
S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 45

MULTI-AGENT PARALLEL IMPLEMENTATION OF PHOTOMASK
SIMULATION IN PHOTOLITHOGRAPHY

Syarhei M. Avakaw 1), Alexander A. Doudkin 2), Alexander V. Inyutin 2),

Aleksey V. Otwagin 2,3), Vladislav A. Rusetsky 1)

1) Research and Production Republican Unitary Enterprise “KBTEM-OMO” of Planar Corporation, 2 Partizansky Ave,
Minsk, Belarus, mve@kbtem.avilink.net

2) United Institute of Informatics Problems of NAS of Belarus, Minsk, doudkin@newman.bas-net.by
3) Belarusian State University of Informatics and Radioelectronics, 6 P. Brovka st, Minsk, Belarus, otwagin@bsuir.by

Abstract: A framework for paralleling aerial image simulation in photolithography is proposed. Initial data for the
simulation representing photomask are considered as a data stream that is processed by a multi-agent computing
system. A parallel image processing is based on a graph model of a parallel algorithm. The algorithm is constructed
from individual computing operations in a special visual editor. Then the visual representation is converted into XML,
which is interpreted by the multi-agent system based on MPI. The system performs run-time dynamic optimization of
calculations using an algorithm of virtual associative network. The proposed framework gives a possibility to design
and analyze parallel algorithms and to adapt them to architecture of the computing cluster.

Keywords: Aerial Image Simulation, Multi-agent, Integrated Circuit, Photolithography, Parallel Algorithm.

1. INTRODUCTION
A photolithography process is a major step in

conversion of integrated circuit (IC) layout pattern
on a surface of a semiconductor wafer. A simulation
of the lithography process is very complicated. It can
be roughly simulated in two steps:

1) mask shapes are projected into a photoresist as
an aerial image;

2) a distribution of an absorbed intensity of a
emission in the photoresist are calculated and
patterned based on the aerial image intensity.

The image projection is simulated by the Hopkins
equation [1], which is a four-dimensional integral.
This calculation is too slow to simulate across the
full chip and parallel algorithms can be used to
speed up the simulation [2,3]. Currently, the known
number of photolithography simulation software
systems is implemented both on clusters of
multiprocessor personal computers and workstations
[4-6, 7] and supercomputers [9]. Hardware-
accelerated computational lithography tools are also
built [8]. The need of solving additional tasks for
planning and optimizing the structure of a parallel
application in the design process prevents their
widespread use.

In many cases, a development of the parallel
applications is carried out based on existing

sequential algorithms and their composition.
Computational operations as parts of the parallel
algorithm often have a universal character and can
be applied to various problems of information
processing. Implementations of the operations in the
portable forms allow going to component design,
when the program is constructed from large blocks.

In addition, a process of a parallel program
execution requires modern methods of planning and
optimization of load characteristics of computational
nodes. In many cases, the nodes of parallel systems
have heterogeneous characteristics, both spatial and
temporal. For an effective implementation of parallel
programs such systems should provide tools for
organizing and monitoring parallel computing and
its dynamic reconfiguration.

There are a number of machine vision systems
that use parallel and distributed processing [10-13].
Different technologies such as CORBA [13] or a
multi-agent approach [10] are used as a architectural
core of these systems.

We propose to use for designing and organizing
parallel computations an integrated set of tools
(framework) that includes a visual editor, a
compiler, an optimization system and a parallel
computing support system based on MPI [14].
Having framework for design, analysis and planning

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 46

of parallel applications and built-in specific
mechanisms for the implementation of parallelism,
IC designer can significantly accelerate the
processing flow of photomask and layout images in
the operational analysis of IC. MPI makes our
system is widely applicable to various parallel
computers. The main features of the proposed
framework are the following:

1) visual representation of a parallel application
based on graph model of a computation. A concept
of computational grains is used. The grains are
independent modules developed in different
programming languages (C + +, Java, MPI) and
have a specific interface for integration into a
parallel algorithm;

2) a support of a portability, implemented as
libraries. The computing grains are added to the
system algorithms at a run time;

3) static and dynamic optimization of the parallel
applications using an algorithm of virtual associative
network (VAN). This algorithm is a kind of hybrid
genetic algorithm (GA) and provides a quick search
for a solution close to optimal. It has two
modifications: the first one is used in the analysis
phase of the design (the static optimization), the
second one – on the stage of program execution (the
dynamic optimization);

4) assignment of operations of the parallel
application on the computational nodes (processors)
of a computer system, taking into account
information obtained during the optimization.

The paper describes the implementation of
parallel simulating of image formation in photoresist
wafer during photolithography. Init data for
processing are the images of the original topology of
VLSI photomasks. Results of simulating give a
possibility to do a subsequent automatic mask
inspection and determine a significance of
photolithography defects. The defects of the
topology are significant if they lead to the formation
of defects on the wafer that should be corrected at
the stage of the production.

The task of simulation of an aerial image is
calculation the light intensity distribution of the
wafer surface and to obtain a latent image with
regard to characteristics of the optical system and
lighting conditions. Section 2 represents an
algorithm that simulates the aerial image on the
photoresist. In Section 3 we consider the problem of
parallel processing and describe a graph model
representation of the parallel algorithm based on
concept of computational grains. Section 4 describes
the basic elements of the computational platform and
their interaction in the development of parallel

applications. Section 5 represents an example of an
implementation of the simulation algorithm and
some experimental results of the optimization
process.

2. ALGORITHM FOR SIMULATING

AERIAL IMAGE ON THE PHOTORESIST
Algorithm for simulating the image on the

photoresist surface is composed of the following
steps [15, 16]:

- calculation of a pupillary function;
- calculation of a vector amplitude of the object;
- calculation of a transfer matrix of the projection

lens
- calculation of two-dimensional distribution of

intensity in a given position of the plane
- calculation of two-dimensional distribution of

intensity in different positions of the plane;
- calculation of image intensity in semi-coherent

light;
- calculation of the volume distribution of

intensity.
The influence of the vector properties of light is

taken into account by the so-called vector factors
(multipliers) applied to the pupil function. Using the
factors allowed describing the influence of the
vector nature of electromagnetic waves on the image
of thin periodic structures, whose dimensions are
within the resolution of optical systems, significantly
reducing the computation time of the aerial image.

To describe the effect of an anterior aperture of
the optical system it is necessary to use the factor
that accounts the diffraction of a plane linearly
polarized wave at the input of the optical system. In
this case, we consider the effect of the optical
system to redistribute the energy in the spectrum
regardless of the direction of polarization and the
direction of wave propagation. Another factor takes
into account the influence of the entrance aperture at
the entrance of the optical system. Based on these
data, we can simulate the effect of an influence of
the numerical entrance aperture to the distribution of
any Fourier component exactly as a vector field (a
vector nature of electromagnetic waves is considered
at the inlet and outlet of the optical system). As a
result, it is possible to calculate the vector field of
the image both in coherent and partially coherent
light.

Using the factors allows describing the influence
of a linearly polarized wave to the image quality. For
the case non-polarized or partially polarized light it is
necessary to use both electric and magnetic vectors
which are implemented in the proposed algorithm.

S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 47

Preparation of sample pupillary function

Calculation of the expansion coefficients of
samples

Preparation of sample functions of a complex
transmission

Preparation of sample functions of the brightness
of the source

Preparation of sample functions of the brightness
of the source

Computation of
the sample of
component

amplitude of X-
direction field

Computation of
the sample of
component

amplitude of X-
direction field

Computation of
the sample of
component

amplitude of X-
direction field

Calculation of the sample distribution of the
intensity image

Fig. 1 –An algorithm for constructing the aerial image

The main features of the algorithm are the
following.

1) Integrating the vector nature of the light field
based on the wording of the electric and the
magnetic vector of the amplitudes as functions of the
three space Cartesian coordinates, as well as two
coordinates in the pupil of the optical system. This
formulation provides a correct account of the
aberrations of the optical system and an influence of
high numerical aperture to an image formation
without a significant complication of the
mathematical apparatus. In contrast to the currently
used models, the proposed model is based on a strict
conformity physical nature of the processes and
much simpler, it is favorable for constructing fast
algorithms.

2) Using the partial coherence theory the image
intensity is calculated the most economical way
based on a system of Eigen functions. Eigen
functions are simulated by Zernike polynomials and
are used to describe the mutual intensity of different
pixels of the image. Such technique significantly
reduces the number of integrals over the light
source, a calculation of which remains to be the
most time-consuming step in the simulation after
applying the features mentioned above.

These principles supplement each other in
developing the most efficient algorithm for
calculating the intensity distribution of the aerial
image and do not individually represent a value what
they find together. The implementation of the

algorithm in the form of single-process applications
has shown the following: if the data level is large,
then the processing time is unacceptably large (over
1 min / frame). Since all of the layout images are
processed by a common program and may be called
by a defect detection system at the same time, it is
expedient to use a parallel computer system for the
simultaneous processing of input data stream.

3. A PARALLEL APPLICATION MODEL

AND A COMPUTATIONAL GRAIN
CONCEPT

The basic principles of creation a graph-oriented
parallel program representation are defined in [17].
The scenarios for data processing are represented in
the form of Directed Acyclic Graph (DAG). DAG is
represented as a tuple),,,(CWEVG = , where:

V is a set of graph nodes, that represents
decomposition of a parallel dataflow processing
program on the separated operations NiVvi ≤≤∈ 1, ;

E is a set of graph edges, that represents a
precedence relation between operations in the
scenario and determines a data transfer between
these nodes, jiNjNiEvve jiji ≠==∈= ,,1,,1,)},({ , ;

W is an operation cost matrix;
С is an edge cost set, where Сс ji ∈, determines

the communication volume between two data
processing operations, which is transferred by edge

Ee ji ∈, . We consider those operations, which are
related and connected by the edge, use an identical
data format for a predecessor output and a successor
input. For all the scenarios, particular edges have an
equal cost.

The development of a dataflow processing
application includes the following three stages:

1) creation of a part of DAG scenario that
describes logical structure of application;

2) assignment and editing of operations
parameters of DAG scenario for each data type;

3) mapping of DAG scenario to cluster
architecture.

Each computational operation in DAG scenario is
realized as a separate unit called a grain. The grain
uses specific interface for integration into
framework and data exchange. A design of the grain
makes possible a rapid adaptation of existing
processing algorithms into a parallel application.
These algorithms are transformed to objects that are
capable to form their own calling context on the base
of received parameters. Each operation interprets its
parameter string by convenient way and converts the
parameters to a variable name or to a constant value.
The order and rules of a parameter transform are
determined by an operation specification.

S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 48

All operations work with a specific data storage
mechanism that is incorporated into framework
architecture. The storage realizes a shared memory
abstraction for source data and results of processing.
A variant of shared memory is realized on a shared
file system that is common for many cluster
architectures. A storage interface provides
operations for writing and reading of data. There
exists also an intermediate storage mechanism in
local memory of each processor, where the results of
this processor operation are stored. This one allows
reducing time expenses for variable reading in case
of repeated access.

The parameters of operation are read from
storage. Each parameter is identified by its object
name, represented as a string. Each parameter value
is placed into corresponding internal grain variable,
thus all parameters form a calling context. Further,
the operation is executed and results of processing
are placed in the storage. At this moment these
values are accessible for other grains in parallel
application.

The grains are collected in specific libraries that
are dynamically linked into the parallel application.
The grain is loaded from the library in due time and
identified by the operation name. The realization of
specific grain libraries from different classes of
processing algorithms allows expanding the
application area of the proposed framework.

An example of the parallel program graph is
presented in Fig.2, where each operation is denoted
as Ci with a cost vector. A cost of an information
transfer between contiguous operations is equal for
all data types. Some operations are strictly oriented
on a specific processor while others can be placed on
each processor in cluster. If the operation cost for
some type of data is equal to zero, then this
operation must be skipped for the selected type of
data.

1

32

4 5

C2=(1,0,2)

C1=(1,2,2)

C3=(2,4,3)

C4=(1,1,1)

C5=(1,0,3)

1

1

C5=(1,0,3)

Free-allocated
operation

Operation
with allocation

restrictions

Cost vector

Fig. 2 – An example of program graph and denotation
semantic

A matrix of restrictions Z(O,P) is formed
according to the following rules:

Z(O,P) = 1, if processor p allows execution of
operation O;

Z(O,P) = 0, otherwise.

The matrix of restrictions is used in optimization
procedures and prevents an erroneous allocation of
the specified operations on some processors. The
restrictions arise because of a heterogeneous cluster
structure and different operations requirements.

A main task of a multi-agent system is a planning
and an optimization of a parallel program execution
with a simultaneous provision of reliable
computations and guaranteed processing. There exist
many algorithms of DAG scheduling that use
various optimization techniques and heuristics. The
techniques include priority based list scheduling, for
example, the algorithms HLF (Highest Level First),
LP (Longest Path) and CP (Critical Path) [18-20].
Another technique is a clusterization, and such
algorithm, as DSC (Dominating Sequence
Clustering) [21, 22] belongs to this technique.
However all static scheduling algorithms are
constructed mostly for special graph topologies, or
use special constraints, such as a zero
communication time between nodes or an
unbounded number of processors. Because of a
stochastic nature of input information the static
scheduling approach can not realize an effective
optimization for many cases of parallel processing.

Another perspective search techniques use an
evolutionary optimization. These techniques are
based on such algorithms, as tabu search [23],
simulated annealing and genetic algorithms. GA
combined with VAN algorithm is the most powerful
technique among them. VAN algorithm is based on
a concept of associations between the particular
operations and dedicated processors [24]. Each
operation O and processor P are associated by
means of virtual link of strength ωO,P. Some
structure of an associative memory, which consists
of the associations, is constructed for optimization.
This memory is learned by an experience,
accumulated in a solution search process. VAN
algorithm is based on GA representation of solutions
in a form of population of chromosomes. Each
chromosome represents a variant of program graph
decomposition.

4. THE FRAMEWORK ARCHITECTURE

AND AGENT BEHAVIOR
The architecture of agent framework for parallel

processing is presented in Fig. 3.
The framework architecture is based on MPI and

allows a fast communication between agents by
means of an internal MPI virtual machine. A basic
multi-agent structure is presented in Fig. 4.

An input for the multi-agent system is a parallel
program graph and a set of data objects that are
different by their types. The parallel graph is
represented as XML file, which allows specifying all

S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 49

the characteristics of separate operations for all types
of data objects.

Fig. 3 – The architecture of parallel processing

framework

Fig. 4 – The internal structure of agent

Each agent performs parsing of the whole graph
and builds internal structures that are used for an
execution of specified operations with correct
parameters for each object type. These operations
are represented by descriptors, which are used by a
scheduler to control precedence relations and an
overall process.

The data object is represented by a descriptor too.
The descriptor contains an identifier, type attributes
and some additional information, for example, a
name of data file, which contains information for
this object. When an operation requires additional
data for processing, this descriptor must be extended
for specified applications in appropriate way.

As the descriptors are transferred between
processors of the parallel application, therefore the
application code must contain serialization
mechanisms. These mechanisms are realized for an
interaction with MPI facilities for messaging. The
code is included in a message transfer interface that
is extensible and allows the use of alternative
message transport systems.

Data objects are stored in a shared data storage
that is realized as descriptor storage. Each descriptor
is linked with a universal container for storing of
different data objects. The storage interface allows
interaction with global storage for each agent in the
system. This interface has some facilities for an
object search, on-demand loading of remote objects
and deletion of unused objects from the storage.
Each agent has a local copy of the storage and uses it
as a write-through cache.

The purpose of the scheduler interface is a
processing and a scheduling control. It contains a
special component, which is called a scheduler and
makes decisions about the next processing operation
that must be placed in a descriptor queue. All
descriptors of the operations for processed objects are
stored in the descriptor storage that contains three sets
of descriptors: ready, working and finished pools. The
scheduler chooses the next processed operation from
the ready pool and sends its descriptor to an
appropriate processor agent. After processing this
descriptor is placed to the finished operations pool
and the information about next stage of processing is
changed. The process is repeated while the ready pool
is not empty.

For reliability of computations there exists an
intermediate working pool of descriptors. This pool
is used to mark the descriptors that are now executed
by agents. When some agent is broken, then the
corresponding descriptor remains in this pool a long
period of time. The scheduler periodically checks a
descriptor state and moves these waiting descriptors
back to the ready pool. The descriptors then have a
possibility to allocate on a different working agent.

The agents are dynamically linked up the library
of image processing operations. Each processor
executes the operations that are specified by the
descriptors. The processor receives the descriptor
from the coordinator, determines the next operation
and executes it using the descriptor data. After a
completion of data processing, the descriptor is
returned to the scheduler. The processor works while
a stop instruction is not received.

Besides the process coordination, the runtime
agents check a system state and characteristics.
These characteristics are collected and used for a
runtime optimization. The optimization is based on a
measuring of a data processing speed. When the
input data change a system pattern significantly, the
system must adapt to this situation. The adaptation
consists in a reconfiguration of the operation subsets
for all processor agents. The system tries to adapt to
changed conditions and to achieve a high processing
speed.

The agents use two different policies to choose of
next operation from the descriptor pool. The first
one consists in choosing operations on the base of

S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 50

agent’s preferences. These preferences are formed in
a working process by the means of VAN algorithm.
Each agent has a vector of weights, and a probability
of a selection of operation O for this agent A is:

).,(

1

AOZP

,Oi
i,A

O,A ⋅=
∑
=

ω
ω (1)

When the agent performs some operation and its

performance characteristics are increased, then the
corresponding operation weight is corrected
according to:

αωω +=+)()1(,, tt AOAO , (2)

where α is a learning coefficient.

The weights of the remaining operations are
corrected according to:

)1()()1(,, −−=+ Ntt AOAO αωω , (3)

where N means overall amount of the agents. The
agent can choose from a subset of operations, taking
first ready operation.

The second choosing policy is a greedy one that
consists in choosing of first ready operation from the
ready pool. This policy is introduced to eliminate a
situation, when some descriptors are not chosen by
long time. The greedy agents execute these
operations and later they can choose this operations
type as preferable. Each agent can switch between
two scheduling policies randomly.

5. EXAMPLE APPLICATIONS AND

EXPERIMENTAL RESULTS
For simulating we use 20×20 µm topological

structure (Fig. 5), where black color indicates the
exposed part on positive photoresist UV 210 Shipley
with a puncture defect.

Fig. 5 – Example of topological structure for testing

The parameters for the simulation are: wave-
length − 248 nm; generating normalization − 1.0;
linear and circular polarization − 0, lens
magnification − 0, numerical aperture − 0.6, number
of points on the diameter − 19; size of the object −

8.0×8.0 nm, resolution − 0.16, number of points on
the object − 50, amplitude transmission − 1.0; index
of refraction − 1.0, defocusing within the confines of
1.0-2.0; step defocusing − 0.5.

The results of the simulating are shown in Fig. 6.
X-axis is the distance from the center point of the
object, the axis Y is the value of the lighting
intensity.

Some experiments were conducted to measure a
simulation performance depending against the size of
the source data and the number of used processors.
Checking the result of the simulation was carried out
by comparison with the results obtained by leading
industry SIGMA C microlithography simulator
(Photronics, Inc.) on VLSI layouts with defects
according to the standard SEMI-P22-0699 that have
been detected EM-6329 [25].

The first group of experiments showed the
dependence of the calculation time on the number of
processors allocated to run the application (Table 1).
Table 1. The calculation time for different number of

processors

Number
of objects

Number of processors
1 2 3 4

50 77,8 44,67 41,63 24,48
100 154,92 89,23 83,19 49,51
200 310,11 178,47 166,29 101,42

The overall speedup is about 3 times for the case

of 4 processors. This result is due to the fact that the
parallel application has a nonlinear structure with a
different duration of the operations, so its
parallelism is also non-linear. Nevertheless, the
resulting acceleration can substantially speed up the
processing of the photomasks.

The second group of experiments shows the
dependence of the performance of parallel
applications on the size of the input data (Table 2,
the number of objects is equals 100, the number of
processors – 4).

Table 2. The calculation time for different data

Number
of objects

Number of points of the pupil
50 100 200

100 49,51 156,36 534.56

Judging by the results, the algorithm shows

almost linear scalability. When the number of points
of the pupil increases by 2 times in X and Y
coordinates, the amount of data processing is
increased by 4 times. In this case, the processing
time increases by 3.16 times for 100 pixels, and by
3.42 times for 200 points (about the time for 100
pixels). This demonstrates the scalability of the
algorithm, since the processing time is almost
linearly dependent on the incoming data volume.

S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 51

a)

b)

c)

Fig. 6 – Aerial image – intensity distribution on the surface of photoresist (a), past intensity – intensity
distribution in the layer of photoresist at the beginning of the exposure (b), absorbed intensity – intensity

distribution in the layer of photoresist at the end of exposure (c)

The results of the experiments with the scenarios

for calculating the characteristics of aerial images
are shown in Table 3 (the processing flow of objects
in seconds). It is clear that the optimum time is
achieved for 2 processors. Obviously this is due to
the large volume of communications between the
operations. In this case, a high degree of a locality is
required for a quick access to the data.

Table 3. Calculation of the characteristics of aerial
pictures

Number of
objects

Number of processors
1 2 3 4

20 223,21 168,80 178,34 187,47
50 566,99 427,36 442,9 461,27
100 1150,89 865,34 880,74 902,45

S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 52

The scenario was tested on a sequence of 20
images. The following results of the execution time
are presented in Table 4.
Table 4. Calculation of the intensity distribution in the

photoresist layer

Number
of images

Number of processors
1 2 3 4

20 621,35 320,231 263,04 204,36

The results indicate a high degree parallelism of the

scenario allowing achieving substantial speed up the
processing even for relatively short flows simulated
images.

Experimental data flows had an irregular structure
and were generated randomly. The results of the static
optimization for deterministic flows are presented in
the form of comparing the times of stream processing
according to the schedules obtained by the classical
GA and VAN algorithm. The results are given for
different numbers of CPU involved in the processing
(Fig. 7).

Fig.7 – Improving of a performance for the static
optimization

The optimal static schedules, obtained in the first
series of the experiments, were used in the second
series of the experiments with stochastic flows.
These schedules were compared with the schedules
which were implemented by dynamically
reconfigurable applications (Fig. 8). The results
show a change in processing time for the static (S)
and dynamic (D) VAN algorithm.

 Fig.8 – Improving of a performance for the dynamic
optimization

The results of the first series of experiments
indicate that VAN algorithm finds the best VAN
schedules, and the performance of the algorithm
increases with extension of the search space. The
VAN algorithm also has a lower computational
complexity and finds solutions faster than the
classical GA.

The results of the second series of experiments
show that the virtual network algorithm significantly
improves performance in case of stochastic
processing flow of images by operating of dynamic
optimization system.

6. CONCLUSION
The implementation of parallel applications in

specialized component architectures allows users to
significantly accelerate the process of creating,
analyzing and optimizing programs. Architecture of
data stream processing based on the use of multi-
agent systems can be easily adapted for many
applications involving parallel processing. Using the
component approach defines a flexible framework of
a parallel application that allows adapting the
computational process for the operation. Design
tools can be easily extended with new operations,
algorithms, and data types for implementing
application processing flow of information from
different subject areas.

7. REFERENCES

[1] M. Born, E. Wolf, Principles of Optics:
Electromagnetic Theory of Propagation,
Interference and Diffraction of Light, seventh
ed., Cambridge University Press, 1999.

[2] Y.C. Pati, T. Kailath, Phase-shifting masks for
microlithography: automated design and mask
requirements, Journal of the Optical Society of
America A 11 (1994), pp. 2438-2452.

[3] D. Yu, Z. Pan and C.A. Mack, Fast lithography
simulation under focus variations for OPC and
layout optimizations, Proc. SPIE 6156, Apr.
2006, pp. 397-406.

[4] C. Spence, Full-chip lithography simulation
and design analysis – how OPC is changing IC
design, Proc. SPIE, (21) 10 (2005), pp. 1-14.

[5] Eric R. Poortinga, Comparing software and
hardware simulation tools on an embedded-
attenuated PSM / Eric R. Poortinga [et al.]
[Electronic resource]. – 2007. – Mode of
access:
www.micromagazine.com/archive/00/06/
poortinga.html. – Date of access: 12.07.2008.

[6] Optolith – 2D Optical Lithography Simulator
[Electronic resource]. – 2005. – Mode of
access:
http://www.silvaco.com/products/vwf/athena/

S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 53

optolith/optolith_datasheet.html. – Date of
access: 11.07.2008.

[7] N. Cobb and Y. Granik, New concepts in OPC.
Proc. SPIE 5377, 2004, pp. 680-690.

[8] J. Ye, Y.-W. Lu, Y. Cao, L. Chen, and X.
Chen, System and method for lithography
simulation, Patent US 7,117,478 B2, Jan. 18,
2005.

[9] G.A. Gomba, Collaborative innovation: IBM’s
immersion lithography strategy for 65 nm and
45 nm halfpitch nodes & beyond, Proc. SPIE
6521, 2007.

[10] D. Argiro, S. Kubica, M. Young, and
S. Jorgensen, Khoros: an integrated
development environment for scientific
computing and visualization, Whitepaper,
Khoral Research, Inc., 1999.

[11] M. Zikos, E. Kaldoudi, S. Orphanoudakis,
DIPE: a distributed environment for medical
image processing, Proceedings of MIE’97,
Porto Carras, Sithonia, Greece, May 25-29,
1997. – pp. 465-469.

[12] M. Guld, B. Wein, D. Keysers, C. Thies et al.,
A distributed architecture for content-based
image retrieval in medical applications,
Proceedings of the 2nd International Workshop
on Pattern Recognition in Information Systems.
2002, pp. 299-314.

[13] J. Wickel, P. Alvarado, P. Dörfler et al., Axiom
– a modular visual object retrieval system,
M. Jarke, J. Koehler, and G. Lakemeyer,
editors. Advances in Artificial Intelligence
LNAI 2479. Springer, 2002. p. 253–267.

[14] W. Gropp, E. Lusk, and A. Skjellum, Using
MPI: Portable Parallel Programming with the
Message Passing Interface. – MIT Press. –
1995.

[15] C.J.R. Sheppard, P. Torok, Approximate forms
for diffraction integrals in high numerical
aperture focusing, Optik, (105) 2 (1997),
pp. 77-82.

[16] N.B. Voznesensky, A.V. Belozubov, Polari-
zation effects on image quality of optical
systems with high numerical apertures, Proc.
SPIE, 1999, Vol.3754, p.366-373.

[17] K. Hwang, Z. Xu, Scalable Parallel Computing
– Technology, Architecture, Programming,
McGraw-Hill, USA, 1998.

[18] O. Beaumont, A. Legrand, Y. Robert, Static
scheduling strategies for heterogeneous
systems, Computing and Informatics, (21)
(2002), pp. 413-430.

[19] Y.-K. Kwok, I. Ahmad, Static scheduling
algorithms for allocating directed task graphs to
multiprocessors, ACM Computing Surveys, (31)
4 (1999), pp. 406-471.

[20] T. Hagras, J. Janecek, A fast compile-time task

scheduling heuristic for homogeneous
computing environments, International Journal
of Computers and Their Applications, (12) 2
(2005), pp. 76-82.

[21] A. Gerasoulis, T. Yang, A comparison of
clustering heuristics for scheduling directed
acyclic graphs onto multiprocessors, Journal of
Parallel and Distributed Computing, (4) 16
(1992), pp. 276-291.

[22] M.A. Palis, J.-C. Liou, and D.S.L. Wei, Task
clustering and scheduling for distributed
memory parallel architectures, Trans. Parallel
and Dist. Systems. (7) 1 (1996), pp. 46-55.

[23] S. Porto, A.C. Ribeiro, A tabu search approach
to task scheduling on heterogeneous processors
under precedence constraints, International
Journal of High-Speed Computing, (2) 7
(1995), pp. 45-71.

[24] Y.M. Yufik, T.B. Sheridan, Virtual networks:
new framework for operator modeling and
interface optimization in complex supervisory
control systems, Annual Reviews in Control,
(20) (1996), pp. 179-195.

[25] S. Avakaw, A. Korneliuk, A. Tsitko, A
prospective modular platform of the mask
pattern automatic inspection using die-to-
database mask method, Proc. of SPIE,
Photomask and Next-Generation Lithography
Mask Technology XII, Yokohama, Japan, 13-15
April, 2005. – Vol. 5853. – Bellingham,
Washington: SPIE, 2005, pp. 965-976.

Syarhei M. Avakaw Candidate
of Sciences degree (an
equivalent of Ph.D.) in 2002,
Doctor of Engineering in 2008.
Director of the KBTEM-OMO
(Planar Corporation). Since
1984 has been working on
development of the equipment
for automatic inspection of
planar structures. The main

research interests of Dr. S. Avakaw is automatic
inspection in precise equipment used for
manufacture of high-precision master patterns of the
electronics products.

Alexander A. Doudkin
Candidate of Sciences degree
(an equivalent of Ph.D.) in
CAD in 1987. Doctor of
Engineering in 2010. Principal
researcher at the laboratory of
systems identification, United
Institute of Informatics
Problems, NAS of Belarus.
Member of Belarusian branch

of IAPR and an international society of neural

S. Avakaw, A. Doudkin, A. Inyutin, A. Otwagin, V. Rusetsky / Computing, 2012, Vol. 11, Issue 1, 45-54

 54

networks. Research interests: digital signal and
image processing; development of methods,
algorithms and technologies for integrated circuit
layouts digital processing in respect to creation of
computer vision system for VLSI design and
manufacture inspection; neural network application,
methods of parallel data processing.

Alexander Inyutin graduated
in 1998 from Belarusian State
University of Transport BSUT,
Gomel, received the MS
degree in 1999. He works in
laboratory of systems
identification, United Institute of
Informatics Problems of
National Academy of Sciences
of Belarus. His research

interests include image processing, mathematical
morphology, defect detection, methods of parallel
data processing.

Aleksey V. Otwagin is
graduated in Computer
Science in BSUIR at 1998.
Candidate of Sciences degree
(an equivalent of Ph.D.) in
2007. He is associate
professor of Belarusian State
University of Informatics and
Radioelectronics. His research
interests include multi-agent

systems, parallel processing, optimization of parallel
program, genetic algorithms.

Vladislav A. Rusetsky is graduated in Computer
Science in BSUIR in 2008, received the MS degree
in 2009. Now hi is postgraduate at the Department
of Electronic Engineering and Technology, BSUIR.
His research interests include development of the
equipment for photomask production.

