
Jakub Chłapiński, Piotr Mazur, Jan Murlewski, Marek Kamiński, Bartosz Sakowicz / Computing, 2008, Vol. 7, Issue 1, 6-12

 6

CLASSIFICATION DATA EXPLORATION METHODS IN MODERN REAL-
TIME DATA WAREHOUSE

Jakub Chłapiński, Piotr Mazur, Jan Murlewski, Marek Kamiński, Bartosz Sakowicz

1) Department of Microelectronics and Computer Science,

Technical University of Lodz, Poland,
al. Politechniki 11, 90-924 Łódź, Poland,

{jchlapi, pmaz, murlewski, kamiński, sakowicz}@dmcs.pl
http://www.dmcs.p.lodz.pl

Abstract: The goal of this article is to introduce problems that may arise during analysis of classification methods used
in data mining applications. In the following sections some of the most common classification techniques are described
along with several proposed extensions which allow these methods to be used in incremental data warehouses. The
primary focus was aimed at the problem of performing incremental learning methods that may be used in near real-
time data warehousing applications.

Keywords: Data Mining, Data warehouse, Classification method, Neural networks, Decision tree.

1. INTRODUCTION
Data Mining is a term commonly used to

describe a group of methods which purpose is to
extract hidden dependencies between the data stored
in data warehouses, data marts and other relational
database systems. The end-user may even not be
aware of these dependencies, although the
knowledge gained from extracting them may prove
to be extremely useful. Data Mining methods may
be divided into several basic groups, each dealing
with specific problems. Among the most used
method types in data warehouses are classification
methods [2].

Classification methods aim to provide certain
model, which can be helpful in deducing a specific
group that one of the database object belongs to,
based on its characteristics (Fig.1). One of the
common uses of classification methods include
determining future actions of customers so that a
company could alter its customer care plan more
precisely.

Classification methods can also be divided into
two groups: methods that require a set of data that is
used for learning and others.

K-NN method is one of the most popular
methods used in classification [1]. Its function is to
find k-nearest (using some predefined metrics)
neighbors of the subject, and assign it to a certain
class that is dominant in all successfully found
subjects.

Fig.1 – Cassification method – (i.e. k-NN).

Another commonly used method which has
advantage of being relatively simple and efficient is
Naive Bayes Classifier.

Methods that require a learning set form a
numerous group which includes: neural networks
[5], simple and oblique decision trees and SVM
(Support Vector Machines) method [1]. All of these
methods are based on a similar principles that
consists of choosing a structure (for example multi
layered perception for neural networks and core
function for the SVM method), and assigning the
best parameters that allow to minimize erroneous
classifications on the given learning set (for
example: using the error back propagation method,
optimization methods, or evaluating GNI indexes
values). The last step is to verify the resulting

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Jakub Chłapiński, Piotr Mazur, Jan Murlewski, Marek Kamiński, Bartosz Sakowicz / Computing, 2008, Vol. 7, Issue 1, 6-12

 7

structure, which can be performed by evaluating
results for a given set of values also known as the
verify set. If the verification process is unsuccessful,
then appropriate changes in the structure should be
made (for example: trimming the decision tree), and
the whole process has to be repeated. The process of
learning may prove to be time-consuming, and may
also lead to under or over learning phenomena.

2. INCREMENTAL LEARNING METHODS

Taking into account the fact that changing any
relationship within a set of data (for example:
accounting for market fluctuations and quick market
changes) may change the classification model
unexpectedly, the knowledge model should not be
generated once, based on a predetermined set of data
because the resulting model may loose its properties
over time and become less precise. On the other
hand performing the full learning process with every
change in input data set can be time consuming and
inefficient. Therefore to reflect the changes more
efficiently a new set of methods needs to be devised.

These algorithms should take into account only
recent changes in data, and reflect them on a model
in an incremental fashion, without re-analyzing the
whole data set. Using incremental learning methods
may lead to developing a dynamic model that adapts
itself every time new data is added into it which
greatly improves quality and accuracy of the results.

Applying of incremental learning methods to data
sets may also lead to a few model inconsistencies.
Taking the client credit standing for example: after
successful classification of a client as an positive
candidate the data set would be updated to reflect the
changes, but if the classification process was
unsuccessful no data would be updated in the data
set. New data about erroneous positive
classifications that are reflected in the data set may
lead to a state where every new classification would
be considered as erroneous, and no changes in the
model would be performed. Therefore, before using
an incremental learning method these negative
effects should be considered, and the usefulness of
the resulting data has to be evaluated. To counteract
these effects usually a separate process of
recognizing negative classifications and finding their
inner relationships is performed, followed by full
regeneration of a model when existing model proves
not to reflect the data in a satisfactory manner.

Some of the common methods used in data
mining may not have their incremental learning
versions. A good example may be the k-nearest
neighbor method where new elements have to be
updated in the data warehouse and used along with
remaining elements while performing classification
process of unknown data.

3. NAIVE BAYES CLASSIFIER
One of the most popular classification methods is

the Naive Bayes algorithm [2]. It is considered to be
relatively simple in implementation and to achieve
better results (assuming all its requirements are met)
than other methods. Naive Bayes Classifier is based
on the Bayes theorem, and uses comparisons of the
statistical indicators described by formula 1.

() () ()
()

() ()
i

ijp
1=jij

p
1=ji

i
i

ii
i

s
s

Р=C|xPР=C|XP

P(X)
n
s)C|P(X

=
XP

CPC|XP=X|CP
 (1)

where: P(Ci|X) – probability of belonging to a class
Ci, given attributes X, P(X|Ci) – probability of
having attributes X given a class Ci, P(X) –
occurrence probability of an element with attributes
X, n – total count of the elements in a set, si – count
of elements belonging to class Ci, P(xj|Ci) –
probability of having attribute x on j-th position
when belonging to class Ci, sij – total count of the
elements that belong to class Ci and have attribute x
on j-th position

The element is classified as belonging to a certain
class based on the highest probability score of
belonging to that class.

The basic problem while dealing with the Bayes
method is to calculate the probability factor P(X|Ci).
To achieve this a set of kp probability factors need
to be calculated where p is the number of attributes
and k is the total count of values that these attributes
can have. One of the most popular approaches is to
assume that all attributes are independent of each
other, then the overall probability can be simplified
and expressed with formula 1. It is important to
mention that this assumption may not be correct in
some cases.

It is also important that in the process of Bayes
classification the absolute values of calculated
probabilities are not as important as their relative
values used for comparing one to another, which
means that all constant factors (n, P(x)) can be
omitted in all formulas as having no real effect on
the outcome. Using this simplification the Bayes
Method can be reduced to calculating the result of
comparison of multiplied sij elements.

The incremental learning Bayes method operates
by recording these values and updating attributes of
any new element that is added to the data set,
followed by an increase of the associated
coefficients. There is no need to analyze old data.

Incremental learning version of the Bayes
method requires at most (kp + m) – sized memory

Jakub Chłapiński, Piotr Mazur, Jan Murlewski, Marek Kamiński, Bartosz Sakowicz / Computing, 2008, Vol. 7, Issue 1, 6-12

 8

region, where m stands for the total count of all
classes. Developing a specified repository to hold
these values can be relatively simple.

When using the Naive Bayes Classifier method
there is a need to store the certain algorithm
information in the underlying database. The
information consists of metadata describing each
discovered class that will have elements assigned to,
and additional data describing every single element
and the segment that it is assigned to having a
certain value of the given attribute. To represent the
Naive Bayes Classifier algorithm in a database a
new database table needs to be created:

Table 1. bayes_classes (SQL table)

Field name Field type Description
id numeric Entry identifier

analysis_id numeric Analysis
identifier

class_id numeric Class identifier

class_count numeric
Element count

in the given
class

To improve data access and retrieval creation of

an B-Tree index on the analysis_id field is
recommended, which will allow for faster access to
all classes belonging to a certain analysis. Also the
class_id field should be defined as a reference to the
class_id field in the bayes_classes table described
later in this document. The use of a foreign key with
the cascade delete option set is preferred.

Results obtained for the Naive Bayes
Classification method are presented in table 2 and
Fig. 2. These results are based on an assumption that
10 percent of the database objects are object which
were incrementally added to the source database,
and the whole data set is to be divided into four
different classes. It was also assumed that all
database objects consist of eight different binary
attributes.

Table 2. Influence of size of the data set on analysis

times

Object count Incremental
method [ms]

Classic method
[ms]

1000 0 15
10000 31 156
100000 141 1 562

1000000 1 468 16 516
5000000 7 703 80 547

10000000 15 781 168 297

Based on the test results it is clearly visible that
the proposed incremental version of the Naive Bayes
Classifier is more efficient than the standard method.

Fig.2 – Influence of the data set size on timing of the

incremental classification method.

Table 3 presents the results of performance
analysis of the Bayes classification for the standard
and incremental method depending on the number of
attributes used in classification process.

Table 3. Influence of number of attributes on time of

the classification process

Attributes Incremental
method [ms]

Classic method
[ms]

2 797 5 109
4 1 110 11 328
8 1 594 13 453

20 3 375 36 015

Total number of objects used in the test was set

to 1 000 000, including 10 % of objects that were
added incrementally. Total number of desired
classes was set to 10.

The test results indicate that, as in previous cases,
incremental method performs much faster than
classic method.

4. DECISION TREES

Among many methods that require using the
learning process decision trees are probably the most
popular [3, 8]. Decision Tree algorithm is based on a
graph, where vertices are described by tests (i.e.:
comparing the values of attributes), arcs are
represented by test results, and leaf nodes by
classification classes. The process of building a
Decision Tree is based on a recurrent division of the
training set to partitions up to the point where every
partition is sufficiently small or contains only

Jakub Chłapiński, Piotr Mazur, Jan Murlewski, Marek Kamiński, Bartosz Sakowicz / Computing, 2008, Vol. 7, Issue 1, 6-12

 9

elements belonging to one class. The division
process is driven by the value of one specified
attribute. The “quality” of the resulting decision tree
depends on the proper choice of attributes and
division criteria. There are many indicators that
evaluate these attributes: the correlation index X
(CHAID algorithm), GNI indexes (CART
algorithm), information gain (ID3 and C4.5
algorithms [4]). Decision Trees may also be divided
into two groups: simple and oblique (Fig. 3).

Fig.3 – Simple and oblique decision trees.

When dealing with oblique decision trees (OC1)
to divide a set a linear combination of many more
attributes is required. The resulting combinations
form a climbing method that uses probabilistic as
well as heuristic algorithms. The main advantages of
oblique decision trees are their smaller size, while
their bigger disadvantages include complex and hard
implementation of division methods.

One of the characteristics of all classification
methods that require learning is the fact, that they
always use a part of the data set to perform the
learning process. Some subset of data is needed to
verify the result of the learning stage. In some cases
also new incoming data is used to verify learning
and, assuming the base model is correct, should give
accurate results. In other cases when the
classification process produces incorrect results the
source data set may be moved to a special repository
which will be used in the next instance of the
learning process.

When this solution fails it is also possible to
apply incremental learning, assuming some
prerequisites are met. When performing incremental
learning one of two methods may be used:

Cut – which require that for every branch of a
tree additional attribute is stored. The attribute
represents confidence. If the confidence attribute
values for a specific branch of a tree are significantly
low, the branch should be deleted and replaced by a
leaf node. There is also a possibility of regenerating
a branch of a tree, and replacing invalid branch with
new one.

Tree Growth – in a set of incorrectly classified
elements some association rules may be found [7,9]
(the common attribute combination resulting in
incorrect classification). If there is no support for an
association rule then the rule may be safely
incorporated into a tree as a new branch located near
the root node. If the new branch is strengthened in
the following process of classification its members
may be moved to the learning set, so that standard
classification rules can learn new trends.

In the case of methods based on decision tree
algorithms it is crucial to store the tree structure in
the database, along with additional data that
identifies the set of elements used in learning and
verification processes that it was based on.

Table 4. dec_tree_sets (SQL)

Field name Field type Description
id Numeric Field identifier

analysis_id Numeric Analysis

set_type Enumeration

Data set
identifier:
learning or

verification set

Table 5. dec_tree_elements (SQL)

Field name Field type Description
set_id Numeric Entry identifier

element_id Numeric Element
identifier

The description of a decision tree structure may

be represented by a metadata database table
describing each tree with the corresponding analysis.

Table 6. dec_tree_defs (SQL)

Field name Field type Description
id Numeric Tree identifier

analysis_id Numeric Analysis
identifier

The tree structure itself can be represented as a

set of nodes with references to their corresponding
parent nodes.

Jakub Chłapiński, Piotr Mazur, Jan Murlewski, Marek Kamiński, Bartosz Sakowicz / Computing, 2008, Vol. 7, Issue 1, 6-12

 10

Table 7. dec_tree_nodes (SQL)

Field name Field type Description
id Numeric Entry identifier

tree_id Numeric Decision tree
identifier

parent_id Numeric Parent node
identifier

trust_level Floating point Trust level of aa
node

Fields: id, tree_id and parent_id should be

indexed to provide faster data access when building
the decision tree structure in memory. To optimize
the data access further materialized views [10] may
be used based on tables dec_tree_defs and
dec_tree_nodes because the references between
these tables are not subjects to frequent changes. To
improve the algorithm performance it is also advised
to preload the whole structure to memory, and
process the data in grouped data sets periodically
updating the tree structure whenever one of its
attributes changes.

5. NEURAL NETWORKS

The process of incremental learning of a neural
network applies only when certain conditions are
met. New data added to the system cannot oppose
the data that was already used in the learning stage.
In case of such scenario the incremental learning
process may have a negative influence on the
classification giving false results (Fig.4).

Fig.4 – Neural network requireing another learning.

Another characteristic of Neural Network is the
fact that during the initial learning there is a need to
minimize the size of the network. That requirement
may negatively influence the network when new,
unseen data is added to the data set, because there
may exist no efficient way of representing the data
set using the same network structure. The case when
new data influences only the weight coefficients is

depicted in (Fig. 5), while the situation when a
network structure change is required is shown in
(Fig 6).

In the case depicted in (Fig.5) only a small
adjustment to the weight coefficient is necessary.
The back propagation algorithm (along with its
modifications) can be run sequentially for the
chosen elements of a learning data set. In this case
the algorithm is run only to check new incoming
data. After adjusting the weight coefficients the
algorithm is run once more to examine older
elements of the data set to correct errors that could
be introduced in the first run. Considering the fact
that the network is already in semi-learned state
another run of the algorithm is performed more
efficiently than in the case that requires the whole
learning process to begin from the start.

Fig. 5 – Neural network requiring weights correction.

Fig.6 - Neural network requiring structure expanding.

It's also worth mentioning that dampening of the
weight coefficient change may be performed while
the error propagation process is run for newly
inserted elements. That should prevent rapid
coefficient changes, which may result in loss of
network efficiency when dealing with old elements.

In case of the situation depicted in (Fig.6)
incremental learning using the sequential method is
not advised, because the network cannot acquire

Jakub Chłapiński, Piotr Mazur, Jan Murlewski, Marek Kamiński, Bartosz Sakowicz / Computing, 2008, Vol. 7, Issue 1, 6-12

 11

more information without changing its structure.
Neural Network growth may also be performed
incrementally [6] but in the case of a working data
warehouse it is not advised. Automatic growth of the
neural network with every new, incorrectly
classified element may lead to the effect of an over
trained network (or at least result in poor classifier
efficiency). The methods that implement network
growth should be run on an already verified set of
data. Incremental learning algorithms should be used
only as temporary means of correcting the
classification results before the actual full learning
process that can be run in a later time.

Example algorithm of a neural network growth:
1) Every weight coefficient of the network is

being kept in its original state.
2) A new neuron is added to the location of the

outermost layer (more neurons may be added when
necessary and other layers may be used). Its weight
coefficients are set only by the elements belonging
to the same class and newly added elements (Fig.7)

3) New output layer is build which makes choice
of the score function between old and new part of
the network (AND gate (Tab. 8))

Fig.7 - Functionality of new built network.

Table 8. New output layer

Learning
element type

Output
neuron state

in the
preceding
network.

Output
neuron state
in the joined

network.

Neuron
state in the
new output

layer.

negative,
classified
correctly

0 X 0

positive,
classified
correctly

1 1 1

negative,
classified

incorrectly
(incremental)

1 0 0

Newly formed neural network performs the
classification process taking into consideration old
and new sets of data.

6. SUMMARY

In this article a few of the classification methods
were introduced along with their incremental
learning methods which can perform efficiently in
near real-time data warehousing environments.
Mentioned algorithms are presently being
incorporated in the project of building an advanced
database system for real-time data warehousing
which can be incrementally updated. In this project
the 10 minute analysis update limit is being enforced
on every new data that is added to the database.

7. REFERENCES

[1] Burges C.J.C. A tutorial on support vector
machines for pattern recognition, Data Mining
and Knowledge Discovery 2(2).

[2] Langey P., Iba W., Thompson K. “An analysis
of Bayesian classifiers”, In Proc. of 10th
National Conference on Artificial Intelligence,
San Jose, CA, 1992, AAAI Press, – pp. 223-
228.

[3] L. Breiman, J. H. Friedman, A. Olshen,
C. J. Stone. Classification and regression trees.
Wadsworth, Belmont, CA, 1984.

[4] Quinlan J.R. C4.5: Programs for machine
learning. Morgan Kaufman, 1993.

[5] Bigus J.P. Data mining with neutral networks,
McGraw Hill, 1996.

[6] S.E. Fahlman, C. Lebier, “The Cascade-
Corelation Learning Architecture”, Technical
Report CMU-CS-90-100, School of Computer
Science, Carnegie Mellon University, August
1991.

[7] Agrawal R., Srikant R. Fast Algorithms for
Mining Association Rules, Proc. of 1994
International Conference on Very Large
Databases VLDB, Santiago de Chile,
September 12-15, Morgan Kaufman, 1994. –pp.
487-499.

[8] Quinlan J.R. Induction of decision trees.
Machine Learning 1(1), – pp.81-106.

[9] Agrawal R., Imielinski T., Swami A. Mining
association rules between sets of items in large
databases, Proc. of 1993 ACM SIGMOD
International Conference on Management of
Data, Washington D.C., May 26-28, ACM
Press 1993, – pp. 207-216.

[10] Gupta, H.; Mumick, I.S. Selection of views to
materialize in a data warehouse, IEEE
Transactions Knowledge and Data
Engineering, Volume 17, Issue 1, Jan 2005, –
pp.24-43.

Jakub Chłapiński, Piotr Mazur, Jan Murlewski, Marek Kamiński, Bartosz Sakowicz / Computing, 2008, Vol. 7, Issue 1, 6-12

 12

Jakub Chlapinski received
MSc degree in 2003 in
Computer Science from the
Technical University of Lodz in
Poland. He is a PhD student
with the Department of
Microelectronics and Computer
Science. His research area
covers distributed computing,
software engineering,

database applications as well as signal and image
processing.

Piotr Mazur is a PhD
candidate with the Department
of Microelectronics and
Computer Science on Lodz,
Poland. His current research
focuses on areas concerning
relational database
management systems,
operating systems and voice
transmission using VoIP

technology.

Jan Murlewski received MSc
degree (2004) in Computer
Science from the Technical
University of Łódź. He is
currently a PhD candidate with
the Technical University of
Łódź. His primary research
interests are object-oriented
databases, real-time data
warehouses, distributed

computing and software engineering.

Marek Kaminski received a
Masters Degree and Ph. D.
Degree in Electronic from the
Technical University of Lodz in
Poland in 2002 and 2006
respectively. During Ph. D.
studies he joined the
Department of Microelectronics
and Computer Science (DMCS

TUL). He is now an Assistant Professor. His
research activities include internet applications,
distributed computing, data warehouses and
stochastic optimization.

Bartosz Sakowicz received a
Masters Degree and Ph. D.
Degree in Computer Science
from the Technical University
of Lodz in Poland in 2001 and
2007 respectively. During Ph.
D. studies he joined the
Department of Microelectronics
and Computer Science (DMCS
TUL). He is now an Assistant

Professor. His research activities include internet
applications, distributed computing, data
warehouses, game theory and stochastic
optimization.

