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Abstract: This paper presents application of ZISC© IBM® neurocomputer based approach for estimating task 
complexity within T-DTS framework. T-DTS (Tree-like Divide To Simplify) is Hybrid Multiple Neural Networks 
software platform which constructs a neural tree structures of a complex problem following the paradigm “divide” and 
“conquer”. Complexity estimator modules are the core of this framework. One of them is ZISC© IBM® complexity 
estimator that has been recently applied to T-DTS. The global aim of this research work is to increase T-DTS 
performance in terms of generalization and learning abilities. In this paper we demonstrate matchless ZISC© IBM® 
based neurocomputer complexity estimator effect on database decomposition and searching for optimal T-DTS 
adjustment of complexity threshold.  
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1. INTRODUCTION 
In a very large number of cases dealing with real 

world dilemmas and applications (system 
identification, industrial processes, manufacturing 
regulation, optimization, decision, pattern 
recognition, systems, plants safety, etc), information 
is available as data stored in files (databases etc.). 
So, the efficient data processing becomes a chief 
condition to solve problems related to above-
mentioned areas. In the most of those cases, 
processing efficiency is closely related to several 
issues among which are: 
– Data nature: including data complexity, data 

quality and data representative features. 
– Processing technique related issues: 

including model choice, processing 
complexity and intrinsic processing delay. 
Data complexity, frequently related to 

nonlinearity or subjectivity of data, may affect the 
processing efficiency. While, date quality (noisy or 
degraded data), may influence processing success 
and expected results’ quality. Finally, representative 
features, relating concerning scarcity of pertinent 
data, could affect processing achievement or resulted 
precision. 

On the other hand, choice or availability of 
appropriated model describing the behaviour related 
to data to process is of major importance. Processing 

technique or algorithms’ complexity (designing, 
precision, etc.) shapes the processing effectiveness. 
Intrinsic processing delay or processing time, related 
to the implementation issues (software or hardware 
related issues) or processing models 
parameterization could affect not only processing 
quality (results’ quality) but also the technique’s 
viability to offer an adequate solution for a complex 
problem. Of course, unfortunately real world and 
industrial problems are never as comfortable as 
could be “toy problems”. They are often complex 
problems with a large number of parameters (which 
have to be considered). That’s why conventional 
solutions (based on mathematical and analytical 
models) reach serious limitation for solving this 
category of dilemmas. 

One of the key points on which one can act is the 
complexity reduction. Complexity reduction could 
act not only at problem’s solution level but also at 
processing procedure’s level. An issue could be 
model complexity reduction by splitting a complex 
problem into a set of simpler problems: this leads to 
“multi-modelling" where a set of simple models is 
used to sculpt a complex behaviour [1]. Another 
promising approach to reduce complexity takes 
advantage from hybridization [2]. Several Artificial 
Neural Networks (ANN) based approaches were 
suggested allowing complexity and computing time 
reduction ([2] to [7]).  
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This paper deals whit a hybrid multi neural 
network structure and its neuro-processor based 
complexity estimator, which shapes this structure. 
We called this structure and the related concept T-
DTS (Treelike Divide To Simplify). T-DTS is ANN 
based data driven treelike multiple model generator 
with self-organizing and complexity reduction 
abilities. The main idea of T-DTS is based on 
“Divide et impera”1  paradigm (Julius Caesar), 
transformed here as “Divide To Simplify” (DTS) 
[8]. The purpose is based on the use of a set of small 
and specialized mapping neural networks, that we 
called Neural Network based Models (NNM), 
supervised by a Supervisor Agent (SA). SA is 
resulted (obtained) from a tree-like decomposition 
process splitting the initially complex problem’s 
(represented by its representative database) feature 
space into a set of simper sub-spaces (represented by 
their representative sub-databases). So, at the leafs’ 
level of the obtained tree one can find NNM and at 
its nodes level, one can find Decomposition Agent 
(DA) controlled by a Complexity Estimator Agent 
(CEA). Combination of complexity estimation, 
splitting and learning capabilities confers to the 
issued intelligent system self-organizing ability.    

The paper is organized as follow: Section 2 will 
present the T-DTS models generator. Section 3 will 
be dedicated to the proposed neuro-computer based 
CEA. Section 4 will describe implementation and 
validation issues. Finally, the last section will 
conclude the present paper. 

 
2. TREELIKE DIVIDE TO SIMPLIFY 
MULTIPLE MODELS GENERATOR 

As it has been mentioned in introductory section, 
T-DTS is a data driven ANN based multiple model 
structure designed to handle processing of complex 
data by reducing the processing’s complexity. T-
DTS and associated algorithm construct a tree-like 
evolutionary neural architecture automatically.  

The T-DTS includes two main operation modes. 
The first is the learning phase, where T-DTS 
decomposes the learning database, constructs the 
Supervisor Agent and provides NNM. The second 
phase is the operation phase, where the obtained 
hybrid multi neural network system processes 
unknown (e.g. unlearned) data. There could be also a 
pre-processing phase at the beginning, which 
arranges (prepare) data to be processed. Pre-
processing phase could include several steps 
(conventional or neural stages). Figures 1 gives the 
general bloc diagram of T-DTS operational steps.  

The learning phase is an important phase during 
which T-DTS performs several key operations: 

                                                 
1 “divide and rule”. 

splitting the learning database into several sub-
databases, constructing (dynamically) a SA and 
building a set of specialized NNM, trained by 
generated sub-databases, which model different 
obtained feature sub-spaces.   
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Fig. 1 – General bloc diagram of T-DTS, presenting 
main operation levels 

 
Figure 2 represents the division and NNM 

construction process bloc diagrams.  As this figure 
shows, after the learning phase, a set of neural 
network based models (trained from sub-databases) 
are available and cover (model) the behaviour 
region-by-region in the problem’s feature space. In 
this way, a complex problem is decomposed 
recursively into a set of simpler sub-problems: the 
initial feature space is divided into M sub-spaces. 
For each subspace k, T-DTS constructs a neural 
based model describing the relations between inputs 
and outputs. If a neural based model cannot be built 
for an obtained sub-database, then, a new 
decomposition will be performed on the concerned 
sub-space, dividing it into several other sub-spaces. 
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Fig. 2 – General bloc diagram of T-DTS learning 
phase and its tree-like splitting process 

 
In fact, the learning phase could be considered as 

a self-organizing model generation process, which 
leads to a set of ANN based models (or processing 
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units) managed by Supervisor Agent (SA).  
The second operation mode corresponds to the 

use of the constructed hybrid neural based multi-
model system for processing unlearned (work) data. 
The Operation Phase is depicted by figure 3. The 
SA, constructed during the learning phase, receives 
data (unlearned input vector) and classifies that data 
(pattern) as corresponding to one of the processing 
subset. Then, the most appropriated NNM is 
authorized (activated) to process that data. 
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Fig. 3 – General bloc diagram of T-DTS generalization 
phase 

Let Ψ(t) be the system’s input ( ( ) Ψℜ∈Ψ nt ), a 
nΨ-Dimensional vector, and let ( ) Yn

k tY ℜ∈  be the 
k-th ( { }Mk ,,1L∈ ) model’s output vector of 
dimension ny. Let ( ) Ynn

kF ℜ→ℜ Ψ:. be the k-th 

NNM’s transfer function. Let ( )( ) MBptS ∈Ψ ξ,, , 
where { }1,0=B , be the Supervisor Agent’s output, 
which may also depend on some additional 
parameters p and/or on some conditions ξ. pk 
represents some particular values of parameter p and 
ξk denotes some particular condition ξ, respectively, 
obtained from learning phase process for the k-th 
sub-dataset. Taking into account the above-defined 
notation, the SA’s output could be formalized as 
relation (1). 

 
( )( ) ( )T

Mk sssptS LL1,, =Ψ ξ              (1) 
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The AS’s particular response, corresponding to 

some particular values of the parameter p and the 
condition ξ (e.g. S( Ψ, pk, Ck)) will activate the k-th 
NNM, and so the processing of an unlearned input 
data conform to parameter pk and condition Ck will 
be given by the output of the selected NNM (relation 
(2)). 

 
( ) ( ))(),( tFtYtY kk Ψ==Ψ              (2) 

 
It is important to emphasize that the SA uses a 

Complexity Estimator Agent (e.g. a complexity 
indicator) in order to handle the splitting process 
optimizing the generated hybrid multi neural 
network processing system. So, complexity 
estimation is among the most important operations 
performed by T-DTS. The next section introduces 
the used neuro-processor and describes the CEA 
based on that neuro-processor. 

 
3. ZISC-036 NEURO-PROCESSOR 
BASED COMPLEXITY ESTIMATOR 

AGENT 
The goal is to estimate the processing task’s 

difficulty and modify the splitting process in order to 
handle the whole task more efficiently (e.g. 
optimizing the generated hybrid multi neural 
network processing system). Complexity estimation 
is not an easy subject. Concerning classification 
task’s complexity estimation, most of the used 
techniques are based on Bayes error calculation 
(direct, indirectly and non-parametric Bayes error 
estimation) (from [9] to [15]). In this paper we 
propose a different slant using a neuro-processor 
implementing a kernel-functions-like ANN model 
with evolutionary topology ([16], [17]). 

3.1 ZISC-036 NEURO-PROCESSOR 
The IBM ZISC-036 ([18], [19]) is a parallel 

neuro- processor implementing RCE/RBF. 
Composed of 36 neurons, each chip is capable of 
performing up to 250 000 recognitions per second. 
Figure 4 gives the ZISC-036 bloc diagram and an 
example of input feature space mapping in a 2-D 
space. This chip is fully cascadable which allows the 
use of as many neurons as the user needs (a PCI 
board is available with 684 neurons). A neuron is an 
element, which is able to:  
• memorize a prototype (64 components coded on 

8 bits), the associated category (14 bits), an 
influence field (14 bits) and a context (7 bits), 

• compute the distance, based on the selected norm 
(norm L1 or LSUP) between its memorized 
prototype and the input vector (the distance is 
coded on fourteen bits), 

• compare the computed distance with the 
influence fields, 

• communicate with other neurons (in order to find 
the minimum distance, category, etc.), 

• adjust its influence field (during learning phase). 
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Fig. 4 – IBM ZISC-036 chip’s general bloc diagram 

A 16 bit data bus handles input vectors 
as well as other data transfers (such as category 
and distance), and chip controls. Within the 
chip, controlled access to various data in the 
network is performed through a 6-bit address 
bus. Controlling the ZISC036 is, by definition, 
accessing its registers, and requires an address 
definition via the address bus, and data transfer 
via the data bus. The inter-ZISC communication 
bus which is used to connect several devices 
within the same network, and the decision bus 
which carries classification information allow 
the use of the ZISC in a ‘stand alone’ mode. All 
neurons communicate via the ‘inter-neuron 
communication bus. This bus is internally 
driven to allow the connection of several ZISC 
modules without impact on performance. An 
efficient protocol allows a true parallel 
operation of all neurons of the network even 
during the learning process. Because ZISC is a 
coprocessor device, it must be controlled by a 
master (state machine or controller).  This can 
be done by a standard I/O bus.  The I/O bus of 
ZISC036 has been designed to allow a wide 
variety of attachments from simple state 
machine interface to standard micro-controllers 
or buses. 

3.2 ZISC-036 NEURO-PROCESSOR 
BASED COMPLEXITY INDICATOR 

In our work we determine a complexity as the 
amount of computational resource that it takes to 
solve a classification problem. Thus the complexity 
here is the limited supply of these resources (amount 
of neurons) once the appropriate program 
(classification methods) is supplied. We have to 
mention also a growing criticism concerning the 

term complexity, because it has been misused 
without a proper definition [16]. Our primary study 
interest is in classification complexity in term of 
computational difficulty of IBM © ZISC-036 ® 
hardware to obtain satisfactory learning and 
generalization rates using RBF algorithm and 
adjusted initial options [20]. 

We expect that a more complex problem will 
involve a more complex ZISC neural network 
structure. The simplest neural network structure 
feature is the number n of neurons created during the 
learning phase. We suppose that a database 
compounded of a collection of m objects associated 
to labels or categories is available. To estimate such 
database complexity we use the ZISC® as a 
classifier. The simplest neural network structure 
feature is the number n of neurons created during the 
learning phase. The following indicator is defined, 
where n is a parameter that reflects complexity: 

 

m
nQ =  , 0,1 ≥≥ nm  (3)

 
We suppose that there exists some 

function n = g(.) that reflects problem 
complexity. The arguments of this function may 
be the signal-to-noise ratio, the dimension of the 
representation space, boundary non-linearity 
and/or database size. We consider only g(.) 
function’s variations according to m axis: g(m). 
We suppose that learning database is free of any 
incorrect or missing information. On the basis 
on g(m), a complexity indicator is defined as 
follow: 

 

m
mg

mQ i
i

)(
)( =  0)(,1, ≥≥ mgm i  (4)

 
Fig. 5 – ZISC-036 neuro-computer based complexity 

indicator versus the learning database’s size (m) 
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We expect that for the same problem, as we 
enhance m, the problem seem to be less complex: 
more information reduces problem ambiguity. On 
the other hand, for problems of different and 
increasing complexity, Qi indicator should have a 
higher value. Figure 5 shows an example of the 
neuro-computer based complexity indicator’s 
variation versus the learning database’s size. 5 
different databases with increasing complexity have 
been considered: Q1 corresponds to the easiest one 
and Q5 to the hardest one. 8 different learning 
database sizes have been considered (e.g. 8 different 
m values). The considered databases include 50, 
100, 250, 500, 1000, 2500, 5000 and 10000 patterns 
respectively (corresponding to the indexes 1 to 8 
respectively. For each set of parameters, tests are 
repeated 10 times in order to get statistics and as 
stated to check the deviations and to get average. 
Totally, 800 tests have been performed.  

As one can remark, the proposed complexity 
estimator’s value decreases with the learning 
database’s size. This means that the considered 
classification task becomes less complex when 
enough representative examples are available. On 
the other hand, the value of the indicators ascends 
from easiest classification task (e.g. Q1) to the 
hardest one (e.g. Q5). The results of figure 5 show 
that the proposed complexity estimator is sensitive 
to the classification task’s complexity and behaves 
conformably to the aforementioned expectations. 

 
4. IMPLEMENTATION AND VALIDATION 

ISSUES 
A mixed implementation, involving both 

hardware and software modules, of T-DTS system 
has been realized. The neuron-computer based 
complexity estimation loop has been implemented 
using a ZISC-036 based PC board including 16 
ZISC-036 chips (developing about 600 to 700 
neurons). While, other required functions have been 
realized as software modules within “MathLab” 
environment. The left scheme of the figure 6 gives 
the general implementation’s bloc diagram of the 
realized T-DTS system. 

As one can note, T-DTS software architecture 
includes three main databases: 

1. Decomposition methods, 
2. ANN based methods, 
3. Complexity estimators for decomposition 

process. 
These three databases can be completed, 

enhanced or customized independently from the 
main blocs implementing T-DTS functions. In the 
MatLab based version of T-DTS software 
Decomposition Agents may operate using 
Competitive Network (CN), Self Organized Map 

(SOM) and Learning Vector Quantization (LVQ) 
ANNs. From the side of Processing Units, this 
version implements several ANN models: Learning 
Vector Quantization (LVQ), Multilayer Perceptron 
model trained by Levenberg-Marquardt algorithm 
(MLP-LM), General Regression Neural Network 
(GRNN), Radial basis function network (RBF), 
Probabilistic Neural Network (PNN) and Linear 
Network (LN). Finally, beside the ZISC-036 neuro-
processor based complexity estimator several 
options involving other complexity indicators 
(described and studied in [23]) are offered: 
• MaxStd (Multi-class maximum of the sum of the 

standard deviations of the data-vector attributes), 
• Fisher discriminator, 
• Purity algorithm, 
• Normalized mean distance, 
• Divergence measure, 
• Jeffries-Matusita distance, 
• Bhattacharyya bound, 
• Mahalanobis distance, 
• Inter-intra scatter-matrixes’ criteria. 

For example, SOM-LSVMDT approach 
described in [21] can be easily implemented in 
within the T-DTS frame by incorporating LSVMDT 
(Linear Support Vector Machine Decision Tree) 
[22]. SOM (Self-Organizing Map) method is already 
available in DU database. 

In the same way, the output result-panel offers to 
the user several graphic variants. Figure 7 shows the 
parameterization, and results-display control panels 
Among the offered possibility, one of the most 
useful is the option allowing representing a 2D-data 
representation sorting the decomposed sub-databases 
and their representative centers conformably to the 
performed decomposition process. In this 
representation, the final graphic will show the 
obtained tree and the obtained clusters. The right 
picture of figure 6 gives an example of such 
representation. 

In order to evaluate the ZISC complexity 
estimator’s pertinence we have considered the range 
of benchmark problems described in the [23]. 
Among the available benchmark problems is 
“Splice-junction” DNA Sequences classification 
problem from Genbank 64.1 (ftp site: 
ftp://genbank.bio.net). This considered benchmark 
deals with DNA sequences’ boundaries 
classification problem:  exons-introns boundaries 
recognition. Exons corresponds to the retained part 
after DNA sequence splicing and introns is the 
rejected (spliced out) part. There are 3190 numbers 
of instances, including 62 attributes which defines 
DNA sequences. Our ZISC complexity estimator is 
a leader among the group of available indicators. 
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Fig. 6 – General bloc diagram of the T-DTS system’s software architecture (left) and example of learning phase 
and learning Subsets representation by the T-DTS Graphic User Interface (right) 

 

  
Fig. 7 – Screenshot of Matlab-implementation of T-DTS User Graphic Interface showing parameterization 

screenshot (left) and results control panel (right)  
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Fig. 8 – DNA sequences classification rate using ZISC-
036 based complexity indicator and different other 

complexity estimators. Numbers of vectors - 1900. Size 
of learning database 20%.These results have been 

obtained using DA apply a CN. based approach and 
NNM are MLP-like ANNs 

Summarizing, we can sate that ZISC complexity 
estimator appears as being a general complexity 
indicator and thus acts more efficiently than the 
other criteria, because it is less sensitive to the 

vector(s) attributes. For example, in Figure 7. for 
threshold-parameter greater than 0.8, correct T-DTS 
processing is efficiently performed only by ZISC 
complexity estimator.  

 
5. CONCLUSION 

We have presented new complexity estimator 
(complexity indicator) extracted from based on 
kernel-function neural network’s topological 
structure, taking advantage from evolutionary 
learning of such ANN model involving the number 
of connected neurons in the structure. 

We have studied and validated the proposed 
complexity indicator on the basis of an especially 
designed normalizes synthetic 2D-benchmark 
problem and show that its ZISC-036 neuro-computer 
based implementation, embedded in T-DTS 
framework can reach high generalization rate and 
benefit from high computational speed due to 
massively parallel nature of the aforementioned 
neuron-computer. 

A hybrid implementation of T-DTS has then been 
realized integrating the proposed ZISC-036 based 
complexity estimator beside other complexity 
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indicators already embedded in T-DTS. 
Experimental validation, performed on DNA 
Sequence pattern classification problem, show that 
T-DTS with ZISC complexity module takes a 
leading position remaining independent from tuning 
parameters (such as learning rate etc.) inherent to the 
other available indicators. Another appealing 
advantage of the proposed complexity estimator is 
related to it’s independency from data source’s 
nature as well from distribution between classes: so, 
the proposed estimator doesn’t rely on the database 
properties. 

The future perspective of the work relays self-
tuning / self-optimizing skills of T-DTS in order to 
make T-DTS constructing optimal tree structure 
without human supervision. We also work on further 
implementation of additional complexity estimating 
techniques such as Collective Entropy based 
estimator. This accomplishment will expand 
database of complexity estimators which play a key 
role in T-DTS. 
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