).

10. REFERENCES

[1] M. Denny, Ontology Building: a Survey of
Editing Tools: http: //www.xml.com/pub/a/
2004/07/14/onto.html.

[2] A. Kleshchev, I. Artemjeva, Mathematical
models of domain ontologies, Int. Journal on
Inf. Theories and Appl. (14) 1 (2007), pp. 35-
43.

[3] I. Artemieva, N. Reshtanenko, V. Tsvenikov,
Upgradable tree levels editor of
metaontologies, ontologies and knowledge for
chemistry, Int. Book Series “Information
Science and Computing” (5) 2 (2008), pp. 119-
124.

[4] B. Kulik, A. Fridman, A. Zuenko, Logical
Analysis of Intelligence Systems by Algebraic
Method, Proceedings of Twentieth European
Meeting on Cybernetics and Systems Research

(EMCSR 2010), Vienna, Austria 6-9 April
2010, pp. 198-203.

[5] B. Kulik, A. Zuenko, A. Fridman, Modified
reasoning by means of N-tuple algebra,
Proceedings of the 11th International
Conference “Pattern Recognition and
Information Processing (PRIP’2011)”, Minsk,
Republic of Belarus 18- 20 May 2011, pp. 271-
274.

[6] I. Artemieva, Multilevel modular chemistry
ontology: structure and management,
Proceedings of the First Russia and Pacific
Conf. on Computer Technology and
Applications (RPC 2010), Vladivostok, Russia
6-9 September 2010, pp. 12-17.

[7] I. Artemieva, A. Zuenko, А. Fridman,
Integration of ontologies, knowledge and data
archives into ontology-based modeling
systems, Proceedings of the 11th International
Conference “Pattern Recognition and
Information Processing (PRIP’2011)”, Minsk,
Republic of Belarus 18- 20 May 2011, pp. 303-
306.

[8] RIF Production Rule Dialect. W3C Working
Draft 11 February 2010. URL:
http://www.w3.org/TR/2010/WD-rif-prd-
20100211/.

[9] B. Kulik, A generalized approach to modelling
and analysis of intelligent systems on the
cortege algebra basis, Proceedings Sixth
International Conference on System
Identification and Control Problems
(SICPRO’07), Moscow, Russia, 2007, pp. 679-
715. (in Russian).

[10] A. Zuenko, A. Fridman, Development of N-
tuple algebra for logical analysis of databases
with the use of two-place predicates, Journal of
Computer and Systems Sciences International,
(48) 2 2009, pp. 254-261.

Irina L. Artemieva graduated
from Far Eastern State
University and worked for the
Institute of Automation and
Control Processes of the Far
Eastern Branch of the Russian
Academy of Sciences from
1978 to 2010. Since 2010, she
works for the Institute of
Applied Mathematics of the

FEBRAS. Her scientific interests are within artificial
intelligence. She got her PhD in 1992, her Doctor of
Science (Computer Science) degree in 2009 and a
Professor degree in 2011. At present she is a
Professor of Far Eastern Federal University (FEFU).
She has published 180 scientific papers.

Irina Artemieva, Alexander Zuenko, Аlexander Fridman / Computing, 2012, Vol. 11, Issue 1, 55-63

 63

Alexander Zuenko, a
researcher of the Institute for
Informatics and Mathematical
Modelling of Technological
Processes (IIMM) of the
Russian Academy of Sciences
(RAS), graduated from the
Petrozavodsk State University
in 2005 and got his PhD in
2009. His scientific activities
relate to developing software

for modelling open subject domains, as well as to
knowledge representation and processing. He has
35 scientific publications including 2 monographs.

Alexander Fridman graduated
from the Leningrad Electro-
technical Institute in 1975 and
worked in Baku (Azerbaijan) for
Russian Ship-building Ministry
until 1989, when he moved to
Apatity (Murmansk region,
Russia) and began working for
RAS. He got his PhD in 1976,

a Doctor of Science (Technical Sciences) degree in
2001 and a Professor degree in 2008. At present he
is the head of Laboratory on Information
Technologies for Control of Industry-Natural
Complexes in the Institute for Informatics and
Mathematical Modelling of Technological Processes
of RAS and professor of Applied Mathematics Chair
in Kola Branch of the Petrozavodsk State University.
His scientific interests include modelling and
intelligence systems. He has 215 scientific
publications including 3 monographs, 21 tutorials
and 16 certificates for inventions.

