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Abstract: A framework for paralleling aerial image simulation in photolithography is proposed. Initial data for the 
simulation representing photomask are considered as a data stream that is processed by a multi-agent computing 
system. A parallel image processing is based on a graph model of a parallel algorithm. The algorithm is constructed 
from individual computing operations in a special visual editor. Then the visual representation is converted into XML, 
which is interpreted by the multi-agent system based on MPI. The system performs run-time dynamic optimization of 
calculations using an algorithm of virtual associative network. The proposed framework gives a possibility to design 
and analyze parallel algorithms and to adapt them to architecture of the computing cluster. 
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1. INTRODUCTION 
A photolithography process is a major step in 

conversion of integrated circuit (IC) layout pattern 
on a surface of a semiconductor wafer. A simulation 
of the lithography process is very complicated. It can 
be roughly simulated in two steps:  

1) mask shapes are projected into a photoresist as 
an aerial image; 

2) a distribution of an absorbed intensity of a 
emission in the photoresist are calculated and 
patterned based on the aerial image intensity.  

The image projection is simulated by the Hopkins 
equation [1], which is a four-dimensional integral. 
This calculation is too slow to simulate across the 
full chip and parallel algorithms can be used to 
speed up the simulation [2,3]. Currently, the known 
number of photolithography simulation software 
systems is implemented both on clusters of 
multiprocessor personal computers and workstations 
[4-6, 7] and supercomputers [9]. Hardware-
accelerated computational lithography tools are also 
built [8]. The need of solving additional tasks for 
planning and optimizing the structure of a parallel 
application in the design process prevents their 
widespread use.  

In many cases, a development of the parallel 
applications is carried out based on existing 

sequential algorithms and their composition. 
Computational operations as parts of the parallel 
algorithm often have a universal character and can 
be applied to various problems of information 
processing. Implementations of the operations in the 
portable forms allow going to component design, 
when the program is constructed from large blocks.  

In addition, a process of a parallel program 
execution requires modern methods of planning and 
optimization of load characteristics of computational 
nodes. In many cases, the nodes of parallel systems 
have heterogeneous characteristics, both spatial and 
temporal. For an effective implementation of parallel 
programs such systems should provide tools for 
organizing and monitoring parallel computing and 
its dynamic reconfiguration. 

There are a number of machine vision systems 
that use parallel and distributed processing [10-13]. 
Different technologies such as CORBA [13] or a 
multi-agent approach [10] are used as a architectural 
core of these systems.  

We propose to use for designing and organizing 
parallel computations an integrated set of tools 
(framework) that includes a visual editor, a 
compiler, an optimization system and a parallel 
computing support system based on MPI [14]. 
Having framework for design, analysis and planning 
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of parallel applications and built-in specific 
mechanisms for the implementation of parallelism, 
IC designer can significantly accelerate the 
processing flow of photomask and layout images in 
the operational analysis of IC. MPI makes our 
system is widely applicable to various parallel 
computers. The main features of the proposed 
framework are the following: 

1) visual representation of a parallel application 
based on graph model of a computation. A concept 
of computational grains is used. The grains are 
independent modules developed in different 
programming languages (C + +, Java, MPI) and 
have a specific interface for integration into a 
parallel algorithm; 

2) a support of a portability, implemented as 
libraries. The computing grains are added to the 
system algorithms at a run time; 

3) static and dynamic optimization of the parallel 
applications using an algorithm of virtual associative 
network (VAN). This algorithm is a kind of hybrid 
genetic algorithm (GA) and provides a quick search 
for a solution close to optimal. It has two 
modifications: the first one is used in the analysis 
phase of the design (the static optimization), the 
second one – on the stage of program execution (the 
dynamic optimization); 

4) assignment of operations of the parallel 
application on the computational nodes (processors) 
of a computer system, taking into account 
information obtained during the optimization.  

The paper describes the implementation of 
parallel simulating of image formation in photoresist 
wafer during photolithography. Init data for 
processing are the images of the original topology of 
VLSI photomasks. Results of simulating give a 
possibility to do a subsequent automatic mask 
inspection and determine a significance of 
photolithography defects. The defects of the 
topology are significant if they lead to the formation 
of defects on the wafer that should be corrected at 
the stage of the production. 

The task of simulation of an aerial image is 
calculation the light intensity distribution of the 
wafer surface and to obtain a latent image with 
regard to characteristics of the optical system and 
lighting conditions. Section 2 represents an 
algorithm that simulates the aerial image on the 
photoresist. In Section 3 we consider the problem of 
parallel processing and describe a graph model 
representation of the parallel algorithm based on 
concept of computational grains. Section 4 describes 
the basic elements of the computational platform and 
their interaction in the development of parallel 

applications. Section 5 represents an example of an 
implementation of the simulation algorithm and 
some experimental results of the optimization 
process. 

 
2. ALGORITHM FOR SIMULATING 

AERIAL IMAGE ON THE PHOTORESIST 
Algorithm for simulating the image on the 

photoresist surface is composed of the following 
steps [15, 16]: 

- calculation of a pupillary function; 
- calculation of a vector amplitude of the object; 
- calculation of a transfer matrix of the projection 

lens 
- calculation of two-dimensional distribution of 

intensity in a given position of the plane 
- calculation of two-dimensional distribution of 

intensity in different positions of the plane; 
- calculation of image intensity in semi-coherent 

light; 
- calculation of the volume distribution of 

intensity. 
The influence of the vector properties of light is 

taken into account by the so-called vector factors 
(multipliers) applied to the pupil function. Using the 
factors allowed describing the influence of the 
vector nature of electromagnetic waves on the image 
of thin periodic structures, whose dimensions are 
within the resolution of optical systems, significantly 
reducing the computation time of the aerial image. 

To describe the effect of an anterior aperture of 
the optical system it is necessary to use the factor 
that accounts the diffraction of a plane linearly 
polarized wave at the input of the optical system. In 
this case, we consider the effect of the optical 
system to redistribute the energy in the spectrum 
regardless of the direction of polarization and the 
direction of wave propagation. Another factor takes 
into account the influence of the entrance aperture at 
the entrance of the optical system. Based on these 
data, we can simulate the effect of an influence of 
the numerical entrance aperture to the distribution of 
any Fourier component exactly as a vector field (a 
vector nature of electromagnetic waves is considered 
at the inlet and outlet of the optical system). As a 
result, it is possible to calculate the vector field of 
the image both in coherent and partially coherent 
light.  

Using the factors allows describing the influence 
of a linearly polarized wave to the image quality. For 
the case non-polarized or partially polarized light it is 
necessary to use both electric and magnetic vectors 
which are implemented in the proposed algorithm. 
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Preparation of sample pupillary function

Calculation of the expansion coefficients of 
samples

Preparation of sample functions of a complex 
transmission

Preparation of sample functions of the brightness 
of the source

Preparation of sample functions of the brightness 
of the source

Computation of 
the sample of 
component 

amplitude of X-
direction field

Computation of 
the sample of 
component 

amplitude of X-
direction field

Computation of 
the sample of 
component 

amplitude of X-
direction field

Calculation of the sample distribution of the 
intensity image

 
Fig. 1 –An algorithm for constructing the aerial image 

The main features of the algorithm are the 
following. 

1) Integrating the vector nature of the light field 
based on the wording of the electric and the 
magnetic vector of the amplitudes as functions of the 
three space Cartesian coordinates, as well as two 
coordinates in the pupil of the optical system. This 
formulation provides a correct account of the 
aberrations of the optical system and an influence of 
high numerical aperture to an image formation 
without a significant complication of the 
mathematical apparatus. In contrast to the currently 
used models, the proposed model is based on a strict 
conformity physical nature of the processes and 
much simpler, it is favorable for constructing fast 
algorithms. 

2) Using the partial coherence theory the image 
intensity is calculated the most economical way 
based on a system of Eigen functions. Eigen 
functions are simulated by Zernike polynomials and 
are used to describe the mutual intensity of different 
pixels of the image. Such technique significantly 
reduces the number of integrals over the light 
source, a calculation of which remains to be the 
most time-consuming step in the simulation after 
applying the features mentioned above. 

These principles supplement each other in 
developing the most efficient algorithm for 
calculating the intensity distribution of the aerial 
image and do not individually represent a value what 
they find together. The implementation of the 

algorithm in the form of single-process applications 
has shown the following: if the data level is large, 
then the processing time is unacceptably large (over 
1 min / frame). Since all of the layout images are 
processed by a common program and may be called 
by a defect detection system at the same time, it is 
expedient to use a parallel computer system for the 
simultaneous processing of input data stream. 

 
3. A PARALLEL APPLICATION MODEL 

AND A COMPUTATIONAL GRAIN 
CONCEPT 

The basic principles of creation a graph-oriented 
parallel program representation are defined in [17]. 
The scenarios for data processing are represented in 
the form of Directed Acyclic Graph (DAG). DAG is 
represented as a tuple ),,,( CWEVG = , where: 

V is a set of graph nodes, that represents 
decomposition of a parallel dataflow processing 
program on the separated operations NiVvi ≤≤∈ 1, ; 

E is a set of graph edges, that represents a 
precedence relation between operations in the 
scenario and determines a data transfer between 
these nodes, jiNjNiEvve jiji ≠==∈= ,,1,,1,)},({ , ; 

W is an operation cost matrix; 
С is an edge cost set, where Сс ji ∈,  determines 

the communication volume between two data 
processing operations, which is transferred by edge 

Ee ji ∈, . We consider those operations, which are 
related and connected by the edge, use an identical 
data format for a predecessor output and a successor 
input. For all the scenarios, particular edges have an 
equal cost. 

The development of a dataflow processing 
application includes the following three stages:  

1) creation of a part of DAG scenario that 
describes logical structure of application; 

2) assignment and editing of operations 
parameters of DAG scenario for each data type; 

3) mapping of DAG scenario to cluster 
architecture. 

Each computational operation in DAG scenario is 
realized as a separate unit called a grain. The grain 
uses specific interface for integration into 
framework and data exchange. A design of the grain 
makes possible a rapid adaptation of existing 
processing algorithms into a parallel application. 
These algorithms are transformed to objects that are 
capable to form their own calling context on the base 
of received parameters. Each operation interprets its 
parameter string by convenient way and converts the 
parameters to a variable name or to a constant value. 
The order and rules of a parameter transform are 
determined by an operation specification. 
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All operations work with a specific data storage 
mechanism that is incorporated into framework 
architecture. The storage realizes a shared memory 
abstraction for source data and results of processing. 
A variant of shared memory is realized on a shared 
file system that is common for many cluster 
architectures. A storage interface provides 
operations for writing and reading of data. There 
exists also an intermediate storage mechanism in 
local memory of each processor, where the results of 
this processor operation are stored. This one allows 
reducing time expenses for variable reading in case 
of repeated access.  

The parameters of operation are read from 
storage. Each parameter is identified by its object 
name, represented as a string. Each parameter value 
is placed into corresponding internal grain variable, 
thus all parameters form a calling context. Further, 
the operation is executed and results of processing 
are placed in the storage. At this moment these 
values are accessible for other grains in parallel 
application. 

The grains are collected in specific libraries that 
are dynamically linked into the parallel application. 
The grain is loaded from the library in due time and 
identified by the operation name. The realization of 
specific grain libraries from different classes of 
processing algorithms allows expanding the 
application area of the proposed framework. 

An example of the parallel program graph is 
presented in Fig.2, where each operation is denoted 
as Ci with a cost vector. A cost of an information 
transfer between contiguous operations is equal for 
all data types. Some operations are strictly oriented 
on a specific processor while others can be placed on 
each processor in cluster. If the operation cost for 
some type of data is equal to zero, then this 
operation must be skipped for the selected type of 
data. 

1

32

4 5

C2=(1,0,2)

C1=(1,2,2)

C3=(2,4,3)

C4=(1,1,1)

C5=(1,0,3)

1

1

C5=(1,0,3)

Free-allocated 
operation

Operation 
with allocation 

restrictions

Cost vector

Fig. 2 – An example of program graph and denotation 
semantic 

A matrix of restrictions Z(O,P) is formed 
according to the following rules: 

Z(O,P) = 1, if processor p allows execution of 
operation O; 

Z(O,P) = 0, otherwise. 

The matrix of restrictions is used in optimization 
procedures and prevents an erroneous allocation of 
the specified operations on some processors. The 
restrictions arise because of a heterogeneous cluster 
structure and different operations requirements. 

A main task of a multi-agent system is a planning 
and an optimization of a parallel program execution 
with a simultaneous provision of reliable 
computations and guaranteed processing. There exist 
many algorithms of DAG scheduling that use 
various optimization techniques and heuristics. The 
techniques include priority based list scheduling, for 
example, the algorithms HLF (Highest Level First), 
LP (Longest Path) and CP (Critical Path) [18-20]. 
Another technique is a clusterization, and such 
algorithm, as DSC (Dominating Sequence 
Clustering) [21, 22] belongs to this technique. 
However all static scheduling algorithms are 
constructed mostly for special graph topologies, or 
use special constraints, such as a zero 
communication time between nodes or an 
unbounded number of processors. Because of a 
stochastic nature of input information the static 
scheduling approach can not realize an effective 
optimization for many cases of parallel processing. 

Another perspective search techniques use an 
evolutionary optimization. These techniques are 
based on such algorithms, as tabu search [23], 
simulated annealing and genetic algorithms. GA 
combined with VAN algorithm is the most powerful 
technique among them. VAN algorithm is based on 
a concept of associations between the particular 
operations and dedicated processors [24]. Each 
operation O and processor P are associated by 
means of virtual link of strength ωO,P. Some 
structure of an associative memory, which consists 
of the associations, is constructed for optimization. 
This memory is learned by an experience, 
accumulated in a solution search process. VAN 
algorithm is based on GA representation of solutions 
in a form of population of chromosomes. Each 
chromosome represents a variant of program graph 
decomposition. 

 
4. THE FRAMEWORK ARCHITECTURE 

AND AGENT BEHAVIOR 
The architecture of agent framework for parallel 

processing is presented in Fig. 3. 
The framework architecture is based on MPI and 

allows a fast communication between agents by 
means of an internal MPI virtual machine. A basic 
multi-agent structure is presented in Fig. 4. 

An input for the multi-agent system is a parallel 
program graph and a set of data objects that are 
different by their types. The parallel graph is 
represented as XML file, which allows specifying all 
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the characteristics of separate operations for all types 
of data objects. 

 

 
Fig. 3 – The architecture of parallel processing 

framework 

 

 

Fig. 4 – The internal structure of agent 

Each agent performs parsing of the whole graph 
and builds internal structures that are used for an 
execution of specified operations with correct 
parameters for each object type. These operations 
are represented by descriptors, which are used by a 
scheduler to control precedence relations and an 
overall process. 

The data object is represented by a descriptor too. 
The descriptor contains an identifier, type attributes 
and some additional information, for example, a 
name of data file, which contains information for 
this object. When an operation requires additional 
data for processing, this descriptor must be extended 
for specified applications in appropriate way. 

As the descriptors are transferred between 
processors of the parallel application, therefore the 
application code must contain serialization 
mechanisms. These mechanisms are realized for an 
interaction with MPI facilities for messaging. The 
code is included in a message transfer interface that 
is extensible and allows the use of alternative 
message transport systems. 

Data objects are stored in a shared data storage 
that is realized as descriptor storage. Each descriptor 
is linked with a universal container for storing of 
different data objects. The storage interface allows 
interaction with global storage for each agent in the 
system. This interface has some facilities for an 
object search, on-demand loading of remote objects 
and deletion of unused objects from the storage. 
Each agent has a local copy of the storage and uses it 
as a write-through cache. 

The purpose of the scheduler interface is a 
processing and a scheduling control. It contains a 
special component, which is called a scheduler and 
makes decisions about the next processing operation 
that must be placed in a descriptor queue. All 
descriptors of the operations for processed objects are 
stored in the descriptor storage that contains three sets 
of descriptors: ready, working and finished pools. The 
scheduler chooses the next processed operation from 
the ready pool and sends its descriptor to an 
appropriate processor agent. After processing this 
descriptor is placed to the finished operations pool 
and the information about next stage of processing is 
changed. The process is repeated while the ready pool 
is not empty. 

For reliability of computations there exists an 
intermediate working pool of descriptors. This pool 
is used to mark the descriptors that are now executed 
by agents. When some agent is broken, then the 
corresponding descriptor remains in this pool a long 
period of time. The scheduler periodically checks a 
descriptor state and moves these waiting descriptors 
back to the ready pool. The descriptors then have a 
possibility to allocate on a different working agent. 

The agents are dynamically linked up the library 
of image processing operations. Each processor 
executes the operations that are specified by the 
descriptors. The processor receives the descriptor 
from the coordinator, determines the next operation 
and executes it using the descriptor data. After a 
completion of data processing, the descriptor is 
returned to the scheduler. The processor works while 
a stop instruction is not received. 

Besides the process coordination, the runtime 
agents check a system state and characteristics. 
These characteristics are collected and used for a 
runtime optimization. The optimization is based on a 
measuring of a data processing speed. When the 
input data change a system pattern significantly, the 
system must adapt to this situation. The adaptation 
consists in a reconfiguration of the operation subsets 
for all processor agents. The system tries to adapt to 
changed conditions and to achieve a high processing 
speed. 

The agents use two different policies to choose of 
next operation from the descriptor pool. The first 
one consists in choosing operations on the base of 
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agent’s preferences. These preferences are formed in 
a working process by the means of VAN algorithm. 
Each agent has a vector of weights, and a probability 
of a selection of operation O for this agent A is: 

 

).,(

1

AOZP

,Oi
i,A

O,A ⋅=
∑
=

ω
ω   (1) 

 
When the agent performs some operation and its 

performance characteristics are increased, then the 
corresponding operation weight is corrected 
according to: 

 
αωω +=+ )()1( ,, tt AOAO ,  (2) 

 
where α  is a learning coefficient. 

The weights of the remaining operations are 
corrected according to: 

 
)1()()1( ,, −−=+ Ntt AOAO αωω , (3) 

 
where N means overall amount of the agents. The 
agent can choose from a subset of operations, taking 
first ready operation. 

The second choosing policy is a greedy one that 
consists in choosing of first ready operation from the 
ready pool. This policy is introduced to eliminate a 
situation, when some descriptors are not chosen by 
long time. The greedy agents execute these 
operations and later they can choose this operations 
type as preferable. Each agent can switch between 
two scheduling policies randomly. 

 
5. EXAMPLE APPLICATIONS AND 

EXPERIMENTAL RESULTS 
For simulating we use 20×20 µm topological 

structure (Fig. 5), where black color indicates the 
exposed part on positive photoresist UV 210 Shipley 
with a puncture defect.  

 

 
Fig. 5 – Example of topological structure for testing 

The parameters for the simulation are: wave-
length − 248 nm; generating normalization − 1.0; 
linear and circular polarization − 0, lens 
magnification − 0, numerical aperture − 0.6, number 
of points on the diameter − 19; size of the object − 

8.0×8.0 nm, resolution − 0.16, number of points on 
the object − 50, amplitude transmission − 1.0; index 
of refraction − 1.0, defocusing within the confines of 
1.0-2.0; step defocusing − 0.5.  

The results of the simulating are shown in Fig. 6. 
X-axis is the distance from the center point of the 
object, the axis Y is the value of the lighting 
intensity. 

Some experiments were conducted to measure a 
simulation performance depending against the size of 
the source data and the number of used processors. 
Checking the result of the simulation was carried out 
by comparison with the results obtained by leading 
industry SIGMA C microlithography simulator 
(Photronics, Inc.) on VLSI layouts with defects 
according to the standard SEMI-P22-0699 that have 
been detected EM-6329 [25]. 

The first group of experiments showed the 
dependence of the calculation time on the number of 
processors allocated to run the application (Table 1). 
Table 1. The calculation time for different number of 

processors 

Number 
of objects 

Number of processors
1 2 3 4 

50 77,8 44,67 41,63 24,48 
100 154,92 89,23 83,19 49,51 
200 310,11 178,47 166,29 101,42 
 
The overall speedup is about 3 times for the case 

of 4 processors. This result is due to the fact that the 
parallel application has a nonlinear structure with a 
different duration of the operations, so its 
parallelism is also non-linear. Nevertheless, the 
resulting acceleration can substantially speed up the 
processing of the photomasks. 

The second group of experiments shows the 
dependence of the performance of parallel 
applications on the size of the input data (Table 2, 
the number of objects is equals 100, the number of 
processors – 4). 

Table 2. The calculation time for different data 

Number 
of objects 

Number of points of the pupil 
50 100 200 

100 49,51 156,36 534.56 
 
Judging by the results, the algorithm shows 

almost linear scalability. When the number of points 
of the pupil increases by 2 times in X and Y 
coordinates, the amount of data processing is 
increased by 4 times. In this case, the processing 
time increases by 3.16 times for 100 pixels, and by 
3.42 times for 200 points (about the time for 100 
pixels). This demonstrates the scalability of the 
algorithm, since the processing time is almost 
linearly dependent on the incoming data volume. 
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a) 

 
b) 

 
c) 

Fig. 6 – Aerial image – intensity distribution on the surface of photoresist (a), past intensity – intensity 
distribution in the layer of photoresist at the beginning of the exposure (b), absorbed intensity – intensity 

distribution in the layer of photoresist at the end of exposure (c) 

 
The results of the experiments with the scenarios 

for calculating the characteristics of aerial images 
are shown in Table 3 (the processing flow of objects 
in seconds). It is clear that the optimum time is 
achieved for 2 processors. Obviously this is due to 
the large volume of communications between the 
operations. In this case, a high degree of a locality is 
required for a quick access to the data.  

Table 3. Calculation of the characteristics of aerial 
pictures 

Number of 
objects 

Number of processors 
1 2 3 4 

20 223,21 168,80 178,34 187,47 
50 566,99 427,36 442,9 461,27 
100 1150,89 865,34 880,74 902,45 
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The scenario was tested on a sequence of 20 
images. The following results of the execution time 
are presented in Table 4. 
Table 4. Calculation of the intensity distribution in the 

photoresist layer 

Number 
of images 

Number of processors 
1 2 3 4 

20 621,35 320,231 263,04 204,36 
 
The results indicate a high degree parallelism of the 

scenario allowing achieving substantial speed up the 
processing even for relatively short flows simulated 
images. 

Experimental data flows had an irregular structure 
and were generated randomly. The results of the static 
optimization for deterministic flows are presented in 
the form of comparing the times of stream processing 
according to the schedules obtained by the classical 
GA and VAN algorithm. The results are given for 
different numbers of CPU involved in the processing 
(Fig. 7). 

Fig.7 – Improving of a performance for the static 
optimization 

The optimal static schedules, obtained in the first 
series of the experiments, were used in the second 
series of the experiments with stochastic flows. 
These schedules were compared with the schedules 
which were implemented by dynamically 
reconfigurable applications (Fig. 8). The results 
show a change in processing time for the static (S) 
and dynamic (D) VAN algorithm. 

 

 Fig.8 – Improving of a performance for the dynamic 
optimization 

The results of the first series of experiments 
indicate that VAN algorithm finds the best VAN 
schedules, and the performance of the algorithm 
increases with extension of the search space. The 
VAN algorithm also has a lower computational 
complexity and finds solutions faster than the 
classical GA. 

The results of the second series of experiments 
show that the virtual network algorithm significantly 
improves performance in case of stochastic 
processing flow of images by operating of dynamic 
optimization system. 
 

6. CONCLUSION 
The implementation of parallel applications in 

specialized component architectures allows users to 
significantly accelerate the process of creating, 
analyzing and optimizing programs. Architecture of 
data stream processing based on the use of multi-
agent systems can be easily adapted for many 
applications involving parallel processing. Using the 
component approach defines a flexible framework of 
a parallel application that allows adapting the 
computational process for the operation. Design 
tools can be easily extended with new operations, 
algorithms, and data types for implementing 
application processing flow of information from 
different subject areas. 
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