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Abstract: The goal of this article is to introduce problems that may arise during analysis of classification methods used 
in data mining applications. In the following sections some of the most common classification techniques are described 
along with several proposed extensions which allow these methods to be used  in incremental data warehouses. The 
primary focus was aimed at the problem of performing incremental learning methods that may be used in near real-
time data warehousing applications. 
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1. INTRODUCTION 
Data Mining is a term commonly used to 

describe a group of methods which purpose is to 
extract hidden dependencies between the data stored 
in data warehouses, data marts and other relational 
database systems. The end-user may even not be 
aware of these dependencies, although the 
knowledge gained from extracting them may prove 
to be extremely useful. Data Mining methods may 
be divided into several basic groups, each dealing 
with specific problems. Among the most used 
method types in data warehouses are classification 
methods [2]. 

Classification methods aim to provide certain 
model, which can be helpful in deducing a specific 
group that one of the database object belongs to, 
based on its characteristics (Fig.1). One of the 
common uses of classification methods include 
determining  future actions of customers so that a 
company could alter its customer care plan more 
precisely. 

Classification methods can also be divided into 
two groups: methods that require a set of data that is 
used for learning and others. 

K-NN method is one of the most popular 
methods used in classification [1]. Its function is to 
find k-nearest (using some predefined metrics) 
neighbors of the subject, and assign it to a certain 
class that is dominant in all successfully found 
subjects.  

 
Fig.1 – Cassification method – (i.e. k-NN). 

Another commonly used method which has 
advantage of being relatively simple and efficient is 
Naive Bayes Classifier. 

Methods that require a learning set form a 
numerous group which includes: neural networks 
[5], simple and oblique decision trees and SVM 
(Support Vector Machines) method [1]. All of these 
methods are based on a similar principles that 
consists of choosing a structure (for example multi 
layered perception for neural networks and core 
function for the SVM method), and assigning the 
best parameters that allow to minimize erroneous 
classifications on the given learning set (for 
example: using the error back propagation method, 
optimization methods, or evaluating GNI indexes 
values). The last step is to verify the resulting 
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structure, which can be performed by evaluating 
results for a given set of values also known as the 
verify set. If the verification process is unsuccessful, 
then appropriate changes in the structure should be 
made (for example: trimming the decision tree), and 
the whole process has to be repeated. The process of 
learning may prove to be time-consuming, and may 
also lead to under or over learning phenomena. 

 
2. INCREMENTAL LEARNING METHODS 

Taking into account the fact that changing any 
relationship within a set of data (for example: 
accounting for market fluctuations and quick market 
changes) may change the classification model 
unexpectedly, the knowledge model should not be 
generated once, based on a predetermined set of data 
because the resulting model may loose its properties 
over time and become less precise. On the other 
hand performing the full learning process with every 
change in input data set can be time consuming and 
inefficient. Therefore to reflect the changes more 
efficiently a new set of methods needs to be devised.  

These algorithms should take into account only 
recent changes in data, and reflect them on a model 
in an incremental fashion, without re-analyzing the 
whole data set. Using incremental learning methods 
may lead to developing a dynamic model that adapts 
itself every time new data is added into it which 
greatly improves quality and accuracy of the results. 

Applying of incremental learning methods to data 
sets may also lead to a few model inconsistencies. 
Taking the client credit standing for example: after 
successful classification of a client as an positive 
candidate the data set would be updated to reflect the 
changes, but if the classification process was 
unsuccessful no data would be updated in the data 
set. New data about erroneous positive 
classifications that are reflected in the data set may 
lead to a state where every new classification would 
be considered as erroneous, and no changes in the 
model would be performed. Therefore, before using 
an incremental learning method these negative 
effects should be considered, and the usefulness of 
the resulting data has to be evaluated. To counteract 
these effects usually a separate process of 
recognizing negative classifications and finding their 
inner relationships is performed, followed by full 
regeneration of a model when existing model proves 
not to reflect the data in a satisfactory manner. 

Some of the common methods used in data 
mining may not have their incremental learning 
versions. A good example may be the k-nearest 
neighbor method where new elements have to be 
updated in the data warehouse and used along with 
remaining elements while performing classification 
process of unknown data. 

3. NAIVE BAYES CLASSIFIER 
One of the most popular classification methods is 

the Naive Bayes algorithm [2]. It is considered to be 
relatively simple in implementation and to achieve 
better results (assuming all its requirements are met) 
than other methods. Naive Bayes Classifier is based 
on the Bayes theorem, and uses comparisons of the 
statistical indicators described by formula 1. 
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where: P(Ci|X) – probability of belonging to a class 
Ci, given attributes X, P(X|Ci) – probability of 
having attributes X given a class Ci, P(X) –  
occurrence probability of an element with attributes 
X, n – total count of the elements in a set, si –  count 
of elements belonging to class Ci, P(xj|Ci) – 
probability of having attribute x on j-th position 
when belonging to class Ci, sij – total count of the 
elements that belong to class Ci and have attribute x 
on j-th position 

The element is classified as belonging to a certain 
class based on the highest probability score of 
belonging to that class. 

The basic problem while dealing with the Bayes 
method is to calculate the probability factor P(X|Ci). 
To achieve this a set of kp probability factors need 
to be calculated where p is the number of attributes 
and k is the total count of values that these attributes 
can have. One of the most popular approaches is to 
assume that all attributes are independent of each 
other, then the overall probability can be simplified 
and expressed with formula 1. It is important to 
mention that this assumption may not be correct in 
some cases. 

It is also important that in the process of Bayes 
classification the absolute values of calculated 
probabilities are not as important as their relative 
values used for comparing one to another, which 
means that all constant factors (n, P(x)) can be 
omitted in all formulas as having no real effect on 
the outcome. Using this simplification the Bayes 
Method can be reduced to calculating the result of 
comparison of multiplied sij elements. 

The incremental learning Bayes method operates 
by recording these values and updating attributes of 
any new element that is added to the data set, 
followed by an increase of the associated 
coefficients. There is no need to analyze old data. 

Incremental learning version of the Bayes 
method requires at most (kp + m) – sized memory 
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region, where m stands for the total count of all 
classes. Developing a specified repository to hold 
these values can be relatively simple. 

When using the Naive Bayes Classifier method 
there is a need to store the certain algorithm 
information in the underlying database. The 
information consists of  metadata describing each 
discovered class that will have elements assigned to, 
and additional data describing every single element 
and the segment that it is assigned to having a 
certain value of the given attribute. To represent the 
Naive Bayes Classifier algorithm in a database a 
new database table needs to be created: 

 
Table 1. bayes_classes (SQL table) 

Field name Field type Description 
id numeric Entry identifier 

analysis_id numeric Analysis 
identifier 

class_id numeric Class identifier 

class_count numeric 
Element count 

in the given 
class 

 
To improve data access and retrieval creation of 

an B-Tree index on the analysis_id field is 
recommended, which will allow for faster access to 
all classes belonging to a certain analysis. Also the 
class_id field should be defined as a reference to the 
class_id field in the bayes_classes table described 
later in this document. The use of a foreign key with 
the cascade delete option set is preferred. 

Results obtained for the Naive Bayes 
Classification method are presented in table 2 and 
Fig. 2. These results are based on an assumption that 
10 percent of the database objects are object which 
were incrementally added to the source database, 
and the whole data set is to be divided into four 
different classes. It was also assumed that all 
database objects consist of eight different binary 
attributes.   

 
Table 2. Influence of size of the data set on analysis 

times 

Object count Incremental 
method [ms] 

Classic method 
[ms] 

1000 0 15 
10000 31 156 
100000 141 1 562 

1000000 1 468 16 516 
5000000 7 703 80 547 

10000000 15 781 168 297 
 

Based on the test results it is clearly visible that 
the proposed incremental version of the Naive Bayes 
Classifier is more efficient than the standard method. 

 
Fig.2 – Influence of the data set size on timing of the 

incremental classification method. 

Table 3 presents the results of performance 
analysis of the Bayes classification for the standard 
and incremental method depending on the number of 
attributes used in classification process. 

 
Table 3. Influence of number of attributes on  time of 

the classification process 

Attributes Incremental 
method [ms] 

Classic method 
[ms] 

2 797 5 109 
4 1 110 11 328 
8 1 594 13 453 

20 3 375 36 015 
 
Total number of objects used in the test was set 

to 1 000 000, including 10 % of objects that were 
added incrementally. Total number of desired 
classes was set to 10. 

The test results indicate that, as in previous cases, 
incremental method  performs much faster than 
classic method. 

 
4. DECISION TREES 

Among many methods that require using the 
learning process decision trees are probably the most 
popular [3, 8]. Decision Tree algorithm is based on a 
graph, where vertices are described by tests (i.e.: 
comparing the values of attributes), arcs are 
represented by test results, and leaf nodes by 
classification classes. The process of building a 
Decision Tree is based on a recurrent division of the 
training set to partitions up to the point where every 
partition is sufficiently small or contains only 
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elements belonging to one class. The division 
process is driven by the value of one specified 
attribute. The “quality” of the resulting decision tree 
depends on the proper choice of attributes and 
division criteria. There are many indicators that 
evaluate these attributes: the correlation index X 
(CHAID algorithm), GNI indexes (CART 
algorithm), information gain (ID3 and C4.5 
algorithms [4]). Decision Trees may also be divided 
into two groups: simple and oblique (Fig. 3). 

 
Fig.3 – Simple and oblique decision trees. 

When dealing with oblique decision trees (OC1) 
to divide a set a linear combination of many more 
attributes is required. The resulting combinations 
form a climbing method that uses probabilistic as 
well as heuristic algorithms. The main advantages of 
oblique decision trees are their smaller size, while 
their bigger disadvantages include complex and hard 
implementation of division methods. 

One of the characteristics of all classification 
methods that require learning is the fact, that they 
always use a part of the data set to perform the 
learning process. Some subset of data is needed to 
verify the result of the learning stage. In some cases 
also new incoming data is used to verify learning 
and, assuming the base model is correct, should give 
accurate results. In other cases when the 
classification process produces incorrect results the 
source data set may be moved to a special repository 
which will be used in the next instance of the 
learning process. 

When this solution fails it is also possible to 
apply incremental learning, assuming some 
prerequisites are met.  When performing incremental 
learning one of two methods may be used: 

Cut – which require that for every branch of a 
tree additional attribute is stored. The attribute 
represents confidence. If the confidence attribute 
values for a specific branch of a tree are significantly 
low, the branch should be deleted and replaced by a 
leaf node. There is also a possibility of regenerating 
a branch of a tree, and replacing invalid branch with 
new one. 

Tree Growth – in a set of incorrectly classified 
elements some association rules may be found [7,9] 
(the common attribute combination resulting in 
incorrect classification). If there is no support for an 
association rule then the rule may be safely 
incorporated into a tree as a new branch located near 
the root node. If the new branch is strengthened in 
the following process of classification its members 
may be moved to the learning set, so that standard 
classification rules can learn new trends. 

In the case of methods based on decision tree 
algorithms it is crucial to store the tree structure in 
the database, along with additional data that 
identifies the set of elements used in learning and 
verification processes that it was based on. 

 
Table 4. dec_tree_sets (SQL) 

Field name Field type Description 
id Numeric Field identifier 

analysis_id Numeric Analysis 

set_type Enumeration 

Data set 
identifier: 
learning or 

verification set 
 

Table 5. dec_tree_elements (SQL) 

Field name Field type Description 
set_id Numeric Entry identifier 

element_id Numeric Element 
identifier 

 
The description of a decision tree structure may 

be represented by a metadata database table 
describing each tree with the corresponding analysis. 

 
Table 6. dec_tree_defs (SQL) 

Field name Field type Description 
id Numeric Tree identifier 

analysis_id Numeric Analysis 
identifier 

 
The tree structure itself can be represented as a 

set of nodes with references to their corresponding 
parent nodes. 
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Table 7. dec_tree_nodes (SQL) 

Field name Field type Description 
id Numeric Entry identifier 

tree_id Numeric Decision tree 
identifier 

parent_id Numeric Parent node 
identifier 

trust_level Floating point Trust level of aa 
node 

 
Fields: id, tree_id and parent_id should be 

indexed to provide faster data access when building 
the decision tree structure in memory. To optimize 
the data access further materialized views [10] may 
be used based on tables dec_tree_defs and 
dec_tree_nodes because the references between 
these tables are not subjects to frequent changes. To 
improve the algorithm performance it is also advised 
to preload the whole structure to memory, and 
process the data in grouped data sets periodically 
updating the tree structure whenever one of its 
attributes changes. 

 
5. NEURAL NETWORKS 

The process of incremental learning of a neural 
network applies only when certain conditions are 
met. New data added to the system cannot oppose 
the data that was already used in the learning stage. 
In case of such scenario the incremental learning 
process may have a negative influence on the 
classification giving false results (Fig.4). 

 
Fig.4 – Neural network requireing another learning. 

Another characteristic of Neural Network is the 
fact that during the initial learning there is a need to 
minimize the size of the network. That requirement 
may negatively influence the network when new, 
unseen data is added to the data set, because there 
may exist no efficient way of representing the data 
set using the same network structure. The case when 
new data influences only the weight coefficients is 

depicted in (Fig. 5), while the situation when a 
network structure change is required is shown in 
(Fig 6).  

In the case depicted in (Fig.5) only a small 
adjustment to the weight coefficient is necessary. 
The back propagation algorithm (along with its 
modifications) can be run sequentially for  the 
chosen elements of a learning data set. In this case 
the algorithm is run only to check new incoming 
data. After adjusting the weight coefficients the 
algorithm is run once more to examine older 
elements of the data set to correct errors that could 
be introduced in the first run. Considering the fact 
that the network is already in semi-learned state 
another run of the algorithm is performed more 
efficiently than in the case that requires the whole 
learning process to begin from the start. 

 
Fig. 5 – Neural network requiring weights correction. 

 
Fig.6 - Neural network requiring structure expanding. 

It's also worth mentioning that dampening of the 
weight coefficient change may be performed while 
the error propagation process is run for newly 
inserted elements. That should prevent rapid 
coefficient changes, which may result in loss of 
network efficiency when dealing with old elements. 

In case of the situation depicted in (Fig.6) 
incremental learning using the sequential method is 
not advised, because the network cannot acquire 
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more information without changing its structure. 
Neural Network growth may also be performed 
incrementally [6] but in the case of a working data 
warehouse it is not advised. Automatic growth of the 
neural network with every new, incorrectly 
classified element may lead to the effect of an over 
trained network (or at least result in poor classifier 
efficiency). The methods that implement network 
growth should be run on an already verified set of 
data. Incremental learning algorithms should be used 
only as temporary means of correcting the 
classification results before the actual full learning 
process that can be run in a later time. 

Example algorithm of a neural network growth: 
1) Every weight coefficient of the network is 

being kept in its original state. 
2) A new neuron is added to the location of the 

outermost layer (more neurons may be added when 
necessary and other layers may be used). Its weight 
coefficients are set only by the elements belonging 
to the same class and newly added elements (Fig.7) 

3) New output layer is build which makes choice 
of the score function between old and new part of 
the network (AND gate (Tab. 8)) 

 
Fig.7 - Functionality of new built network. 

 
Table 8. New output layer 

Learning 
element type 

Output 
neuron state 

in the 
preceding 
network. 

Output 
neuron state 
in the joined 

network. 

Neuron 
state in the 
new output 

layer. 

negative, 
classified 
correctly 

0 X 0 

positive, 
classified 
correctly 

1 1 1 

negative, 
classified 

incorrectly 
(incremental) 

1 0 0 

 

Newly formed neural network performs the 
classification process taking into consideration old 
and new sets of data. 

 
6. SUMMARY 

In this article a few of the classification methods 
were introduced along with their incremental 
learning methods which can perform efficiently in 
near real-time data warehousing environments. 
Mentioned algorithms are presently being 
incorporated in the project of building an advanced 
database system for  real-time data warehousing 
which can be incrementally updated. In this project 
the 10 minute analysis update limit is being enforced 
on every new data that is added to the database. 
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