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Abstract: In the design and operation of energy intensive systems, the possibility of improving the system’s efficiency is 
very important to explore. The main way of improving efficiency is through optimisation. This paper describes the 
application of exergy topological models and, in particular, the graph of thermoeconomical expenditure for 
thermoeconomical optimal design s of circled nets for energy supply (CNES). The questions of thermoeconomical 
optimisation of CNES, as well as suggested modelling algorithms, are illustrated in the numerical example of the 
optimisation of a energy supply system for a city with seven regions of energy consumption.  
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1. INTRODUCTION 
The processes taking place in complex energy 

intensive systems are characterized by the mutual 
transformation of quantitatively different power 
resources. The thermo-economical optimisation of 
CNES is based on thermodynamic analysis, which 
requires the combined application of both laws of 
thermodynamics and demands the exergy approach 
([1], [2]). 

Exergetic methods are universal and make it 
possible to estimate the fluxes and balances of 
energy for every element of the system using a 
common criterion of efficiency. 

Therefore, the exergetic methods are meaningful 
in analysis and calculations. 

Meanwhile, the increasing complexity of 
optimisation problems requires more effective and 
powerful mathematical methods. Therefore, during 
the last few years, many papers with different 
applications of exergetic methods and the thermo-
economical approach have been published (see for 
example [3], [4], [5], [7]).  

The above referenced papers, as well as the 
author’s past investigations [7-12], show that one of 
the most effective mathematical methods used for 
exergetic analysis and thermoeconomical 
optimisation involve graph theory [13]. The 
usefulness of graph models can also be demonstrated 
by their flexibility and wide range of possible 
applications.  

The exergy topological method includes the sole 
use or combination of exergy flow graphs [7-9] and 
thermoeconomical graphs [10-12].This paper 
describes the application of exergy topological 
models and, in particular, the graph of thermo-
economical expenditure for thermoeconomical 
optimisation of CNES. 

 
2. METHOD AND ALGORITHM OF 
OPTIMAL SYNTHESIS OF CNES 

Let’s assume that the CNES contains m 
customers and the possible methods of connection of 
these customers by a net are known.  

Then, for this CNES, in accordance with rules 
given in [11,12], the graph of thermoeconomical 
expenditure can be built. Shown in Fig. 1 is a graph 
whose nodes multitude A={a1 ,a2 ,...,ai ,...,am } 
corresponds to the customers and arcs multitude 
U={ai ,aj}; i ≠ j; i = 1, 2, ..., m; j = 1,2, ..., m; to the 
appropriate parts of CNES between nodes ai ,aj . 
Each arc Uij has thermoeconomical expenditure Zij 
as it is shown in the matrix of thermoeconomical 
expenditure (see Fig. 2.) and the graph in Fig. 1. 

Then, by minimizing the sum shown in Eq. (1), 
the problem of optimal thermoeconomical synthesis 
can be solved. 
 
 ∑∑=

Σ
i j

ijZZ minmin     (1) 
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Fig.1 – Graph of thermoeconomical expenditure. 
 

 
 a1 a2 ... aj ... am 

a1 Z11 Z12  Z1j  Z1m 
a2 Z21 Z22  Z2j  Z2m 
...       
ai Zi1 Zi2  Zij  Zim 
...       

am Zm1 Zm2 … Zmj … Zmm
       

 
Fig.2 – Matrix of thermoeconomical expenditure 

corresponding to a graph in Fig.1. 
 

Given below is the matrix form of a special 
algorithm for the optimal synthesis of CNES based 
on the finding of a Hamilton contour [13] in the 
graph of thermoeconomical expenditure  

ZU = (A, U). 
The algorithm consists of following main steps: 
Step 1. Calculate the possible thermoeconomical 

expenditure Zij =Z (ai, aj), ∀ai ∈ A, 
∀aj ∈ A and form a square matrix of size m x m 

for the thermoeconomical expenditure (See Fig.2.). 
Step 2. Find a minimum element in each i-th line 

of the matrix Zi
min = min {Zij}, j = 1,2..., m; i = 1,2..., 

m and subtract the element from all elements in this 
line. 

Step 3. Check: are there any matrix columns that 
do not include zero elements? 

If yes, then go to step 4. 
If not, then each line and each column contain at 

least one zero member. Proceed to step 5. 
Step 4. Find, in each j- column, that does not 

include the zero elements, a minimum element. This 
element will be Zj

min = min {Zij}, i = 1,2..., m; j = 
1,2..., m. Now subtract Zj

min from all elements of this 
column. The result will be an inclusive matrix 
yielding one zero element in each column and each 
line. 

Step 5. Calculate the sum: Z∑
0 = 

i
∑ Zi

min 

+
j
∑ Zj

min  

This sum, Z∑
0, is the lower boundary of a set of 

the solutions and can be accepted as the root tree for 
the thermoeconomical expenditure. 

It is understandable that if step 4 was not 
executed, then Zj

min = 0.  
Step 6. Select an arc, (ak, al), for which 
 

Rmax (ak, al) = max {R (ai, aj)} 
 
R (ai, aj) – the sum of the least element of i-th 

line and j-th column of a matrix. Zero element is 
located is the interception of these i-th line and j-th 
column. 

Step 7. Find, in the tree of thermo-economical 
expenditure, a dangling vertex with the least 
boundary. 

Step 8. Form the new vertex with a boundary 
equal the sum of the boundary of vertex in step 7 
with value Rmax (ak, al). 

An adequate contour for this vertex will not use 
an arc (ak, al). 

Let's designate this property through klS . 
Step 9. Eliminate the k-th line and l-th column in 

the matrix corresponding to an element Rmax (ak, al). 
Then the size of the matrix will decrease by a unit. 

Step 10. Exchange a symbol, ∞, for the 
thermoeconomical expenditure of arcs, which 
permits finding contours of length smaller than the 
m-size.  

Step 11. Check: Is the size of the matrix obtained 
in step 10 more than that of a unit? 

If yes, then go to a step 12. 
If not, then go to a step 19. 
Steps 12, 13, 14, and 15 repeat steps 2, 3, 4, and 

5, but these calculations are done with the matrix 
obtained in step 10 (instead of the initial matrix used 
in previously).  

Step 16. Add the sum obtained in step 15 to the 
value for the boundary of vertex from which one 
splitting was done (in the first step, this is the 
boundary for a root tree of thermoeconomical 
expenditure). 

The final result will be the boundary for the new 
dangling vertex - a contour will use an arc (ak, al) 
that is adequate for the condition in step 6. 

Step 17. Find the dangling vertex with the least 
boundary. If there are only a few dangling vertices 
with the same boundaries, then select a vertex that is 
characterized by property Skl. This step is essential in 
order to find arcs that are included in a Hamilton 
contour. 
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a1 
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Step 18. Check: is the vertex found in step 17 
built by applying the property klS ? 

If yes, then go to a step 6. 
If is not, then go to a step 9. 
Step 19. The problem is solved - optimal pairs of 

elements (customers) ai and aj are found that 
correspond to the appropriate vertex sequence. By 
starting from the root tree and finishing with the 
dangling vertex for a matrix of unit size, the single 
contour CNES, with the minimum 
thermoeconomical expenditure in accordance with 
Eq. 1, can be determined. 

 
3. NUMERICAL EXAMPLE OF OPTIMAL 

SYNTHESIS OF SINGLE CONTOUR 
CNES 

Let's consider a problem of an optimal synthesis, 
single contour CNES for a city with seven regions of 
energy consumption (see scheme in Fig. 3.). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.3 – Scheme CNES with seven region of energy 
consumption 

 
The graph of thermoeconomical expenditure is 

given in Fig. 4, and the matrix of thermoeconomical 
expenditure, M1, is found in Fig. 5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 – Graph of thermoeconomical expenditure for 
scheme in Fig.3. 

 
 a1 a2 a3 a4 a5 a6 a7 

a1 ∞ 1050 1850 1200 6300 1100 1900 
a2 1050 ∞ 1700 1600 900 2500 400 
a3 1850 1700 ∞ 200 1200 1550 1500 
a4 1200 1600 200 ∞ 400 800 900 
a5 6300 900 1200 400 ∞ 300 450 
a6 1100 2500 1550 800 300 ∞ 950 
a7 1900 400 1500 900 450 950 ∞ 

 
 
 

 a1 a2 a3 a4 a5 a6 a7 
a1 ∞ 0 800 150 5250 50 850 
a2 750 ∞ 1300 1200 500 2100 0 
a3 1650 1500 ∞ 0 100 1350 1300 
a4 100 1400 0 ∞ 200 600 700 
a5 6000 600 900 100 ∞ 0 150 
a6 800 2200 1250 500 0 ∞ 650 
a7 1500 0 1300 500 50 550 ∞ 

 
 
 

 a1 a2 a3 a4 a5 a6 a7 

a1 ∞ 0 800 150 5250 50 850 
a2 650 ∞ 1300 1200 500 2100 0 
a3 1550 1500 ∞ 0 100 1350 1300 
a4 100 1400 0 ∞ 200 600 700 
a5 5900 600 900 100 ∞ 0 150 
a6 700 2200 1250 500 0 ∞ 650 
a7 1400 0 1300 500 50 550 ∞ 

 
Fig.5 – Matrixes of thermoeconomical expenditures 

M1-M3. 

 
The matrices of solution, М1-M23 (see Fig. 5- 

Fig. 9), as well as the tree of thermoeconomical 
expenditure (see Fig. 10), are obtained as a result of 
applying the suggested algorithm. 

It is easy to see that the optimal single contour 
CNES (in Fig. 4 and Fig. 5 - designated by bold 
lines) contains the appropriate sequence of nodes 
(customers): (a1, a6, a4, a3, a5, a7, a2, a1). 

The minimum thermoeconomical expenditure for 
this optimized CNES is 4400. 

 
 
 

a1 a2 a4 a5 a6 a7 

a1 ∞ 0 150 5250 50 850 

a2 650 ∞ 1200 500 2100 0 

a3 1550 1500 ∞ 100 1350 1300 

a5 5900 600 100 ∞ 0 150 

a6 700 2200 500 0 ∞ 650 

a7 1400 0 500 50 550 ∞ 

 
 
 

Region 4 

Region 7 

Region 6 

Region 3 
Region 5 

Region 1 Region 2 

a2 

a1 

a7 

a6 

 a3 

 a4  a5 
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 a1 a2 a4 a5 a6 a7 

a1 ∞ 0 150 5250 50 850 

a2 650 ∞ 1200 500 2100 0 

a3 1450 1400 ∞ 0 1250 1200 

a5 5900 600 100 ∞ 0 150 

a6 700 2200 500 0 ∞ 650 

a7 1400 0 500 50 550 ∞ 

 
 a1 a2 a4 a5 a6 a7 

a1 ∞ 0 50 5250 50 850 
a2 0 ∞ 1100 500 2100 0 
a3 800 1400 ∞ 0 1250 1200 
a5 5250 600 0 ∞ 0 150 
a6 50 2200 400 0 ∞ 650 
a7 750 0 400 50 550 ∞ 

 
 a1 a2 a3 a4 a5 a6 a7 

a1 ∞ 0 800 150 5250 50 850 

a2 650 ∞ 1300 1200 500 2100 0 

a4 1550 1500 ∞ 0 100 1350 1300 

a5 0 1400 ∞ ∞ 200 600 700 

a6 5900 600 900 100 ∞ 0 150 

a7 700 2200 1250 500 0 ∞ 650 

 1400 0 1300 500 50 550 ∞ 

 
Fig.6 – Matrixes of thermoeconomical expenditures 

M4-M7 
 

 a1 a2 a3 a4 a5 a6 a7 

a1 ∞ 0 0 150 5250 50 850 

a2 650 ∞ 500 1200 500 2100 0 

a3 1550 1500 ∞ 0 100 1350 1300 

a4 0 1400 ∞ ∞ 200 600 700 

a5 5900 600 100 100 ∞ 0 150 

a6 700 2200 450 500 0 ∞ 650 

a7 1400 0 500 500 50 550 ∞ 

 
 a2 a3 a4 a5 a6 a7 

a1 0 0 ∝ 5250 50 850 

a2 ∞ 500 1200 500 2100 0 

a3 1500 ∞ 0 100 1350 1300 

a5 600 100 100 ∞ 0 150 

a6 2200 450 500 0 ∞ 650 

a7 0 500 500 50 550 ∞ 

 
 a2 a3 a4 a5 a6 

a1 0 0 ∝ 5250 50 

a3 1500 ∞ 200 100 1350 

a5 600 100 100 ∞ 0 

a6 2200 450 500 0 ∞ 

a7 ∞ 500 500 500 550 

 

 
a2 a3 a4 a5 a6 

a1 0 0 ∞ 5250 50 

a3 1400 ∞ 0 0 1250 

a5 600 100 0 ∞ 0 

a6 2200 450 400 0 ∞ 

a7 ∞ 450 350 0 500 

 
Fig.7 – Matrixes of thermoeconomical expenditures 

M8-M11 
 
 

 a1 a2 a4 a6 a7 

a1 ∞ 0 50 50 850 
a2 0 ∞ 1100 2100 0 
a5 5250 600 0 0 150 
a6 50 2200 400 ∞ 650 
a7 750 0 400 550 ∞ 
 
 

 a1 a2 a4 a6 a7 
a1 ∞ 0 50 50 850 
a2 0 ∞ 1100 2100 0 
a5 5250 600 0 0 150 
a6 0 2150 350 ∞ 600 
a7 750 0 400 550 ∞ 
 
 

 a1 a4 a6 a7 
a1 ∞ 50 50 850 
a2 0 1100 2100 ∝ 
a5 5250 0 0 150 
a6 0 350 ∞ 600 
 
 

 a1 a4 a6 a7 
a1 ∞ 0 0 850 
a2 0 1100 2100 ∞ 
a5 5250 0 0 0 
a6 0 350 ∞ 450 
 
 

 a3 a4 a5 a6 
a3 ∞ 0 0 1250 
a5 100 0 ∞ 0 
a6 450 400 0 ∞ 
a7 450 350 0 500 
 
 

 a3 a4 a5 a6 
a3 ∞ 0 0 1250 
a5 0 0 ∞ 0 
a6 350 400 0 ∞ 
a7 350 350 0 500 
 
 

Fig.8 – Matrixes of thermoeconomical expenditures 
M12-M1. 
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4000 

2,7 

M10 

4100 

3750 
4,1 

M9

3750 

1,2 

M16 

4,3 

M3

4400 

4,6 

M22 4400 

4,6 

M22 

440

5,7 

M21 

4400 

2,1 

M20 

3850 
3,5 

M13 

4050 
7,2 

M14 

3800 

4,3 

M5 

2950 M1 

4600 

1,2 

M11 

4600 

5,6 

M17 

4400 

2,7 

M9 

4600 

4,1 

M8 

515

2,1 

M15 

4,
3

M20 

4250 

7,2 

M13 

460

3,5 

M6

450

5,7 

4450 

5,6 

M18

4400 

6,4 

M23 4400 

6,4 

M23 

Root 

VII 

VI

V

IV

III 

II 

I

0

 
 a3 a4 a5 

a3 ∞ 0 0 
a6 350 400 0 
a7 350 350 0 

 
 

 a3 a4 a5 
a3 ∞ 0 0 
a6 0 400 0 
a7 0 350 0 

 
 a4 a6 a7 

a1 0 0 850 
a5 0 0 0 
a6 350 ∞ 450 

 
 

 a4 a6 a7 
a1 0 0 850 
a5 0 0 0 
a6 0 ∞ 100 

 
 

 a4 a6 
a1 0 0 
a6 0 ∞ 

 
 a4 

 a6 0 
 

Fig.9 – Matrixes of 
thermoeconomical 

expenditures M18-M23. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Fig.10 – Tree of thermoeconomical expenditure. 
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4. CONCLUSION 
The problem of optimisation for CNES has to be 

solved separately from the problem of optimisation 
of other energy intensive systems. On the basis of 
the unique features of such a system, it is possible to 
build an effective procedure for optimisation. 

In this paper, the authors develop and analyse a 
graph of thermoeconomical expenditure through a 
unique approach. The suggested method and 
algorithm are based on seeking a Hamilton contour 
in the graph of thermoeconomical expenditure.  

The method is illustrated with a numerical 
example of a single contour CNES of a city with 
seven regions of energy consumption. 

 
6. REFERENCES 

[1] Bejan, A., Tsatsaronis, G., Moran, M., 
Thermal Design and Optimization, John Wiley 
& Sons Inc., New York, 1996. 

[2] E. Sciubba, R. Melli, Artificial Intellegence in 
Thermal Systems Design: Consept and 
Applications, Nova Science Pub., 1998 

[3] E Sciubba, "Beyond thermoeconomics? The 
concept of Extended Exergy Accounting and 
its application to the analysis and design of 
thermal systems", Exergy- an International 
Journal, 2001, Vol.1, pp. 68-85. 

[4] Erlach B., Tsatsaronis G., Cziesla F., “A new 
approach for assigning cost and fuels to 
cogeneration products”, Proc. of International 
Conference ECOS-01, Istanbul, Turkey, 2001, 
pp.107-115. 

[5] Casarosa C., Franco A., “Thermodynamic 
optimization of the operative parameters for 
the heat recovery in combined power plants”, 
Int. Journal of pplied Thermodynamics Vol.4, 
N1, 2001, pp.43- 52 

[6] Cornelissen, R.L., van Nimwegen, P.A., Hirs, 
G.G., ” Exergetic life cycle analysis”, Proc. of 
International Conference ECOS-2000, 
Twente, Netherlands, 2000, pp.1131-1143. 

[7] Nikulshin, V., Wu, C.,“ Thermodynamic 
analysis of energy intensive systems on exergy 
topological models”, Proc.of 12-Th. 
International Symposium on transport 
phenomena, ISTP-12, Istanbul, Turkey, 2000, 
pp. 341-349. 

[8] Nikulshin, V., Wu, C., "Thermodynamic 
analysis of energy intensive systems based on 
exergy- topological models", Exergy-an 
International Journal, 2001, Vol.1, pp. 173-
180. 

[9] Nukulshin V., Wu C., Nikulshina V., “Exergy 
efficiency calculation of energy intensive 
systems by graphs”, Proc. of International 

Conference ECOS- 01, Istanbul, Turkey, 2001, 
pp.107-115. 

[10] Nikulshin, V., Wu, C., “Method of 
thermodynamic analysis and optimization of 
energy intensive systems on exergy flow 
graphs”, Proc. ofInternational Conference on 
Power and Energy Systems, Las Vegas, 
Nevada, USA, 1999, pp.489- 491. 

[11] Wu, C., Nikulshin, V., “Method of 
thermoeconomical optimization of energy 
intensive stems with linear structure on 
graphs”, Iternational Journal of Energy 
Research, 24, 2000, pp.615-623. 

[12] Nikulshin V., Wu C., Bailey M., Nikulshina 
V., “Method of thermoeconomical 
optimization on graphs of energy intensive 
systems with pair interplay of flows”, Proc. of 
International Conference ECOS-02, Berlin, 
Germany, 2002, p.1477-1484. 

[13] Harary F., Graph Theory. Narosa Publishing 
House, New Deli, 1995. 

 
 

Vladimir Nikulshin is a 
Professor and Head of 
Theoretical General and 
Nonconventional Power 
Engineering Department of 
the Odessa National 
Polytechnic University, 
author of new exergy-
topological method of 
thermodynamic analysis and 
optimization of energy 
intensive systems. 

Fundamentals of the theory and method are 
published in 158 scientific papers, 6 monographs, 6 
scientific and technical reports. Published 32 papers 
on teaching and methods including 3 teaching aids. 
He is Academician of International Academy of 
Refrigeration, member of Scientific Boards: 
"International Centre of Applied Thermodynamic", 
"Pacific Centre for Thermal-Fluids Engineering", 
"Ministry Education and Science of Ukraine in 
speciality". 
 

Viktoria von Zedtwitz obtained 
her second Master's degree in 
2005 from Stockholm Royal 
Institute of Technology and the 
first Master's degree in 2003 
from Odessa State Academy of 
Refrigeration. She has 23 
published scientific Paper. 
Currently she is a PhD student 
of Swiss Federal Institute of 
Technology (Zurich). Her main 

area of interest is applied thermodynamics as well 
as renewable energy sources. 
 

 




