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Abstract: A great number of different clustering algorithms exists in computer science. These algorithms solve the task 
of dividing data set into clusters. Data points which were not included into one of these clusters are called ‘outliers’. 
But such data points can be used for the discovery of unusual behavior of the analyzed systems. In this article we 
present a novel fuzzy based optimization approach for division these outliers into two classes: interesting (usable for 
solving the problem) outliers and noise.  
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1. INTRODUCTION 
In most of the computer science papers notions of 

noise and outliers are used interchangeably. But 
when we talk about some kind of data that is very 
rare among all the data acquired in some research or 
observation we must take into consideration that 
real-life observations are based on physical 
detectors. Thus we may have a few incorrect data 
points among all the data acquired. Modern 
algorithms do not make any difference between 
these erroneous points (or noise) and valuable data 
[1]. These algorithms are either used to find all the 
outliers and throw them out or used to find all the 
outliers and process them. 

In the following paper the problem of 
distinguishing valuable and rare data points from 
noise points is considered. In order to solve the task 
posed in the next section a set of different techniques 
briefly described in section 3 was used. Sections 4 
and 5 describe an approach and an algorithm to 
solve the problem posed. Section 6 shows the results 
of algorithm’s work on one small example. In 
section 7 some information on comparison is given. 
Conclusions about possible further developments in 
this field are made in section 8. 

 
2. PROBLEM DESCRIPTION 

Clusterization is a process of dividing data into 
groups named ‘clusters’. One must distinguish 
clusterization from classification as classification 
requires knowledge about classes in which data must 
be divided (e.g. taxonomy classes, political parties). 
Each data set can be divided into two parts. The first 

one is the data that can be clusterized. The second 
one consists of the data points which cannot be put 
into any of clusters by the means of methods used. 
Currently existing algorithms were primarily 
developed to divide data set into clusters or to detect 
outliers. In this paper we address the problem of 
handling such outliers and dividing them into two 
classes. The following terms are needed for our 
approach description. 

Term 1. Interesting point is an outlier which 
differs from the rest of the data in clusters and can 
be useful for the person whose primary goal is to 
detect the facts that do not fall upon restrictions of 
the laws which describe data clusters. 

Interesting points form a class of interesting 
points, i.e. one of those two classes briefly 
mentioned before. 

Term 2. Noise point is an outlier which differs 
very little from the rest of the data in clusters and is 
of no use to the person analyzing outliers.  

Noise just represents some fluctuations and 
errors. No useful information can be obtained from 
noise in the analysis conducted. Noise points form 
noise class, the second of the two classes mentioned 
in the beginning of this paper. 

The difference between interesting points and 
noise can be easily understood by a human (e.g. in 
the case of two dimensions), but not a computer. To 
divide outliers into the classes briefly described 
above we propose usage of basic instruments of 
fuzzy logic, clustering algorithms, and optimization 
methods. It is evident, that such a division cannot be 
performed without previous clusterization of data 
because outliers division into the classes of 
interesting points and noise points requires 
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knowledge about the data distribution and some of 
the data parameters. 

The problem of dividing outliers into the classes 
of interesting and noise points arises in different 
fields of study. This problem’s solution can be very 
useful for many applications, such as: geology 
(distinguishing minerals from ore), fraud detection 
(distinguishing fraudulent usage of credit cards from 
a mere change in a customer behavior), search for 
unusual patterns in researches (distinguishing 
exceptions from the noise provided by sensors and 
detectors), search for critical errors in equipment 
functionality (distinguishing critical issues from 
minor problems), distinguishing valuable 
information from background noise (SETI program, 
cosmology, telescope images), etc. 

It can be seen, that the problem stated in the 
beginning of the paper has high level of topicality 
for different issues. Of course, this problem requires 
efficient and logical way of solving. A possible 
approach to solving this problem is shown in the 
paper. Following section covers some basic 
assumptions needed for understanding of the 
approach developed. 

 
3. BASICS OF THE APPROACH 

In order to make the approach proposed work 
all the data must be clusterized and divided into 
clusters and outliers. DBSCAN is one of the 
algorithms for solving this subtask. Let us 
briefly describe DBSCAN. 

DBSCAN (Density-Based Spatial Clustering 
of Applications with Noise) is a density-based 
clustering algorithm. This algorithm grows 
regions with high density into clusters and 
discovers clusters of arbitrary shape in spatial 
database with noise. DBSCAN defines a cluster 
as a maximal set of density-connected points. 

In order to provide understandable 
description of the algorithm some definitions 
must be presented. 

The neighborhood within a radius ε of a 
given object is called the ε-neighborhood of the 
object. 

If the ε-neighborhood of an object contains at 
least a minimum number, MinPts, of objects, 
then the object is called a core object. 

Given a set of objects, D, we say that an 
object p is directly density-reachable from 
object q if p is within the ε-neighborhood of q, 
and q is a core object. 

An object p is density-reachable from object 
q with respect to ε and MinPts in a set of 

objects, D, if there is a chain of objects npp ,...1 , 
where qp =1 and ppn = such that 1+ip  is 
directly density-reachable from ip  with respect 
to ε and MinPts, for ni ≤≤1 , Dpi ∈ . 

An object p is density-connected to object q 
with respect to ε and MinPts in a set of objects, 
D, if there is an object Do∈  such that both p 
and q are density-reachable from o with respect 
to ε and MinPts. 

Density reachability is the transitive closure 
of direct density reachability, and this 
relationship is asymmetric. Only core objects 
are mutually density reachable. Density 
connectivity is a symmetric relation. 

A density-based cluster is a set of density-
connected objects that is maximal with respect 
to density-reachability. Every object not 
contained in any cluster is considered to be 
noise. 

The concept that underlies DBSCAN is 
rather simple. This algorithm searches for 
clusters by checking the ε- neighborhood of 
each point in the database. If the ε-
neighborhood of a point p contains more than 
MinPts, a new cluster with p as a core object is 
created. DBSCAN then iteratively collects 
directly density-reachable objects from these 
core objects, which may involve the merge of a 
few density-reachable clusters. The process 
terminates when no new point can be added to 
any cluster. 

Figure 1 illustrates DBSCAN’s work. 
 

 
Fig. 1 – Density reachability and density connectivity 

in density-based clustering 

In order to find values of the membership 
function for each of the outlier points we need 
to use one of the optimization approaches. Here 
a brief description of the interior-point method 
is provided. 

Actually, Interior point methods (or barrier 
methods) are a certain class of algorithms to 
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solve linear and nonlinear convex optimization 
problems. 

The basic elements of the method consist of a 
self-concordant barrier function used to encode 
the convex set. Contrary to the simplex method, 
it reaches an optimal solution by traversing the 
interior of the feasible region. 

In constrained optimization, a field of 
mathematics, a barrier function is a continuous 
function whose value on a point increases to 
infinity as the point approaches the boundary of 
the feasible region. It is used as a penalizing 
term for violations of constraints. The two most 
common types of barrier functions are inverse 
barrier functions and logarithmic barrier 
functions. 

The class of primal-dual path-following 
interior point methods is considered the most 
successful. The primal-dual method’s idea is 
easy to demonstrate for constrained nonlinear 
optimization. For simplicity consider all-
inequality version of a nonlinear optimization 
problem: 

 
Minimize f(x) subject to 0)( ≥xc  

mn RxcRx ∈∈ )(,  
(1) 

The logarithmic barrier function associated with 
(1) is 
 

))(ln()(),( xcxfxB µµ −=  (2) 
Here µ is a small positive scalar, sometimes 
called the “barrier parameter”. As µ converges 
to zero the minimum of ),( µxB  should 
converge to a solution of (1). 

The barrier function gradient 
 

)(/ xcAgg T
b µ−=  (3) 

Where g is the gradient of the original function 
f(x) and the matrix A is the constraint c(x) 
Jacobian. 

In addition to the original (“primal”) variable 
x we introduce a Lagrange multiplier inspired 
dual variable λ 

 
µλ =)(xc (4) 

(4) is sometimes called the “perturbed 
complementarity” condition, for its resemblance 
to “complementary slackness” in KKT 
conditions. 

We try to find those ),( µµ λx  which turn 
gradient of barrier function to zero. Applying 
(4) to (3): 

 
0=− λTAg  (5) 

Applying Newton’s method to (4) and (5) we 
get an equation for ),( λx  update ),( λpp x : 
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W is the Hessian matrix of f(x) and Λ is a 
diagonal matrix of λ. 

Because of (1), (4) the condition 0≥λ  
should be enforced at each step. This can be 
done by choosing appropriate α: 

 
),(),( λαλαλ ppxx x ++→  (7) 

So, it seems that interior point method is 
good-enough for our approach. 

 
4. OUTLIERS DIVIDING ALGORITHM 
The main part of our approach is the 

algorithm that divides all the outliers into two 
classes described in section 1 of this paper. We 
need to make a few assumptions about data set 
in order to simplify our task. 

Some basic assumptions about the data for 
the algorithm developed: 

1. Data has numerical type, i.e. it can 
be presented as a point in a linear space; 

2. Data has been divided into two sets 
by the means of the data clustering technique 
(e.g. DBSCAN, OPTICS, DENCLUE, etc [2]). 
Results of the division are as follows: 

• C data clusters; 
• M outliers. 

The first assumption has been included for 
the simplicity of experiments with the algorithm 
and can be removed. The second assumption is 
necessary because developed algorithm needs 
information about clusters of data in order to 
clearly specify for which cluster current point is 
a noise or an interesting point. Simple but good 
fuzzy based algorithm for purpose of outlier 
detection can also be found in [3]. 
Unfortunately, this algorithm can only be used 
to detect outliers but not to divide them. 

As it is seen, outliers can be both interesting 
points and noise simultaneously, so we need to 
use some basic methods of fuzzy sets theory in 
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order to conclude in which class current outlier 
must be included. This is a task for the 
classification algorithm described further in this 
section. We have decided to use fuzzy sets and 
optimization methods to classify outliers into 
two described classes. We need a few more 
definitions to present our algorithm. 

Let },...,,{ )(21 inumi XXXCl =  be the ith 

( Ci ,1= as was defined in the assumptions 
above) cluster found by a clusterization 
algorithm (e.g. DBSCAN). num(i) is a number 
of data points in the ith cluster. Let us also 
assume that we are working with D-dimensional 
data, i.e. each point can be presented as a point 
in a linear space with D coordinates: 

( ))()(
2

)(
1 ,..., j

D
jj

j xxxX =  where Nj ,1= Xj is a jth 
point, and N is a total number of data points 
(including outliers). 

Definition 1. Let us assume that point Xk is an 
outlier, and Cli is a cluster closest to this point 
(i.e. Euclidean distance from this point to the 
center of this cluster is the smallest one 
compared to the distances from this point to 
other clusters). Then the point Xj in the cluster 
Cli is called a projection of the point Xk if the 
distance between )(i

jX and Xk is lesser than any 
distance between Xk and every other point of 
this cluster, i.e.  
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The dist function can be defined as Euclidean 

distance. 
Let us also assume that each outlier (Xk) 

belongs to noise class of one of the clusters (Cli) 
with some degree ]1;0[)( ∈ki Xµ  and to the class 
of interesting data points with degree 

)()( 1 kiki XX µθ −= . This is the only element 
(also called ‘membership function’ [4]) of fuzzy 
sets theory that we use in the paper for dividing 
outliers into two classes. A criterion based on a 
value of membership function for dividing 
outliers into two classes will be described 
further in the paper. 

Definition 2. Minimal distance between the 
outlier Xk and the cluster Cli is a distance 
between outlier and its projection on this 
cluster, i.e.: ( ) ( )( )k

i
kik XpXdistClXd )(

min ,, = . 

Let us assume that we have found values of 
membership functions for every outlier Xk and 
its closest cluster Cli, i.e. we know values of 

)( ki Xµ  and )( ki Xθ for the point Xk, and we 
also know the minimal distance ( )ik ClXd ,min  
between outlier point Xk and its closest cluster 
Cli. Let us also define a decision boundary for 
the ith cluster as: 
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where q is a number of outliers closest to the ith 
cluster.  

Then we can use following criterion to 
decide which class current outlier belongs to: 
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This criterion is the most suitable for the 

current task. 
Now let us describe a general idea behind the 

algorithm and then provide a full description of 
our approach. For simplicity we will use this 
notation: )()(

ki
i

k Xµµ = . 
The idea that was partially taken from [5] is 

as follows. We can substitute classification task 
with a task of maximizing C linear functions of 
qi variables (qi is a number of outliers closest to 
the ith cluster, such that ∑ =

=
C

i i Mq
1

), i.e. we 
must find global maximum for each of the 
following functions: 
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We characterize structure of the ith cluster 
with a parameter Ri that can be computed as a 
radius of the ith cluster, i.e. it equals half of a 
maximum distance between two points in this 
cluster. In order to take into consideration 
structure of the cluster, we must also define 
constraints on production of value of 
membership function and minimal distance 
between outlier and the closest cluster: 
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The system is written for ith cluster 
where Ci ,1= : 
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We have C such systems. It is evident, that 

we must use optimization methods that take 
constraints into consideration (e.g. method of 
interior point or Lagrange multipliers method). 
For numerical solution we decided to use 
method of interior point [6] (penalty functions 
method) described earlier in this paper. 

Interesting situation occurs when outlier is a 
valuable point for all the data clusters. It is then 
can be considered as a so-called global valuable 
point. It can be also shown that these global 
valuable points require special treatment 
because they can belong to the class of error as 
well. Let us briefly discuss this problem. 

If we have many global valuable points (i.e. 
their frequency of appearance in dataset is large) 
then it is highly possible that detector (device 
that provides us with the data) is broken. If the 
frequency is not so large then it occurs that there 
are some super-exceptional data points that are 
to be considered first. The formal criterion for 
deciding whether the device providing data is 
broken or not is as follows: 

.
,1,5.0
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g
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where C is a total number of data clusters, 
)(int_ jerestcl Xnum  is an amount of classes for 

which the data point in parenthesis is valuable 
point, gw  is an amount of global valuable 
points, M  is a total amount of outliers, w  is a 
total amount of valuable data points. 

We can also consider the following value: 

C
Xnum

XP jerestcl
j

)(
)( int_= ,  (13) 

Due to discrete nature of valuable 
(interesting) points we can only consider 
discrete values like (13) for wj ,1= . But we 
can also construct some approximation based on 
the values )( jXP  and jX . This can be done by 

means of interpolation techniques. Construction 
of such hyperplane can help us to predict 
amount of classes for which the point given is a 
valuable point. This can be used to consider the 
problem discussed earlier (see eq. (12)). 
 

5. OUTLIERS PARTITIONING 
APPROACH 

Now we can fully and consequently describe 
our simple approach: 

1. Divide data set into C clusters by one of the 
clustering techniques (e.g. DBSCAN that can handle 
clusters of arbitrary form). 

2. For every outlier find closest cluster. 
3. For every cluster and every outlier bound to 

this cluster (closest cluster, see step 2) find 
projection of outlier on this cluster. 

4. For every outlier and its projection find 
outlier’s minimal distance to the closest cluster 
(steps 3 and 4 can be unified based on the definition 
of projection given in this paper). 

5. For every ith cluster define starting point for 
optimization method (e.g. 

0,...,0,0 )()(
2

)(
1 === i

q
ii

i
µµµ ) that satisfies initial 

conditions of system (11). 
6. For every cluster find solution for system 

(4). 
7. For every cluster compute decision 

boundary using formula (8). 
8. For every cluster and outlier closest to 

cluster decide (based on the criterion (9)), whether 
outlier under consideration belongs to the noise class 
or to the interesting points. 

This approach is rather simple and modulate. 
For example, we can use another data clustering 
technique or another decision criterion. 

 
6. ILLUSTRATIVE EXAMPLES 

In this section we apply the approach 
described above to sets of data points defined 
further in this paragraph. These data sets are 
distributions of points on a two-dimensional 
plane. First random distribution can be easily 
divided into two groups by clustering algorithm 
(in our realization we have used DBSCAN [7]). 
The second one can be divided in three classes. 
For test purposes application MATLAB® was 
used. MATLAB code for the first distribution 
described above is as follows: 
X=[randn(30,2)*.4;randn(40,2)*.5

+ 
ones(40,1)*[4 4]]; 
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We have changed coordinates of nine points in 
this set in order to convert them to outliers. 
Coordinates of these points are provided in table 
1. Third column presents the class of each 
outlier defined by approach from section 5. 
 

Table 1. Outliers and classes. 

Point № X coord. Y coord. Class 
1 11.00 10.00 Interesting 
2 2.00 4.00 Noise 
3 0.43 4.00 Noise 
4 -1.00 -1.33 Noise 
5 15.00 17.00 Interesting 
6 33.00 4.00 Interesting 
7 -3.00 -5.00 Noise 
8 -3.55 4.98 Noise 
9 9.00 4.30 Noise 

 
Figure 2 illustrates our example. Symbol ‘*’ 

denotes point from 1st cluster, ‘+’ – from 2nd. 
Symbol ‘°’ is reserved for noise, and symbol 
‘X’ denotes interesting points (number 1, 5, and 
6 in table 1). 

 
Fig. 2 – Results of applying approach to the test data 

set #1 

The second example shows us that form of 
clusters has no effect on results of application of 
approach developed. Repetitive experiments on 
the data show that slight change in placement of 
outliers can result in changing classes for all 
outliers (e.g. from noise to interesting). This 
problem occurs only for small data sets. For 
larger data sets with many more outliers this 
problem with robustness influences results very 
little. In table 2 we present data for second 
example. 

Table 2. Data for second example. 

X Y Class X Y Class 
0.500 0.500 1 2.375 1.750 2 
0.625 0.625 1 2.500 1.750 2 
0.625 0.500 1 2.375 1.625 2 
0.500 0.625 1 2.500 1.625 2 
0.750 0.750 1 2.500 1.500 2 
0.500 0.750 1 0.250 3.500 3 
0.750 0.500 1 0.375 3.500 3 
0.750 0.625 1 0.250 3.625 3 
0.625 0.750 1 0.375 3.625 3 
0.875 0.875 1 0.500 3.625 3 
0.750 0.875 1 0.625 3.625 3 
0.875 0.750 1 0.750 3.625 3 
0.875 0.625 1 0.875 3.625 3 
0.625 0.875 1 1.000 3.625 3 
0.500 0.875 1 0.500 3.750 3 
0.875 0.500 1 0.625 3.750 3 
1.000 1.000 1 0.750 3.750 3 
0.875 1.000 1 0.875 3.750 3 
0.750 1.000 1 1.000 3.750 3 
0.625 1.000 1 0.875 3.875 3 
0.500 1.000 1 1.000 3.875 3 
1.000 0.500 1 1.125 3.875 3 
1.000 0.625 1 1.250 3.875 3 
1.000 0.750 1 1.125 4.000 3 
1.000 0.875 1 1.250 4.000 3 
2.000 2.000 2 1.500 4.500 Noise 
2.125 2.000 2 0.000 2.000 Int. p. 
2.250 2.000 2 1.750 0.750 Noise 
2.375 2.000 2 1.875 5.000 Noise 
2.500 2.000 2 1.750 3.000 Noise 
2.125 1.875 2 2.750 0.500 Noise 
2.250 1.875 2 3.000 0.000 Noise 
2.375 1.875 2 1.000 8.000 Int. p. 
2.500 1.875 2 0.000 5.000 Int. p. 
2.250 1.750 2 1.500 1.500 Noise 
 
Figure 3 illustrates this example.  

 
Fig. 3 – Results of applying approach to the test data 

set #2 
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For these simple examples we can imagine 
membership function as a mesa in three-
dimensional space, where third coordinate is a 
value of the membership function. Points of the 
clusters are on the plain part of the mesa. Noise 
points lie higher on mesa’s slopes than the 
boundary value. Interesting points are under the 
boundary value on the slopes. These 
illustrations give us some basic insights on this 
approach. 

 
7. COMPARISON 

Unfortunately, it seems that the problem 
addressed in this paper almost hasn’t been 
considered in other papers. So, no other similar 
approaches have been found because almost all 
of the papers in the field of AI consider only the 
problem of clusterization at large. 

The approach provided has time 
complexity )( 2nO . This approach is rather 
unique because we do not use clusterization 
technique to extract outliers from data and then 
two-class classifiers on the outliers extracted. 
Such method will fail because it does not 
consider clusters at all. But the approach 
provided in this paper is based on the cluster 
characteristics. And therefore we can easily 
divide outliers into noise and valuable points. 

 
8. CONCLUSION 

The problem addressed in the paper is 
interesting for many reasons and can be met in 
such fields as: handling research data, fraud 
detection, search for minerals, etc. The approach 
proposed is mathematically convenient, simple 
and modulate. Developed approach can be used 
in its initial form or it can be modified for the 
sake of optimization and simplicity. There are a 
great number of algorithms that can be used for 
solving such a problem, but described approach 
can lead to simple mathematical expressions. 
The approach presented is also very intuitive, 
simple and flexible in comparison to other 
approaches (neural networks classification, 
SVM-based classification, decision trees 
classifiers, some fuzzy based algorithms, etc). 
So, this approach also briefly introduced in [8] 
is important and can be used for variety of tasks. 
Further researches in this field may be 
conducted in order to obtain sustainable and 
useful solutions for the problem stated in the 
beginning of the paper. 
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