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Abstract: This paper describes a multi-agent influence learning approach and reinforcement learning adaptation to it. 
This learning technique is used for distributed, adaptive and self-organizing control in multi-agent system. This 
technique is quite simple and uses agent’s influences to estimate learning error between them. The best influences are 
rewarded via reinforcement learning which is a well-proven learning technique. It is shown that this learning rule 
supports positive-reward interactions between agents and does not require any additional information than standard 
reinforcement learning algorithm. This technique produces optimal behavior of multi-agent system with fast 
convergence patterns. 
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1. INTRODUCTION 
Multi-Agent approach – it is an entire paradigm 

in the development of complex systems consisting of 
interacting autonomous agents, which are operating 
with local knowledge and limited capacity, however, 
can be expected, in general, the behavior of the 
system. No agent lives in a vacuum, but typically 
must interact with other agents to achieve its goals. 
Distributed artificial intelligence is the subfield of 
artificial intelligence that focuses on complex 
systems that are inhabited by multiple agents. The 
main goal of research in this area is to provide 
principles for the construction and application of 
multi-agent systems as well as means for 
coordinating the behavior of multiple independent 
agents [1]. 

For example, many application domains are 
envisioned in which teams of software agents or 
robots learn to cooperate amongst each other and 
with human beings to achieve global objectives. 
Interacting agents may also be essential in many 
non-cooperative domains such as economics and 
finance. Teams of agents have the potential for 
accomplishing tasks that are beyond the capabilities 
of a single agent. An excellent and demanding 
example of multi-agent cooperation is in robot 
soccer. At the same time, Multi-Agent learning 
(MAL) poses significant theoretical challenges, 

particularly in understanding how agents can learn 
and adapt in the presence of other agents that are 
simultaneously learning and adapting [2,3]. 

In general multi-agent systems each agent 
possesses its own, arbitrary reward function which 
may be entirely unrelated to the rewards other agents 
receive. For this realm of problems a number of 
corresponding multi-agent reinforcement learning 
algorithms have been suggested [4, 5, 7, 8]. The 
Nash-Q learning algorithm shown multi-agent 
system as general-sum games where agents tend to 
find Nash equilibrium in common environment. This 
algorithm assumed an environment where each 
agent has full knowledge over the actions taken by 
other agents. Aiming at the reduction of necessary 
preconditions to be met for this algorithm to be 
applicable, Littman proposed the Friend-or-Foe Q 
learning algorithm, which, however, requires every 
other agent to be classified as cooperative or 
competitive a priori, and Greenwald and Hall 
developed Correlated-Q-learning which generalizes 
Nash-Q and FoF-Q.  

Multi-agent systems with cooperative agents 
which collectively aim at achieving a common goal 
is to be found very frequently in practical 
applications and, thus, of special importance. Some 
practical usages include [4]: 

• Mobile telephony (e.g. for channel allocation) 
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• Network technology (e.g. for data packet 
routing) 

• Computing power management (e.g. for load 
balancing across servers) 

• Autonomous robots (e.g. for robotic soccer) 
and distributed robotics. 

• Job-shop scheduling [4]. 
This numeration of mostly real-life applications 

misses another important area the field of production 
planning and factory optimization, where machines 
may act cooperatively with the goal of achieving 
maximal joint productivity.  

The universal multi-joined robot learning 
problem via multi-agent learning described in this 
paper. The section 2 describes reinforcement 
learning approach and section 3 influence learning 
framework to multi-agent learning. Section 4 
describes and eplains particular methodology of 
adaptation reinforcement learning to multi-agent 
influence learning. Next sections, 5 and 6 describes 
model of universal multi-joined and learning 
experiments. Conclusion contains perspectives, 
prospects and limitation of presented learning 
framework. 

 
2. REINFORCEMENT LEARNING 

Reinforcement learning is an approach to 
artificial intelligence that emphasizes learning by the 
individual from its interaction with its environment 
that produces optimal behavior [4]. It is often used 
as one of the control techniques, especially for 
learning autonomous agents in unknown 
environment. It emerged at the intersection of 
dynamic programming, machine learning, biology, 
studies the reflexes and reactions of living 
organisms: reflex theory, animal cognition [5]. RL is 
highly popular for learning autonomous agents, for 
example autonomous robotics, negotiating agents 
and so on. The math foundation of RL is Markov 
Decision Process (MDP), so it widely used for 
learning in game theory, e.g. TD-Gammon [6].  

The core of all most Reinforcement Learning 
methods is a Temporal Difference (TD) learning [4]. 
Temporal Difference technique measures the 
inconsistency between difference of quality for two 
actions done in some state and received reward, 
shows expectation of agent.  

Agent execute action a in particular state s, goes 
to next state s’ and receives reward r as a feedback 
of recent action. During learning agent try to select 
the best action in some state (best action usually 
more rewarded in future). Visually, iteration of RL-
agent on MDP is shown at Fig. 1. 

 
Fig. 1 – One iteration of Reinforcement learning 

where α – learning rate, γ - discount factor. 
Learning goal is to approximate Q-function, e.g. 

finding true Q-values of Q-function for each action 
in every state. Formulas 1,2 shows SARSA learning 
rule. Estimated value δ  is Temporal Difference 
error. 
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The natural extension of standard RL algorithm is 

usage eligibility traces to remember previously 
visited states. Eligibility trace is a temporary record 
of the occurrence of an event, such as the visiting of 
a state or the taking of an action [4]. At every time 
step, when a TD error occurs, only the eligible states 
or actions are updated.  
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Formula (2) called for every previously visited 

state s if`, where )(se  – is a eligibility value, λ  – is 
a eligibility discount factor, decay in time past 
eligibilities. 

Reinforcement Learning works well in case of 
one agent and where external environment can be 
represented compactly via Q-function. In a multi-
agent environment with multiple cooperative agents 
in general it is difficult to define appropriate state-
action spaces for all interacting agents – the course 
of dimensionality problem. For example, in multi-
agent system with N agents RL algorithm should 
search in N-dimensional state-space. Most often the 
tiling of the state space has to be rather fine to over 
all possibly relevant situations and there can also be 
a wide variety of actions to choose from. As a 
consequence there exists a combinatorial explosion 
problem when trying to explore all possible actions 
from all possible states. Solutions to this problem 
apply scale-spacing methods and/or function 
approximation methods to reduce and/or interpolate 
the searchable value-space.  
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To solve these problems in this work we use 
influence learning framework to define formal 
model of agent’s interaction. 

 
3. INFLUENCE LEARNING 

Multi-Agent learning (MAL) poses significant 
theoretical challenges, particularly in understanding 
how agents can learn and adapt in the presence of 
other agents that are simultaneously learning and 
adapting [10]. In a distributed system, a number of 
individually acting agents coexist. If they strive to 
accomplish a common goal, i.e. if the multi-agent 
system is a cooperative one, then the establishment 
of coordinated cooperation between the agents is of 
utmost importance [2]. 

Influence – is active offer from one agent to 
another which can be accepted or not. If influence is 
accepted, than it affects the agent’s behavior and (or) 
translates it into a new state. If influence is not 
accepted, than it can be returned to the sender with 
negative mark. Moreover if influence is accepted by 
receiver than it also can send a feedback showing 
how influence was good.  

The main idea of influence learning is that good 
influences should be rewarded and negative should 
be excluded. Agents should cooperate to achieve the 
common goal finding in adaptive process best 
influences to each other. Only way to work together 
determines whether or not achieved the goal and 
only final goal determine what influences is valid 
from the others. Therefore, the adaptive learning 
process should be used to find best influences and 
their sequence that are correct for achieving the goal. 
In this paper we used reinforcement learning for 
these purposes, but this is not strict.  

So, the influence learning – is simple and agile 
learning framework for cooperating agents in 
combination with an adaptive algorithm to find the 
best influences. In other words, influence learning is 
a learning to coordinate behaviors. The advantage 
of this approach is its universality; any multi-agent 
systems can be easily described in terms of 
influences. The limitation of this approach is that the 
agent should have a connection with each other. In 
any case, if the connection does not exist, then 
influence learning is simply reduced to the standard 
techniques of single agent learning. 
 

4. REINFORCEMENT LEARNING 
ADAPTATION TO INFLUENCE 

LEARNING 
Let’s see how the reinforcement learning can be 

adapted to influence learning. Typically, in 
reinforcement learning, agent estimate error 
temporal difference error between two states and 

learn. In multi-agent system actions from one agent 
may be directed to another agents and change their 
states. The actions in this case will be the influences. 
If agent state is changed via influence the received 
reward in new state is transferred to influencing 
agent. It can lean via reinforcement learning and in 
these way positive influences is selected among 
others.  

Let’s see to interconnected agents A and B in 
states sa and sb respectively. Agent A in state sa 
execute action a over agent B, and put them it into 
new state sb. Agent in new state B select action b and 
execute it somewhere (on another agent, or on 
environment). Actions a and b has their Q-values 
Q(sa, a) and Q(sb, b) respectively. This situation is 
shown at Fig. 2.  

 

 

Fig. 2 – Influences between two agents. Reinforcement 
Learning view 

Executing action and receiving reward agent B 
can send this reward as a learning feedback to A. 
This feedback include Q-value Q(sb, b) and reward 
value r. Receiving this feedback agent A can 
calculate Temporal Difference error for selected 
influence (action a) and learn. Learning process 
done using formulas (5, 6).  

 
),(),( asQbsQr abAB −+= γδ  (5) 

ABa asQ αδ=∆ ),(   (6) 

 
Formula (5) defines an influence error as a 

temporal difference error between agent A and B. 
Expression ),( bsQr bγ+  – is a feedback from agent B. 

The most one important change in I-RL is that we 
suppose a ),( bsQ b

- is a “future” Q-value of agent A. 
In the end of learning, agent A can build the 

optimal influence selection policy for agent B. 
Feedback between agents included into update rule 
produces coherence of their behaviors. The 
advantage of this rule is simplicity and all single-
agent RL algorithms can be used without serious 
changes. Easy to see that update rule is identical to 
standard reinforcement learning approach.  

To support indirect interactions lets include 
eligibility traces into agent update rule. Introduce 
one more agent C. This situation is shown at Fig. 3. 
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Fig. 3 – Influences between three agents. 
Reinforcemen learning view 

As we can see at fig. 3, there are direct 
interaction between A-B, and B-C, and indirect 
interaction between A and C.  

To support indirect interactions lets introduce 
influence value )(di , where d is a distance between 
agents; This distance shows how structurally far 
away produced influence to this agent. For direct 
interactions d is equal to 0; for indirect interaction d 
> 0, depending on how many intermediate 
influences done between indirect agents. For direct 
interactions A-B and B-C the influence distance d 
equal to 1. For indirect interaction A-C influence 
distance is equal to 2, and so on.  

The update rule changed in following way: 
 

),(),( asQcsQr accAC −+= γδ  (7) 
)(),( diasQ ACa αδ=∆   (8) 

ddi λ=)( (9) 
 
where ACδ - is a influence error between agent A 
and C, λ  – is a coefficient of influence discount 
factor (0<λ <1).  

Influence value )(di is depends from discount 
factor λ and reduced with increasing influence 
distance between agents. If 1=λ , then all 
influences will be updated with full power. If 0=λ  
only direct interactions will be updated. If 

10 << λ then indirect interactions will be updated 
with decay. 

 
5. MODEL OF MULTI-JOINED ROBOT 
Multi-Joined Robot (MJR) learning task is a 

simple decentralized model, where simulate robot 
arm with N-degrees of freedom, where N – is a 
number agents in MAS. Every segment – is an 
intellectual agent learned via Reinforcement 
Learning with own Q-function. The goal of 
experiment is to learn MJR reach some target point. 
The goal can be achieved only if all actions were 
approval. Moreover, this model includes distributed 
and indirect interactions, which are also worth 
considering. This problem requires synchronization 
of local agent’s. 

 

 
Fig. 4 – Multi-Joined Robot with 4 segments R, S1, S2, 
T. cba ,, - Agent actions. cba rrr ,,  – Feedback reward 

corresponds to actions 

MJR contains one root segment R, several 
intermediate segments S1, S2, …, Sm, and one terminal 
segment T connected into chain from R to T (Fig. 6). 
Every segment, excluding terminal, can rotate at full 
circle (360 o ) all next segments. At one time step 
each segment, excluding terminal, can rotate all next 
segments at 5 o to left or right, or do nothing.  

First acts root segment R, then first intermediate 
S1, then second S2, and so on, until Sm,. Root segment 
can’t move, can’t be moved and don’t change their 
position. Terminal segment verify reaching the 
target and receive actions from previous segments 
that change their own position. 

Every segment – is an intellectual agent learned 
via reinforcement learning. Goal of multi-agent 
system is reaching a target grid. After learning MJR 
must reach by oneself any acceptable target cell of 
grid world. 

Used next learning procedure (one training start): 
1. MJR moved to initial position.  
2. Every segment selects and executes action in 

order to structure of MJR. States of all next 
agents are changed. 

3. Terminal segment calculate distance to target 
point. 

4. If target is reached then MJR count grand-
prix reward and learned. Go to 1.  

5. Else, terminal segment produce feedback 
reward for previous agent to learn it. 
Feedbacks are propagated into MJR, so 
agents learn via RTD until root segment will 
be reached.  

6. If simulation time is ended (1000 simulation 
steps) go to 1. If average RTD-Error (7) lover 
than limit value, then learning is over.  

7. Next time step. Go to 2 
 

6. EXPERIMENTAL RESULTS 
RL parameters include: α  (learning rate) = 

0.05~0.1; γ (discount factor) = 0.7; λ (eligibility 
discount factor) = 0.7~0.99, d (influence discount 
factor) = 0.5~0.7. 
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In experiments we used MJR with 5 active 
segments. It is good compromise between model 
complexity and decentralization of agent actions.  

The normal convergence process using Q-
Learning update rule illustrated at fig 5.  

 

 
Fig. 5 – Influences between three agents. 

Reinforcemen learning view 

As been shown, there are direct dependencies 
between agent’s actions and errors. Every next 
segment can be placed at more states (has biggest 
state-action space), than others, and its error value 
become higher and convergence is longer.  

Compare convergence speed with the overall 
multi-agent learning technique, Joint-Action 
Learners (JAL) which tries to train all agents at 
once. In I-RL approach in a single time step the 
system of learning expression 
{ ),...,,(),,( 111 SSSRrR asQasQ ∆∆ ),( 444 SSR asQ∆ } is 
evaluated. In contrast, Joint-Action learning 
framework try to build the optimal policy overall 
multi-agent system approximating one joint Q-
function }),...,{*},,...,,{*(* 441 SRSSR aaassssQ ==∆  
composing state and action from all agents. 

The advantage of I-RL is that it tries to 
approximate the number of small policies, one per 
agent instead of one complex. The fig. 6 shows the 
convergence result of I-RL in comparison with JAL. 

 

 
Fig. 6 – Average I-RL error for one agent per episode 

Quality of convergence depends from number of 
segments. If MJR has more than 6 segments then 
probability of convergence is much lower. The main 

problem in this case is decentralization of agent 
actions. For example, if one agent in the beginning 
of MJR learns unsuccessfully (broken agent), then 
behavior of all next segments can becomes unstable, 
if they are can’t compensate wrong action from 
broken agent. Every next agent should be sure that 
executed on it action is correct, in other words every 
selected action should guarantee convergence of 
learning and reaching the target. The described I-RL 
learning rule should be updated with these 
properties. 

Behavior policy variously changed in way of use 
different algorithms. RL algorithms with influence 
tract (SARSA(λ), Watkins-Q(λ)) shown more 
smooth behavior and better synchronization than 
algorithms without it (Q-Learning).  

Another unobvious result was seen in robot 
behavior. For algorithms with eligibility traces robot 
prefer rotation about a fixed root point with segment 
reconfiguration on new round to reach the target. 
Nevertheless, for Q-Learning (without eligibility 
traces) robot prefer reach the target in a straight way. 

 
7. CONCLUSION 

It is easy to see that I-RL converges much faster 
than JAL. This is an illustration of how the course of 
dimensionality affects the convergence of the 
algorithm. I-RL takes recommendations how to 
make decomposition of state-action space to much 
smaller subspaces, where only best influences are 
rewarded.  

This approach helps to solve almost all the 
difficulties facing the multi-agent learning 
supportive without losing its simplicity. Also an 
advantage of this technique is that it can be applied 
to almost any problem of multi-agent reinforcement 
learning. The disadvantage of this work is that no 
comparison was made with more sophisticated 
multi-agent reinforcement learning algorithms, such 
us Correlated-Q. 

I-RL has two known limitations. One is 
decentralization problem for long indirect 
influences, and second one is problem of agent 
influences insurance. The agent should be sure, that 
received influences as much optimal, as possible. It 
is a guarantee of I-RL algorithm convergence.  
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