
Anton Kabysh, Vladimir Golovko, Arunas Lipnickas / Computing, 2012, Vol. 11, Issue 1, 39-44

 39

INFLUENCE LEARNING FOR MULTI-AGENT SYSTEM BASED ON
REINFORCEMENT LEARNING

Anton Kabysh 1), Vladimir Golovko 1), Arunas Lipnickas 2)

1) Brest State Technical University, 224017, Moskovskaya str. 267, Brest, Republic of Belarus

anton.kabysh@gmail.com, gva@bstu.by
2) Kaunas University of Technology, Student g. 48-111, LT-51367, Kaunas, Lithuania

arunas.lipnickas@ktu.lt

Abstract: This paper describes a multi-agent influence learning approach and reinforcement learning adaptation to it.
This learning technique is used for distributed, adaptive and self-organizing control in multi-agent system. This
technique is quite simple and uses agent’s influences to estimate learning error between them. The best influences are
rewarded via reinforcement learning which is a well-proven learning technique. It is shown that this learning rule
supports positive-reward interactions between agents and does not require any additional information than standard
reinforcement learning algorithm. This technique produces optimal behavior of multi-agent system with fast
convergence patterns.

Keywords: reinforcement learning, influence learning, multi-agent learning, multi-joined robot.

1. INTRODUCTION
Multi-Agent approach – it is an entire paradigm

in the development of complex systems consisting of
interacting autonomous agents, which are operating
with local knowledge and limited capacity, however,
can be expected, in general, the behavior of the
system. No agent lives in a vacuum, but typically
must interact with other agents to achieve its goals.
Distributed artificial intelligence is the subfield of
artificial intelligence that focuses on complex
systems that are inhabited by multiple agents. The
main goal of research in this area is to provide
principles for the construction and application of
multi-agent systems as well as means for
coordinating the behavior of multiple independent
agents [1].

For example, many application domains are
envisioned in which teams of software agents or
robots learn to cooperate amongst each other and
with human beings to achieve global objectives.
Interacting agents may also be essential in many
non-cooperative domains such as economics and
finance. Teams of agents have the potential for
accomplishing tasks that are beyond the capabilities
of a single agent. An excellent and demanding
example of multi-agent cooperation is in robot
soccer. At the same time, Multi-Agent learning
(MAL) poses significant theoretical challenges,

particularly in understanding how agents can learn
and adapt in the presence of other agents that are
simultaneously learning and adapting [2,3].

In general multi-agent systems each agent
possesses its own, arbitrary reward function which
may be entirely unrelated to the rewards other agents
receive. For this realm of problems a number of
corresponding multi-agent reinforcement learning
algorithms have been suggested [4, 5, 7, 8]. The
Nash-Q learning algorithm shown multi-agent
system as general-sum games where agents tend to
find Nash equilibrium in common environment. This
algorithm assumed an environment where each
agent has full knowledge over the actions taken by
other agents. Aiming at the reduction of necessary
preconditions to be met for this algorithm to be
applicable, Littman proposed the Friend-or-Foe Q
learning algorithm, which, however, requires every
other agent to be classified as cooperative or
competitive a priori, and Greenwald and Hall
developed Correlated-Q-learning which generalizes
Nash-Q and FoF-Q.

Multi-agent systems with cooperative agents
which collectively aim at achieving a common goal
is to be found very frequently in practical
applications and, thus, of special importance. Some
practical usages include [4]:

• Mobile telephony (e.g. for channel allocation)

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Anton Kabysh, Vladimir Golovko, Arunas Lipnickas / Computing, 2012, Vol. 11, Issue 1, 39-44

 40

• Network technology (e.g. for data packet
routing)

• Computing power management (e.g. for load
balancing across servers)

• Autonomous robots (e.g. for robotic soccer)
and distributed robotics.

• Job-shop scheduling [4].
This numeration of mostly real-life applications

misses another important area the field of production
planning and factory optimization, where machines
may act cooperatively with the goal of achieving
maximal joint productivity.

The universal multi-joined robot learning
problem via multi-agent learning described in this
paper. The section 2 describes reinforcement
learning approach and section 3 influence learning
framework to multi-agent learning. Section 4
describes and eplains particular methodology of
adaptation reinforcement learning to multi-agent
influence learning. Next sections, 5 and 6 describes
model of universal multi-joined and learning
experiments. Conclusion contains perspectives,
prospects and limitation of presented learning
framework.

2. REINFORCEMENT LEARNING

Reinforcement learning is an approach to
artificial intelligence that emphasizes learning by the
individual from its interaction with its environment
that produces optimal behavior [4]. It is often used
as one of the control techniques, especially for
learning autonomous agents in unknown
environment. It emerged at the intersection of
dynamic programming, machine learning, biology,
studies the reflexes and reactions of living
organisms: reflex theory, animal cognition [5]. RL is
highly popular for learning autonomous agents, for
example autonomous robotics, negotiating agents
and so on. The math foundation of RL is Markov
Decision Process (MDP), so it widely used for
learning in game theory, e.g. TD-Gammon [6].

The core of all most Reinforcement Learning
methods is a Temporal Difference (TD) learning [4].
Temporal Difference technique measures the
inconsistency between difference of quality for two
actions done in some state and received reward,
shows expectation of agent.

Agent execute action a in particular state s, goes
to next state s’ and receives reward r as a feedback
of recent action. During learning agent try to select
the best action in some state (best action usually
more rewarded in future). Visually, iteration of RL-
agent on MDP is shown at Fig. 1.

Fig. 1 – One iteration of Reinforcement learning

where α – learning rate, γ - discount factor.
Learning goal is to approximate Q-function, e.g.

finding true Q-values of Q-function for each action
in every state. Formulas 1,2 shows SARSA learning
rule. Estimated value δ is Temporal Difference
error.

),()','(asQasQr −+=δ (1)
αδ=∆),(asQ (2)

The natural extension of standard RL algorithm is

usage eligibility traces to remember previously
visited states. Eligibility trace is a temporary record
of the occurrence of an event, such as the visiting of
a state or the taking of an action [4]. At every time
step, when a TD error occurs, only the eligible states
or actions are updated.

)()],()','([),(seasQasQrasQ −+=∆ α (3)

⎩
⎨
⎧

+
=

1)(
)(

)(
se

se
se

λγ
λγ

oterwise

ssif t≠
 (4)

Formula (2) called for every previously visited

state s if`, where)(se – is a eligibility value, λ – is
a eligibility discount factor, decay in time past
eligibilities.

Reinforcement Learning works well in case of
one agent and where external environment can be
represented compactly via Q-function. In a multi-
agent environment with multiple cooperative agents
in general it is difficult to define appropriate state-
action spaces for all interacting agents – the course
of dimensionality problem. For example, in multi-
agent system with N agents RL algorithm should
search in N-dimensional state-space. Most often the
tiling of the state space has to be rather fine to over
all possibly relevant situations and there can also be
a wide variety of actions to choose from. As a
consequence there exists a combinatorial explosion
problem when trying to explore all possible actions
from all possible states. Solutions to this problem
apply scale-spacing methods and/or function
approximation methods to reduce and/or interpolate
the searchable value-space.

Anton Kabysh, Vladimir Golovko, Arunas Lipnickas / Computing, 2012, Vol. 11, Issue 1, 39-44

 41

To solve these problems in this work we use
influence learning framework to define formal
model of agent’s interaction.

3. INFLUENCE LEARNING

Multi-Agent learning (MAL) poses significant
theoretical challenges, particularly in understanding
how agents can learn and adapt in the presence of
other agents that are simultaneously learning and
adapting [10]. In a distributed system, a number of
individually acting agents coexist. If they strive to
accomplish a common goal, i.e. if the multi-agent
system is a cooperative one, then the establishment
of coordinated cooperation between the agents is of
utmost importance [2].

Influence – is active offer from one agent to
another which can be accepted or not. If influence is
accepted, than it affects the agent’s behavior and (or)
translates it into a new state. If influence is not
accepted, than it can be returned to the sender with
negative mark. Moreover if influence is accepted by
receiver than it also can send a feedback showing
how influence was good.

The main idea of influence learning is that good
influences should be rewarded and negative should
be excluded. Agents should cooperate to achieve the
common goal finding in adaptive process best
influences to each other. Only way to work together
determines whether or not achieved the goal and
only final goal determine what influences is valid
from the others. Therefore, the adaptive learning
process should be used to find best influences and
their sequence that are correct for achieving the goal.
In this paper we used reinforcement learning for
these purposes, but this is not strict.

So, the influence learning – is simple and agile
learning framework for cooperating agents in
combination with an adaptive algorithm to find the
best influences. In other words, influence learning is
a learning to coordinate behaviors. The advantage
of this approach is its universality; any multi-agent
systems can be easily described in terms of
influences. The limitation of this approach is that the
agent should have a connection with each other. In
any case, if the connection does not exist, then
influence learning is simply reduced to the standard
techniques of single agent learning.

4. REINFORCEMENT LEARNING
ADAPTATION TO INFLUENCE

LEARNING
Let’s see how the reinforcement learning can be

adapted to influence learning. Typically, in
reinforcement learning, agent estimate error
temporal difference error between two states and

learn. In multi-agent system actions from one agent
may be directed to another agents and change their
states. The actions in this case will be the influences.
If agent state is changed via influence the received
reward in new state is transferred to influencing
agent. It can lean via reinforcement learning and in
these way positive influences is selected among
others.

Let’s see to interconnected agents A and B in
states sa and sb respectively. Agent A in state sa
execute action a over agent B, and put them it into
new state sb. Agent in new state B select action b and
execute it somewhere (on another agent, or on
environment). Actions a and b has their Q-values
Q(sa, a) and Q(sb, b) respectively. This situation is
shown at Fig. 2.

Fig. 2 – Influences between two agents. Reinforcement
Learning view

Executing action and receiving reward agent B
can send this reward as a learning feedback to A.
This feedback include Q-value Q(sb, b) and reward
value r. Receiving this feedback agent A can
calculate Temporal Difference error for selected
influence (action a) and learn. Learning process
done using formulas (5, 6).

),(),(asQbsQr abAB −+= γδ (5)

ABa asQ αδ=∆),((6)

Formula (5) defines an influence error as a

temporal difference error between agent A and B.
Expression),(bsQr bγ+ – is a feedback from agent B.

The most one important change in I-RL is that we
suppose a),(bsQ b

- is a “future” Q-value of agent A.
In the end of learning, agent A can build the

optimal influence selection policy for agent B.
Feedback between agents included into update rule
produces coherence of their behaviors. The
advantage of this rule is simplicity and all single-
agent RL algorithms can be used without serious
changes. Easy to see that update rule is identical to
standard reinforcement learning approach.

To support indirect interactions lets include
eligibility traces into agent update rule. Introduce
one more agent C. This situation is shown at Fig. 3.

Anton Kabysh, Vladimir Golovko, Arunas Lipnickas / Computing, 2012, Vol. 11, Issue 1, 39-44

 42

Fig. 3 – Influences between three agents.
Reinforcemen learning view

As we can see at fig. 3, there are direct
interaction between A-B, and B-C, and indirect
interaction between A and C.

To support indirect interactions lets introduce
influence value)(di , where d is a distance between
agents; This distance shows how structurally far
away produced influence to this agent. For direct
interactions d is equal to 0; for indirect interaction d
> 0, depending on how many intermediate
influences done between indirect agents. For direct
interactions A-B and B-C the influence distance d
equal to 1. For indirect interaction A-C influence
distance is equal to 2, and so on.

The update rule changed in following way:

),(),(asQcsQr accAC −+= γδ (7)
)(),(diasQ ACa αδ=∆ (8)

ddi λ=)((9)

where ACδ - is a influence error between agent A
and C, λ – is a coefficient of influence discount
factor (0<λ <1).

Influence value)(di is depends from discount
factor λ and reduced with increasing influence
distance between agents. If 1=λ , then all
influences will be updated with full power. If 0=λ
only direct interactions will be updated. If

10 << λ then indirect interactions will be updated
with decay.

5. MODEL OF MULTI-JOINED ROBOT
Multi-Joined Robot (MJR) learning task is a

simple decentralized model, where simulate robot
arm with N-degrees of freedom, where N – is a
number agents in MAS. Every segment – is an
intellectual agent learned via Reinforcement
Learning with own Q-function. The goal of
experiment is to learn MJR reach some target point.
The goal can be achieved only if all actions were
approval. Moreover, this model includes distributed
and indirect interactions, which are also worth
considering. This problem requires synchronization
of local agent’s.

Fig. 4 – Multi-Joined Robot with 4 segments R, S1, S2,
T. cba ,, - Agent actions. cba rrr ,, – Feedback reward

corresponds to actions

MJR contains one root segment R, several
intermediate segments S1, S2, …, Sm, and one terminal
segment T connected into chain from R to T (Fig. 6).
Every segment, excluding terminal, can rotate at full
circle (360 o) all next segments. At one time step
each segment, excluding terminal, can rotate all next
segments at 5 o to left or right, or do nothing.

First acts root segment R, then first intermediate
S1, then second S2, and so on, until Sm,. Root segment
can’t move, can’t be moved and don’t change their
position. Terminal segment verify reaching the
target and receive actions from previous segments
that change their own position.

Every segment – is an intellectual agent learned
via reinforcement learning. Goal of multi-agent
system is reaching a target grid. After learning MJR
must reach by oneself any acceptable target cell of
grid world.

Used next learning procedure (one training start):
1. MJR moved to initial position.
2. Every segment selects and executes action in

order to structure of MJR. States of all next
agents are changed.

3. Terminal segment calculate distance to target
point.

4. If target is reached then MJR count grand-
prix reward and learned. Go to 1.

5. Else, terminal segment produce feedback
reward for previous agent to learn it.
Feedbacks are propagated into MJR, so
agents learn via RTD until root segment will
be reached.

6. If simulation time is ended (1000 simulation
steps) go to 1. If average RTD-Error (7) lover
than limit value, then learning is over.

7. Next time step. Go to 2

6. EXPERIMENTAL RESULTS
RL parameters include: α (learning rate) =

0.05~0.1; γ (discount factor) = 0.7; λ (eligibility
discount factor) = 0.7~0.99, d (influence discount
factor) = 0.5~0.7.

Anton Kabysh, Vladimir Golovko, Arunas Lipnickas / Computing, 2012, Vol. 11, Issue 1, 39-44

 43

In experiments we used MJR with 5 active
segments. It is good compromise between model
complexity and decentralization of agent actions.

The normal convergence process using Q-
Learning update rule illustrated at fig 5.

Fig. 5 – Influences between three agents.

Reinforcemen learning view

As been shown, there are direct dependencies
between agent’s actions and errors. Every next
segment can be placed at more states (has biggest
state-action space), than others, and its error value
become higher and convergence is longer.

Compare convergence speed with the overall
multi-agent learning technique, Joint-Action
Learners (JAL) which tries to train all agents at
once. In I-RL approach in a single time step the
system of learning expression
{),...,,(),,(111 SSSRrR asQasQ ∆∆),(444 SSR asQ∆ } is
evaluated. In contrast, Joint-Action learning
framework try to build the optimal policy overall
multi-agent system approximating one joint Q-
function }),...,{*},,...,,{*(* 441 SRSSR aaassssQ ==∆
composing state and action from all agents.

The advantage of I-RL is that it tries to
approximate the number of small policies, one per
agent instead of one complex. The fig. 6 shows the
convergence result of I-RL in comparison with JAL.

Fig. 6 – Average I-RL error for one agent per episode

Quality of convergence depends from number of
segments. If MJR has more than 6 segments then
probability of convergence is much lower. The main

problem in this case is decentralization of agent
actions. For example, if one agent in the beginning
of MJR learns unsuccessfully (broken agent), then
behavior of all next segments can becomes unstable,
if they are can’t compensate wrong action from
broken agent. Every next agent should be sure that
executed on it action is correct, in other words every
selected action should guarantee convergence of
learning and reaching the target. The described I-RL
learning rule should be updated with these
properties.

Behavior policy variously changed in way of use
different algorithms. RL algorithms with influence
tract (SARSA(λ), Watkins-Q(λ)) shown more
smooth behavior and better synchronization than
algorithms without it (Q-Learning).

Another unobvious result was seen in robot
behavior. For algorithms with eligibility traces robot
prefer rotation about a fixed root point with segment
reconfiguration on new round to reach the target.
Nevertheless, for Q-Learning (without eligibility
traces) robot prefer reach the target in a straight way.

7. CONCLUSION

It is easy to see that I-RL converges much faster
than JAL. This is an illustration of how the course of
dimensionality affects the convergence of the
algorithm. I-RL takes recommendations how to
make decomposition of state-action space to much
smaller subspaces, where only best influences are
rewarded.

This approach helps to solve almost all the
difficulties facing the multi-agent learning
supportive without losing its simplicity. Also an
advantage of this technique is that it can be applied
to almost any problem of multi-agent reinforcement
learning. The disadvantage of this work is that no
comparison was made with more sophisticated
multi-agent reinforcement learning algorithms, such
us Correlated-Q.

I-RL has two known limitations. One is
decentralization problem for long indirect
influences, and second one is problem of agent
influences insurance. The agent should be sure, that
received influences as much optimal, as possible. It
is a guarantee of I-RL algorithm convergence.

8. Acknowledgments

This work was supported by a Belorussian-
Lithuanian grant F11LIT-003 from Belarusian
Republican Foundation for Fundamental Research
and Educational Grant GB11/121 from Ministry of
Education of Republic of Belarus.

Anton Kabysh, Vladimir Golovko, Arunas Lipnickas / Computing, 2012, Vol. 11, Issue 1, 39-44

 44

9. REFERENCES
[1] Vidal H.M., Fundamentals of Multiagent

Systems with Net Logo Examples, E-book:
www.multiagent.com, (2008).

[2] Panait L. and Luke S., Cooperative multi-agent
learning: the state of the art, Autonomous
Agents and Multi-Agent Systems, (11) 3 (2005),
pp. 387-434.

[3] Alonso E., D’Inverno M., Kudenko D.,
Luck M., Noble J., Learning in Multi-Agent
Systems. Science Report, Discussion. UK’s
Special Interest Group on Multi-Agent
Systems, (2001).

[4] Gabel T., Multi-Agent Reinforcement Learning
Approaches for Distributed Job-Shop
Scheduling Problems, PhD Thesis, University
of Osnabrueck, 2009.

[5] Bab A., Brafman R.I., Multi-agent reinfor-
cement learning in common interest and fixed
sum stochastic games: an experimental study,
Journal of Machine Learning Research, (9)
(2008), pp. 2635-2675.

[6] Richard S. Sutton, Andrew G. Barto,
Reinforcement Learning: An Introduction, MIT
Press., (1998).

[7] Worgotter F., Porr B., Temporal sequence
learning, prediction and control – A review of
different models and their relation to biological
mechanisms, Neural Computation, (17) (2005),
pp. 245-319.

[8] Tan Ming, Multiagent reinforcement learning.
Independent vs cooperative agents,
Autonomous Agents and Multiagent Systems,
(10) 3 (2005), pp. 273-328.

[9] Shoham Y., Powers R., Grenager T., If multi-
agent learning is the answer, what is the
question, Journal of Artificial Intelligence,
(2006).

[10] Stone P., Multiagent learning is not the answer.
It is a question, Artificial Intelligence, (171)
(2007), pp. 402-405.

[11] Kabysh A., Golovko V., Mikhniayeu A.,
Lipnickas A., Behaviour patterns of adaptive
multi-joined robot learned by multi-agent
influence reinforcement learning, Proceedings
of Pattern Recognition and Image Processing
(PRIP–2011), 2011, 19–21 May, BSU, Minsk,
pp. 392-297.

Anton Kabysh Starting Ph.D.
“Learning algorithms of Intelligent
Multi-Agent Systems”. in Brest
State Technical University at
2009. Member of teaching staff,
Department of Intelligent
Information Technologies, Brest
State Technical University.
Member of: Laboratory of
Artificial Neural Networks;

Laboratory of Robotics “BrSTU Robotics”
www.robobics.bstu.by.

Areas of research interests: Multi-Agent Systems,
Multi-Agent Learning, Reinforcement Learning,
Intellectual Robotics.

Prof. Vladimir Golovko, recei-
ved M.E. degree in Computer
Engineering in 1984 from the
Moscow Bauman State Technical
University. In 1990 he received
PhD degree from the Belarus
State University and in 2003 he
received doctor science degree
in Computer Science from the

United Institute of Informatics problems national
Academy of Sciences (Belarus). At present he work
as head of Intelligence Information Technologies
Department and Laboratory of Artificial Neural
Networks of the Brest State Technical University.

His research interests include Artificial
Intelligence, neural networks, autonomous learning
robot, signal processing, chaotic processes,
intrusion and epilepsy detection.

Dr. Arunas Lipnickas, gradua-
ted in 1996 the faculty of
Electrical Engineering and
Control Systems, department of
Applied Electronics, Kaunas
University of Technology. In
1998 graduated with honours
gaining the degree of Master of

Science in Electrical Engineering at Kaunas
University of Technology. In 2002 he obtained PhD
degree in Informatics Engineering. At present is a
Senior Assoc. Researcher, Mechatronics Centre for
Studies and Research, Head of Laboratory of
Robotics, Kaunas University of Technology.

Areas of research interests: artificial intelligence,
neural networks, signal processing, decision support
systems, fault diagnosis, robotics, mechatronics.

