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Abstract: This paper discusses a combination of Bayesian belief networks and rough sets for reasoning about 
uncertainty. The motivation for this work is the problem with assessment of properties of software used in real-time 
safety-critical systems.  A number of authors applied Bayesian networks for this purpose, however, their approach 
suffers from problems related to calculating the conditional probability distributions, when there is scarcity of 
experimental data.  The current authors propose enhancing this method by using rough sets, which do not require 
knowledge of probability distributions and thus are helpful in making preliminary evaluations, especially in real-time 
decision making.  The combination of Bayesian network and rough sets tools, Netica and Rosetta, respectively, is used 
to demonstrate the applicability of this method in a case study of the Australian Navy exercise. 
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1. INTRODUCTION 
Bayesian Belief Networks (BBN’s) have been 

widely used in solving various computational 
problems with insufficient information and 
uncertainty.  Some of these applications are briefly 
reviewed in [1], and most of them are collected in 
the bibliography [2].  Although, in general, BBN’s 
have been very effective, because they allow 
reasoning and making predictions based on small 
sets of probabilities with backwards inference, they 
are still based on probability theory.  A significant 
disadvantage of BBN’s is that, in realistic cases, 
they require extensive computations of the 
conditional probability values. In most of the 
previous studies, it has been recognized that this is 
one of the method’s major limitations. 

With this in mind, one wants to look at a 
complementary method of evaluating data in the 
input data set, which would not rely strictly on 
probability densities. One of the theories that offer 
such an approach, with values of data attributes and 
events measured by likelihoods rather than 
probabilities, is the rough sets theory [3-4].  Rough 
sets have been used since the early eighties in a wide 
range of industries to reason about uncertainty. The 
most recent discussions of these applications can be 
found in [5] and in the rough sets bibliography [6]. 

In a previous paper [1], we gave an outline of the 
combination of using BBN’s and rough sets in 
decision making under uncertainty, and suggested 
the enhancement of pure Bayesian reasoning by 
additional use of rough sets for preliminary 
evaluation of data. The objective of the current paper 
is to extend the original concept by using specific 
techniques to evaluate the missing values in the 
reasoning process [7].  The paper is structured as 
follows.  In Section 2, the motivation for this project 
is outlined, which is the automatic assessment of 
certain critical software properties.  Section 3 
presents elementary information about rough sets, 
and Section 4 gives an overview of the method 
developed for decision making under uncertainty 
with the use of BBNs and rough sets.  General 
conclusions are derived in Section 5. 

 
2. MOTIVATION: SAFETY-CRITICAL 

SOFTWARE ASSESSMENT 
In recent years, some of the present authors have 

dealt with various aspects of assessing software 
quality in real-time safety-critical applications [8-9].  
The basic idea for the current project comes from 
multiple previous attempts to assess various 
software properties in critical applications.  They are 
briefly outlined below. 

 

computing@computingonline.net 
www.computingonline.net 

ISSN 1727-6209 
International  Journal  of  Computing 



Janusz Zalewski, Sławomir T. Wierzchoń, Henry L. Pfister / Computing, 20008, Vol. 7, Issue 3, 6-14 
 

 7

A. USE OF BBN’S TO ASSESS 
SOFTWARE QUALITY 

In one of the first studies reported [10], Neil and 
Fenton addressed the eternal question: “Can we 
predict the quality of our software before we can use 
it?”, by applying BBN’s to assess the defect density 
as a measure of software quality.  A simplified 
diagram from their study is presented in Figure 1.  
The nodes were built based on the understanding of 
life-cycle processes, from requirements specification 
through testing. 
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Fig. 1 – Simplified BBN assessing software density 

The probabilities of respective states were based 
on the analysis of literature and common-sense 
assumptions about the relations between variables.  
The node variables are shown on histograms of the 
predictions obtained by execution of the network 
after the evidence entered (the evidence is 
represented by nodes with probabilities equal to 1.0). 
As the authors say, the advantage of their model is 
that it “provides a way of simulating different events 
and identifying optimum courses of action based on 
uncertain knowledge. 

B. BBN’S IN THE ASSESSMENT OF 
SOFTWARE SAFETY 

Dahll and Gran [11] applied BBN’s to address 
safety assessment of software for acceptance 
purposes, in a more comprehensive way, using 
multiple information sources, such as complexity, 
testing, user experience, system quality, etc.  Their 
BBN network for system quality, which is only a 
part of the entire model, is shown in Figure 3.  It 
involves two root nodes: UserExperience and 
VendorQuality, and a number of leaf nodes, 
corresponding to observable variables, of which 
QualityMeasures is of particular importance.  This 
node shows evidence about the system quality, 
grouping quality attributes, such as readability, 
structuredness, etc., and can be expanded further. 

Other observable variables include Failures-
InOther Products, those related to the user 
experience (NoOfProducts and TotalUseTime), as 

well as those related to quality assurance policy.  
When evidence becomes available, entering 
respective observation data into these nodes and 
executing the network provides assessment of the 
variable in question, which in this case is 
SystemQuality. 
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Fig. 2 – BBN for the system quality in safety 

assessment 

The authors note, however, that their example is 
intended more as an illustration of the method rather 
than as a real attempt to compute the quality of the 
system.  Their probability assignments to the node 
variables were chosen somewhat ad hoc, and not 
based on any deeper analysis of the problem.  
However, as the authors say in conclusion, the 
results of the study were positive and showed “that 
the method reflects the way of an assessor’s thinking 
during the assessment process.” 

C. DEPENDABILITY AND RELIABILITY 
ASSESSMENT 

Delic et al. [12] used BBNs to formalize 
reasoning about software dependability to facilitate 
the software assessment process.  They constructed a 
network for evaluating dependability of a software-
based safety system.  It used the data associated with 
two primary assumptions:  the excellence in 
development (called a process argument) and 
failure-free statistical testing (called a product 
argument).  The network topology includes taking 
into consideration variables such as: Test Failures, 
Operational Failures, Initial Faults, Faults Found, 
Faults Delivered, and System PFD (Probability of 
Failure per Demand).  The probability distributions 
have been derived from a sample of programs from 
an academic experiment. 

The authors were interested in estimating the 
probabilities of failure during acceptance testing and 
during the operational life of the product 
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(represented by two variables mentioned in previous 
paragraph), given the prior probabilities and 
observed events.  In particular, positive results of an 
acceptance test allowed deriving numerical estimates 
about the PFD and operational performance of the 
product. 

Helminen [13] used BBN’s to attack the problem 
of software reliability estimation.  His primary 
motivation to apply BBN’s was that they allow all 
possible evidence (large number of variables, 
different potential sources, etc.) to be used in the 
analysis of the reliability of a safety-critical system.  
The essential characteristic of such systems is that 
they involve a significant number of variables 
related to reliability, with very limited evidence. 

The reliability of such systems is modeled as a 
probability of failure, that is, the probability that the 
programmable system fails when it is required to 
operate correctly.  To develop an estimate of 
probability of failure, the authors built a series of 
BBN models, using evidence from such sources, as 
the system development process, system design 
features, and pre-testing, before the system is 
deployed.  This is later enhanced by data from 
testing and operational experience. 

The essential part of this work was building BBN 
models for various operational profiles for multiple 
test cycles, involving continuous probability 
distributions.  As a result, using software combining 
Bayesian inference with Gibbs sampling, via 
Markov chain Monte Carlo (MCMC) simulation, it 
was possible to estimate, how many tests had to be 
run for a single system in a particular operational 
environment to achieve certain level of reliability.  
To decrease the huge number of necessary tests, 
multiple operational profiles for the same system 
were used, which required building replicated BBN 
models to include other profiles’ evidence.  In 
essence, by expanding the BBN models further, this 
approach also allows reliability estimation over the 
entire lifespan of the software, but respective 
experiments have not been conducted in this study. 

 
3. ROUGH SETS: AN INTRODUCTION 
Since there are essentially no statistical data for 

making the types of assessments discussed in the 
previous section, applying BBN’s to reason about 
software properties based on limited information 
available from experiments is problematic because 
of the necessity to calculate conditional probability 
distributions.  To deal with this problem, we are 
proposing the use of rough sets [1].  In this section, a 
brief introduction to rough sets theory is given. 

A. BACKGROUND 
Rough Set theory was invented by Zdzisław 

Pawlak to cope with limited perception of the 
surrounding world. The theory is especially helpful 
in dealing with vagueness and uncertainty in 
decision situations. Its main purpose is the 
“automated transformation of data into knowledge” 
[4].  The data are perceived in terms of objects and 
their features, i.e., values of the attributes used to 
characterize these objects. The knowledge deduced 
from these data is expressed in terms of surely and 
possibly certain statements describing notions of 
interests. More formally, such descriptions can be 
divided into so-called lower and upper 
approximations of entire notions. Below, we 
describe a qualitative procedure containing all steps 
needed to form appropriate description of the 
concepts under consideration. 

We start from a relational database, i.e., a table 
with rows corresponding to objects and columns 
corresponding to the attributes. Each entry of the 
table represents attribute value of a corresponding 
object (i.e., its feature). In a rough set formalism, the 
database is considered as an information system, i.e., 
a quadruple IS = (U, A, V, f), where: 
• U = {u1, …, ,un} stands for a (usually discrete) 

set of objects 
• A = {a1, …, ,am} is a set of attributes 
• V = V1 ∪ … ∪ Vm, where Vi is the domain of an 

i-th attribute, and  
• f: U × A → V is a so-called information function 

providing the description of objects, that is,  
f(ui, aj) assigns a value of j-th attribute to i-th 
object. 

Usually the set A is decomposed into two disjoint 
subsets A = C ∪ D and the attributes from C are 
used to characterize objects and form so-called 
condition attributes, while the attributes in D are so-
called decision attributes and they are used in 
decision-making or classification tasks. 

The above mentioned concepts are illustrated in 
Table 1, in which: 

U = {u1, u2, u3, u4, u5, u6, u7, u8},  
A = {a1, a2, a3}, and  
V = V1 ∪ V2 ∪ V3, = {Low, Med, High}  ∪ {Min, 

Under, Over, Max}  ∪ {yes, no}. 
Because of the limited knowledge, we cannot 

fully discern objects, i.e., there are such objects u, v 
in U that f(u, c) = f(v, c) for all the condition 
attributes c. This fact leads to the notion of 
indiscernibility relation E being in fact an 
equivalence relation on U.  For example, for the 
information system in Table 1, objects u2 and u8 are 
indiscernible.  So are objects u5 and u7. 

It appears that in many cases we can identify 
proper subsets C' of C such that the indiscernibility 
relation EC' induced by the attributes in C' is identical 
with the original relation E. Such sets of attributes 
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are called reducts. Existence of reducts proves that 
not all of the attributes are necessary to form the 
equivalence classes. In other words, identifying 
reducts allows more economic description of objects 
as we need smaller number of descriptors (features) 
to characterize these objects. Unfortunately, from a 
computational point of view this is an NP-hard task.  
No such reducts exist for the example shown in 
Table 1. 

Table 1. Example of an information system. 

f: U × A 
→ V 

Condition attributes C Decision 
attr. D 

Obj. U a1 a2 a3 

u1 Low Max yes 

u2 Low Min no 

u3 Med Under no 

u4 Med Under yes 

u5 High Over no 

u6 Low Over yes 

u7 High Over no 

u8 Low Min no 

B. DEFINITION OF A ROUGH SET 
Now we are ready to introduce the key concepts of 

rough set theory. Let B be a subset of the condition 
attributes and let [v]B stand for an equivalence class, 
i.e., a set of objects u in U with identical description 
(narrowed to the set B) as the object v. The subset X 
of U can be characterized using information 
contained in B by means of so-called B-lower and B-
upper approximations defined as 

 
B(X)* = {u ∈ U|[u]B ⊆ X}                        (1a) 
B(X)* = {u ∈ U|[u]B ∩ X ≠ ∅}                 (1b) 

 
The lower approximation of X is the collection of 

objects which can be viewed surely as members of 
the set X, while the upper approximation of X is the 
collection of objects that possibly are members of X. 
Obviously B(X)* ⊆ B(X)*. If B(X)* = B(X)* we say 
that X is B-definable and otherwise it is only 
partially definable. The set BNB = B(X)* – B(X)* is 
called B-boundary region; it specifies the objects 
that cannot be classified with certainty to be neither 
inside X, nor outside X. 

There are many grades of partial definability. We 
say that the set X is [14]: 
• roughly B-definable iff B(X)* ≠ ∅ & B(X)* ≠ U 
• internally B-indefinable iff B(X)* =∅, B(X)* ≠ U 
• externally B-indefinable iff B(X)*≠∅, B(X)*=U 
• totally B-indefinable iff B(X)* = ∅, B(X)* = U. 
Obviously, if B = C, i.e., the full set of condition 

attributes is used, we omit the prefix B- in all above 

definitions. In such a case a set X is characterized by 
the pair (X*, X*) and we say that X is a rough set (or 
B-rough set). 

To get a numerical characterization of the 
“roughness” of a set X we introduce a so-called 
accuracy of approximation [14] 

 
αB(X) = |B(X)*|/|B(X)*|   (2) 

 
where the symbol |Y| stands for the cardinality of the 
set Y. X is said to be crisp (or precise) with respect to 
the set of attributes B iff αB(X) = 1, and otherwise X is 
said to be rough (or vague) with respect to B. 

Another characterization of the set of objects can 
be gained by introducing so-called rough 
membership function µB,X: U → [0,1] defined as 
follows [14] 

 
µB,X(x) = |[x]B ∩ X|\|[x]B|  (3) 

 
With such a definition a relationship between 

rough and fuzzy sets theory is established. Further, 
we can relax the definitions of the lower and upper 
approximation, namely 

 
Bβ(X)* = {u ∈ U|µB,X(x) ≥ β}                        (4a) 
Bβ(X)* = {u ∈ U|µB,X(x) > 1-β}                     (4b) 

 
where 0 ≤ β ≤ 1. If β = 1 we obtain original 
definitions (1a) and (1b). 

С. ROUGH RULES 
Note that in practical applications of interest are 

the sets of objects with identical set of decision 
attributes, that is, we define X as the set of objects 
satisfying the equality f(x1, d) = f(x2, d) for all 
attributes d in D. If, for example, D is a set of 
diseases then X is a set of persons suffering on 
particular disease, and the equivalence classes [x]B 
contain patients with identical symptoms (restricted 
to the set B). Hence, it is natural to find such 
condition attributes which can be used to 
discriminate between different diseases. This leads 
us to the practical aspects of rough set theory: rough 
rules. 

The already mentioned process of 
“transformation of data into knowledge” translates 
now into refining the dependencies between sets of 
attributes. Intuitively, if C and D are two sets of 
attributes, we say that D depends totally on C if all 
values of the attributes from D are uniquely 
determined by values of attributes from C. This is 
functional dependency known from database theory. 

Rough set theory enables relaxing this definition 
by introducing a dependency in a degree k ∈ (0, 1]. 
For details, please see [4] and [15]. There are at least 
two successful computer programs allowing rough 
data analysis: LERS [14] and Rosetta [16]. 
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Finally, if a new object is introduced into the data 
set with the decision value missing, one could 
attempt to determine this value using previously 
generated rules. 

D. HANDLING MISSING VALUES IN A 
ROUGH SET 

Grzymala-Busse [7] describes several algorithms 
of dealing with missing values in information 
systems, based on three types of such values: 
• those which are lost and no longer available 
• totally irrelevant values, and 
• partially relevant values. 
They are marked in Table 2, using the following 

symbols:  a question mark “?” for not available 
values, an asterisk “*” for irrelevant values, and a 
dash “-“ for partially relevant values.  

Table 2. Information system with missing values. 

f: U × A 
→ V 

Condition attributes C Decision 
attr. D 

Obj. U a1 a2 a3 

u1 ? Max yes 

u2 Low Min no 

u3 Med Under no 

u4 - Under yes 

u5 High Over no 

u6 Low Over yes 

u7 High Over no 

u8 Low * no 
 

The trouble with such systems is that their 
information function, that assigns a value of j-th 
attribute to i-th object 

 
  f: U × A → V  

 
is incompletely specified (partial), so the theory 
developed for total (complete) information functions 
does not apply here.  In such case, however, the 
indiscernibility relation is replaced by a 
characteristic relation, and the entire process of 
calculating lower and upper approximations changes 
slightly, which is explained below for the 
information system in Table 2. 

To calculate the approximations, one has to start 
with the meaning of the atomic formulas in a given 
information system. For the information system in 
Table 1, these meanings, called also blocks in [7], 
are as follows: 

 
||a1 = Low|| = { u1, u2, u6, u8 } 
||a1 = Med|| = { u3, u4 } 
||a1= High|| = { u5, u7 }   

||a2 = Min|| = { u2, u8 }  
||a2 = Under|| = { u3, u4 }  
||a2 = Over|| = { u5, u6, u7 }   
||a2 = Max|| = { u1 }  

These sets have to be modified for an information 
system with missing values in Table 2, as follows.  
For the missing value of the attribute a1, which is not 
available for object u1 and marked “?”, object u1 has 
to be removed from all blocks created for this 
attribute, that is, block ||a1 = Low|| will change to: 

 
||a1 = Low|| = { u2, u6,, u8 } 

 
with two other blocks for a1 remaining unchanged, 
because they do not include objects with lost value 
of a1.   

For the missing value of the attribute a2, which is 
irrelevant and marked “*”, its corresponding object, 
u8, has to be included in blocks for all values of this 
attribute, which will lead to the following 
modifications: 

 
||a2 = Min|| = { u2, u8 }  
||a2 = Under|| = { u3, u4, u8 }  
||a2 = Over|| = { u5, u6, u7, u8 }   
||a2 = Max|| = { u1, u8 }  

 
Finally, for the missing value of the attribute a1, 

which is marked “-”, as partially relevant, respective 
object u4 has to be added to the blocks containing 
objects corresponding to the decision attribute’s 
value the same as the value of this decision attribute 
for the partially relevant value.  In case of Table 2, 
the partially relevant value of attribute a1 for object 
u4 corresponds to the decision attribute’s value 
“yes”.   

Thus, this attribute’s value is relevant to this 
particular decision attribute, and this is the meaning 
of the term “partially relevant”.  Two other objects 
exist, which have “yes” as their decision attribute’s 
value:  u1, whose value of attribute a1 is unavailable, 
so we drop it from consideration, and u6, whose 
value of a1 equals Low; therefore u4 has to be added 
to the block, which contains a1 = Low, because it is 
partially relevant to a corresponding decision 
attribute.  

So the final list of blocks looks as follows: 
 

||a1 = Low|| = { u2, u4,, u6,, u8 } 
||a1 = Med|| = { u3, u4 } 
||a1= High|| = { u5, u7 }   
||a2 = Min|| = { u2, u8 }  
||a2 = Under|| = { u3, u4, u8 }  
||a2 = Over|| = { u5, u6, u7, u8 }   
||a2 = Max|| = { u1, u8 }  

 
Because of the limited length of this paper, we 
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can only mention here that for further computations 
the so called characteristic sets have to be 
calculated, for each object, which is done as follows: 

1) The characteristic set K of an object is defined 
as an intersection of blocks for specific values 
of the attributes for this object. 

2) If the value of an attribute is irrelevant “*” or 
unavailable “?”, then the entire universe U is 
taken as a corresponding block for this 
attribute. 

3) If the value of an attribute is partially relevant 
“-“, then for this specific block it is substituted 
by a union of blocks representing particular 
values of the attributes for the corresponding 
decision attribute’s value. 

A more formal presentation of these concepts, 
with respective algorithms, is given in [7].  Below 
we present the computation of characteristic sets for 
the list of blocks corresponding to Table 2: 

 
Ku1 = U ∩ { u1, u8 } = { u1, u8 } 
Ku2 = { u2, u4, u6, u8 } ∩ { u2, u8 } = { u2, u8 } 
Ku3 = { u3, u4 } ∩ { u3, u4, u8 } = { u3, u4 } 
Ku4 = { u2, u4, u6, u8 } ∩ { u3, u4, u8 } = { u4, u8 } 
Ku5 = { u5, u7 } ∩ { u5, u6, u7, u8 } = { u5, u7 } 
Ku6 = {u2, u4, u6, u8} ∩ { u5, u6, u7, u8 } = {u6,u8} 
Ku7 = { u5, u7 } ∩ { u5, u6, u7, u8 } = { u5, u7 } 
Ku8 = { u2, u4, u6, u8 } ∩ U = { u2, u4, u6, u8 } 
 
As explained in [7], computation of lower and 

upper approximations, depends on their definitions.  
The author presents three such definitions and for 
one of them: 

 
B(X)* = { u1, u4, u6, u8 } 
B(X)* = { u1, u2, u4, u6, u8 } 

 
The interpretation of this result is such that the 

missing values cause broadening of the potential 
span for the lower approximation, because they have 
to be inferred from the rest of the set.  The upper 
approximation can change either way, because the 
missing values change the entire structure of a set 

 
4. COMBINING BAYESIAN NETWORKS 
WITH ROUGH SETS: A CASE STUDY 
As mentioned earlier, Bayesian belief networks 

are models that depict variables with probabilistic 
descriptions and their dependencies among each 
other.   In general, the probability distribution 
function that reflects the state of a node is a 
conditional distribution that depends on the 
multidimensional distribution consisting of the 
node’s parents (each state of the node has a 
probability for every combination of states the 

parent nodes may take).  When evidence about the 
states of one of the nodes is found, the rest of the 
network is also updated according to the conditional 
probability tables and dependency relations of the 
nodes.  However, the whole updating process 
becomes a problem, if the new evidence is distorted 
or missing. 

This situation may not be a problem with off-line 
computations, such as assessment of software 
properties, which was outlined in Section 2.  But if 
one wants to use BBN’s for situation assessment in 
real time, when missing or distorted data come into 
play, as in circumstances such as sensor noise or 
sensor failure, especially over extended period of 
time, then the value of Bayesian reasoning becomes 
problematic.  The cure for this, proposed in current 
work, is to use rough sets to infer the missing or 
distorted data. 

A related problem is finding initial probabilities 
for a Bayesian network, which are often derived 
using expert knowledge.  Uncertainty and vagueness 
in collecting data often create difficulties in giving 
meaningful values to the initial probabilities.  In this 
project, we attempt to address both problems using 
rough set theory. 

A. SOFTWARE TOOLS 
To check the feasibility of the proposed idea, we 

decided to automate the entire inference process by 
using the public domain tools and a comprehensive 
case study.  One of several software packages that 
can be used for BNN computations is called Netica 
[17].  In Netica, networks can be easily constructed 
and compiled to use for inference.  In particular, the 
conditional probability tables (CPT’s) may be 
generated from data in case files or the probabilities 
may be manually entered by the user.  In real 
applications, probabilities and data may change in 
real time, however, the CPTs may be updated 
automatically as new data become available.  
Bayesian networks could then be used in situations, 
which change in real time, while the program is 
operating. 

In this project, for a problem defined in terms of 
BBN’s, with new data appearing in real time, Netica 
calculates the probabilities and updates them in the 
CPT’s, reading from a case file, updating the nodes 
of a Bayesian network, and displaying the results.  
The logic of Netica code for reading a Bayesian 
network that updates it in real time is shown below. 

 
while (true){ 
    // Remove CPTables of nodes in net,  
    // so new ones can be learned. 
    for (int n = 0;  n < numNodes;  n++) { 
        Node node = (Node) nodes.get (n); 
        node.deleteTables(); 
    } 
    nd = (Node)nodes.get(node index); 
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    net.reviseCPTsByCaseFile(caseFile, 
                             nodes, 1.0); 
    net.write (new Streamer ("BName.dne")); 
    net.compile(); 
    float tab[] = nd.getBeliefs(); 
    //Print the probabilities for a node. 
    System.out.println(tab[0]+","+tab[1]); 
} 

 
The entire implementation depicted in Figure 3 

works as follows.  One program (the rough set tool 
that acts as a preprocessor) generates data for the 
case file and the Netica is able to read the data from 
this file consistently, even when it is being updated 
during operation.  If the data are written into a case 
file after it is computed by rough set preprocessor, 
then the Bayesian network may be systematically 
updated with new data as they arrive. 

 
Fig. 3 – Implementation outline 

The rough set tool we use, Rosetta [16], is able to 
import and export files in several different formats, 
but none of them are compatible with the case files 
used by Netica.  Therefore, a text converter has been 
written to convert text files (a format that Rosetta 
exports) to case files that Netica software reads. 

B. CASE STUDY 
An application involving naval warfare, 

originating from the Australian Navy research [18], 
is used as a case study to demonstrate the 
implementation.  Briefly speaking, there are two 
military forces called the Blue and Orange forces 
that are hostile towards each other and a country that 
the Orange forces obtain fuel supplies from and the 
Blue forces treat as neutral.  The Blue forces have 
communications and surveillance facilities that the 
Orange forces want to destroy.  Blue has set up a 
restricted area that contains the communication 
facilities and will consider any military activity or 
transportation of supplies to be hostile.   Orange has 
a supply route that passes through the restricted area 
that it wants to defend. 

Blue monitors the restricted area sensors and 
reconnaissance.  Orange vessels that are likely to be 
detected are Guided Missile Frigates (FFG), Free 
Mantle Class Patrol Boats (FCPB), and 
Communication vessels.  Oil tankers from the 
neutral country may also be detected.  The position, 
mobility, and communications activity of the vessel 

are also recorded to try to determine the intent of the 
Orange Forces. 

The Bayesian Network in Figure 4 is used to try 
to determine what the intentions of the Orange 
Forces are and how to respond to it by entering the 
findings from the sensors and reconnaissance into 
the appropriate nodes.  However the probability 
distributions of all variables have just been 
initialized to uniform distributions and values for the 
conditional probability tables are needed. 

 
Fig. 4 – Bayesian network for the case study 

The file whose contents is partially shown in Fig. 
5 contains a table of several cases that are used to 
calculate the initial values for the conditional 
probability tables of the nodes.  While Rosetta adds 
data to this file, based on real-time sensor 
computations, Netica takes input for each node and 
recalculates periodically the entire network, 
reducing uncertainty in case some sensor values are 
corrupted or missing. 
 

 
Fig. 5 – Bayesian network for the case study 
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5. CONCLUSION 

BBN’s proved to be a valuable tool when making 
decisions in systems with uncertain information. 
They loose their power, however, when some pieces 
of the evidence (i.e., input information) are 
corrupted or missing, which becomes especially 
critical in real time. A possible solution to this 
problem consists of two steps. First, a probability 
distribution over possible outcomes of the 
unknown/uncertain quantity is defined, and next this 
new information is communicated to the original 
BBN by additional nodes pointing to the nodes of 
interest. Surely, the network grows in this case, and 
what is more important, the process of assessing 
probabilities may be non-trivial.   

Hopefully, rough sets theory provides a number 
of tools allowing coping with incomplete 
information. That is why we postulate to combine 
the two formalisms to obtain a universal machinery 
supporting the process of reasoning under 
uncertainty, in case of missing values of certain 
attributes of objects.  To implement this idea, the use 
of two easily available tools: Netica (for BBN’s) and 
Rosetta (for rough sets), has been proposed and 
tested to work cooperatively when solving instances 
of two real-life problems.  

The proposed approach can be extended further 
towards mining interesting relationships among the 
entities constituting a problem under consideration 
(see, for example [19]). BBN’s can be viewed as a 
concise summarization of a large data collection. On 
the other hand, rough sets offer additional tools to 
analyze possible dependencies among the data. 
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