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Abstract: Recent investigation in haptic man-robot interaction suggests that there are ultimately only two topical 
tactile feedback generation modalities for haptic human interfaces. These allow the human operator to handle either (i) 
temporary virtual reality-based material replicas of the local geometric and/or force profile at the contact areas of an 
unlimited set of generic objects that could virtually be handled during the manipulation, or (ii) permanent material 
replicas of a limited set of typical objects. In this paper, the two modalities are analyzed and examples of tactile human 
interfaces developed by the authors for telerobotic blind tactile exploration of objects, and for telerobotic hapto-visual 
stylus-style tool manipulation are presented to illustrate the proposed approaches. The necessary modelling of the 
elastic properties of 3D objects from experimental tactile and range imaging data is also presented using a neural 
network architecture that becomes an important  component of the haptic interface. 
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1. INTRODUCTION 
While discussing human perception mechanisms, 

Sekuler and Balke [1] eloquently stated that 
… whether exploring gross or small details, 
the hand and the finger pads convey the most 
useful tactile information about objects. In 
this respect, the hand is analogous to the 
eye’s fovea, the region of retina associated 
with keen visual acuity. There is, however, a 
flaw in this analogy: fovea vision is most 
acute when the eye is relatively stationary, but 
touch acuity is best when the fingers move of 
the object of regard. 
Human haptic perception is the result of a 

complex investigatory dexterous manipulation act 
involving two distinct sensing components:  
(i) tactile, or cutaneous, information from touch 
sensors which provide data about contact force, local 
geometric profile, texture, and temperature of the 
touched object-area, and (ii) kinesthetic information 
about the positions and velocities of the kinematic 
structure (bones and muscles) of the hand [2].  The 
highest density of cutaneous sensors is found in 
finger pads. Force information is mostly provided by 
sensors on muscles, tendons and joints.  

The potential of the emergent haptic perception 
technologies is significant for applications requiring 

object telemanipulation. such as: (i) robot-assisted 
handling of materials in industry, hazardous 
environments, high risk security operations, or 
difficult to reach environments [3], (ii) telelearning 
in hands-on virtual laboratory environments for 
science and arts [4], (iii) telemedicine and medical 
training simulators [5]. Telerobotic dexterous 
manipulation in changing and unstructured 
environments combines the low-level robot 
computer control with the higher-level perception 
and task planning abilities of a human operator 
equipped with adequate human interfaces [6].   

Haptic and visual perception modalities 
complement each other [7]. The resulting multi-
sensor perception allows human operators to have a 
telepresence experience virtually identical with what 
they would have had while manipulating real 
physical objects.  

Robotic dexterous manipulation is an object-
oriented act requiring not only specialized robotic 
hands with articulated fingers but also tactile and 
kinesthetic sensors for the precise control of the 
forces and motions exerted on the manipulated 
object [6], [8].  

Recently became commercially available a 24 
movement robot dexterous hand providing a detailed 
direct mapping of human hand structure and 
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functions, [9], [10]. It is actuated by 40 compliant 
“air muscles which allows for the manipulation of 
soft or fragile objects”. 

In his state-of-the-art review [11], McDonald 
surveys a wide breadth of Human Machine 
Interfaces with the declared aim of identifying those 
“that work right for the people that the robots are 
built for.”  The report’s conclusions are that a more 
coordinated effort is needed and added rigor is 
called for in order to develop adequate human 
interfaces which will allow intelligent machines to 
behave and interact with humans in a more human-
like way. 

In a more recent survey covering a 20 year period 
from the late 1980s to early 2000s [12], Benali-
Khoudja et al. provide a thorough review of the 
tactile human interface and their applications to 
teleoperation, telepresence, sensory substitution, 3D 
surface generation, Braille systems, laboratory 
prototypes, and games. 

Cutaneous tactile perception is essential for the 
dexterous manipulation of the objects [6], [13]. The 
cutaneous performance of the haptic human 
interfaces should meet the requirements summarized 
in [12]: 1mm distance between micro-actuators, 300 
Hz bandwidth for each micro-actuator, and a 
threshold of 0.5 MPa. It is of primary importance to 
couple the vibrating mechanical actuators with 
thermal actuators that will cover an interval from 10 
to 45 deg. C. 

However, while there are commercial haptic 
human interfaces able to provide a full kinesthetic 
component of the haptic perception, there are no 
commercial interfaces able to provide a 
comparatively rich cutaneous component. The 
commercial interfaces which we are aware of have 
small vibro-tactile stimulators on the back of each 
finger and on the palm of the interface letting the 
human user know that an individual finger or the 
palm has made contact with the manipulated virtual 
object. However, this does not allow discriminating 
between specific locations on the alerted finger or 
palm, or allows any fingertip touch experience. 

This paper discusses the basic generation 
principles for the local geometric and force profile 
components of the tactile feedback provided by the 
haptic human interfaces. This approach allows for 
the design of specialized haptic human interfaces 
that are optimized for typical haptic manipulation 
tasks. Examples of tactile human interfaces 
developed by the authors for telerobotic blind tactile 
exploration of objects and for telerobotic hapto-
visual stylus-style tool manipulation are presented to 
illustrate the proposed design approach. 

The paper concludes with the description of a 
neural network hapto-visual modeling technique that 
allows the capture, storage, and rendering in real-

time of the complex elastic properties of 3D objects 
from experimental tactile and range imaging data. 

 
2. TACTILE FEEDBACK GENERATION 

 IN HAPTIC HUMAN INTERFACES 
Haptic perception implies direct contact between 

the operator’s hand and the manipulated object.  
This means that any haptic human interface should 
allow the human operator to touch either (i) 
temporary virtual reality-based material replicas of 
the local geometric and/or force profile at the 
relatively small contact areas that are virtually being 
touched at any given moment during the 
manipulation of an unlimited set of generic objects, 
or (ii) permanent material replicas of a limited set of 
whole typical objects. 
 
A. TACTILE HUMAN INTERFACES USING 

TEMPORARY REPLICAS OF LOCAL 
GEOMETRIC OBJECT PROFILE 

An early tactile human interface providing a 
temporary replica of the local geometric and/or force 
profile at the contact areas of the object that are 
virtually being touched was proposed in 1982 by 
Petriu et al. [14] as part of a multimodal controlled 
(video, audio, and haptic) telerobotic system, Fig. 1.  
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Fig. 1 - Illustration of the 1982 vintage multimodal 

controlled telerobotic system. 
 
The handheld haptic human interface, Fig. 2b, 

provides tactile feedback allowing the human 
teleoperator to feel the local geometric profile 
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measured by the tactile sensor arrays in the robot 
fingers. It consists of two arrays of 23 spring-loaded 
electromagnetic vibrators, each array having the same 
dimensions and arrangement pattern as the linear 
variable-differential transformer (LVDT) tactile 
sensor arrays in the robot fingers. The two 
electromagnetic vibrator arrays are positioned on the 
opposing faces of a 50 mm by 18 mm by 24 mm 
parallelepiped. 

Tactile sensor arrays placed on the two fingers of 
the robotic manipulator measure the local geometric 
profile of the object areas touched by the robot’s 
fingers, Fig. 2a.  Each tactile sensor array consists of 
23 individual LVDT displacement sensors tightly 
arranged 6 mm apart in three rows, of 8, 7, and 
respectively 8 sensors.  The tactile sensor arrays 
covers a 42 mm by 10.4 mm contact area. 

Another haptic human interface providing a 
temporary material replica of the local geometric 
and force profile at the contact areas of the object 
that are virtually being touched was proposed in 
1992 by Petriu et al. [15] as part of an integrated 
vision and tactile sensing system for model-based 
object recognition applicable to space station special 
purpose dexterous manipulator [16]. 

The biology-inspired robot haptic perception 
system, shown in Fig. 3, consists of a robot “finger”, 
an instrumented passive-compliant wrist-joint and a 
tactile probe array [16]. Position sensors placed in 
the robot joints and on the instrumented passive-
compliant wrist provide the kinesthetic information. 
The compliance of the wrist joint allows the tactile 
sensor to align itself with the touched object surface 
and thus to increase the local cutaneous information 
extracted during the active exploration process under 

the force provided by the robot. The approach has 
been recently extended for telerobotic blind tactile 
recognition of tiny objects such as screw head 
localization and type determination in automated 
industrial applications [17]. 

The tactile probe, Fig. 4, consists of a 16-by-16 
matrix of Force Sensing Resistor (FSR) elements 
spaced 1.58 mm apart on a 6.5 cm2 (1 sq. inch) area 
and an elastic overlay that  provides a geometric 
profile-to-force transduction function [18]. It operates 
as an integrated tactile sensor with its own 
microcontroller to sense compression forces through 
the elastic overlay [17]. When coupled with a vision 
guidance system, it can provide the cutaneous 
component that can be reproduced to the human 
operator through a tactile feedback mechanism. 

The tactile human interface, Fig. 5, allows a human 
teleoperator to experience a direct tactile feeling of the 
object profile measured by the robot’s tactile sensor. It 
consists of an 8-by-8 array of electromagnetic 
vibrators covering a 6.5 cm2 contact area. Each 
stimulator corresponds to a 2-by-2 "taxel" (i.e. tactile 
pixel) window in the tactile sensor array.  The 
vibrotactile stimulator is used as binary device which 
is activated when at least two out of four "taxels" are 
on.  

Before being used for the actuation of the tactile 
human interface, the tactile sensor data are median 
filtered in order to remove the measurement noise 
while preserving the edges in the tactile image. 
Experiments have shown that it is possible to 
increase the resolution of the reconstructed local 
geometric profile by using a pseudo-random 
selection of the electromagnetic vibrators which are 
activated sequentially. 
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a)                                                                                                        b) 

Fig. 2 - Illustration of a) the tactile robot sensor, and b) the corresponding 
tactile human interface of the telerobotic system, as introduced in [14]. 
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Fig. 3 - Robotic manipulator equipped with 

an instrumented passive-compliant wrist-joint 
 and a 16-by-16 tactile probe.  

 
Fig. 4 - 16-by-16 tactile sensor array.  

 
Fig. 5 - Tactile human interface consisting of 
an 8-by-8 array of electromagnetic vibrators. 

B. HAPTIC HUMAN INTERFACES USING 
PERMANENT REPLICAS OF WHOLE 

TYPICAL OBJECTS. 
There are many telemanipulation applications 

which involve the handling of a limited set of 
objects, usually tools. Stylus type tools such as pens, 
surgeon knifes, screwdrivers, probing rods, etc, are 
frequently used in dexterous manipulation 
applications.   

Fig. 6 shows a robot manipulated rod probing the 
elastic properties of an object. The elastic behaviour 
at any given point (xp, yp, zp) on the object surface 
can be described by Hooke’s law:  
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where Ep is the modulus of elasticity, σp is the stress, 
and εp is the strain along the normal direction, and 
σpmax corresponds to the elastic range. However, 
Hooke’s law applies well for a number of materials 
(known as Hookean materials) such as steal or 
aluminium. But for other materials, like rubber, it 
cannot capture the dependency on phenomena like 
temperature and loading rate. A nonlinear mapping 
must then be defined from experimental 
measurements. 

 
Fig. 6 - Force-torque sensor measuring the interaction 

force and torque at the point of 
contact between the robot manipulated 

probing rod and the object. 
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Recovery of the elastic material properties 
requires touching each point of interest on the 
explored object surface and then conducting a hapto-
visual measurement of the strain-stress relation on 
each point for a sequence of  magnitudes of the 
normal force applied by the robot manipulated 
probing rod [19]. 

The force torque-sensor at the robot’s end 
effector, Fig. 6, allows measuring the 3 degree-of-
freedom (DOF) components of the force vector and 
respectively the 3 DOF torque components at the 
point of contact between the probing rod and the 
explored object [20]. The corresponding geometric 
profile of the object area touched by the probing rod 
is measured by a laser range-finder system as shown 
in Fig. 7 along both of the perpendicular directions 
to obtain a 2D deformation map. 

 
Fig. 7 - Laser range-finder based recovery of the 

geometric profiles in an area around the contact point 
between the probing rod and the object. 

Fig. 8 shows the geometric profiles measured by 
the laser range-finder system respectively on the 
horizontal and on the vertical direction at the point 
of contact. Assuming symmetrical elastic properties 
of the deformable object, these two perpendicular 
profiles are swept circularly and interpolated to 
compute a surface map of the deformation around 
the probing point, as shown in Fig. 9. 

As expected, the laser range-finder cannot 
measure the coordinates precisely at the point of 
contact which is actually obstructed by the probing 
rod. These coordinates are estimated based on the 
horizontal and vertical geometric profile 
measurements for the area immediately close to the 
point of contact. Knowledge about the rod’s length 
and the pose of the robot’s end effector handling the 
probe with respect to the surface of the object is also 
taken into account. 

 
a) 

 
b) 

Fig. 8 - Geometric profiles measured by the laser 
range-finder a) along the horizontal direction 

and b) along the vertical direction. 

 
Fig. 9 - Surface map of the deformation resulting from 

the force applied by the probing rod. 
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The resulting mapping serves as an input to a 
desktop hapto-visual human interface that allows a 
human teleoperator to experience the haptic feeling 
profiles at the point of contact as well as to see the 
image of a larger area around the point of contact on 
the explored object as captured by a video camera 
mounted on the robot manipulator. It includes a 
PHANTOM® 6DOF [21] haptic device representing 
the handheld replica of the probing rod that provides 
the haptic feedback consisting of the 3D geometric 
coordinates of the point of contact measured by the 
laser range finder system and the force vector and 
torque components measured by the 6 DOF force-
torque sensor at the point of contact. 

 

3. MODELLING THE ELASTIC 
PROPERTIES OF 3D OBJECTS 

FROM EXPERIMENTAL TACTILE 
AND RANGE IMAGING DATA 

Many interactive virtual reality applications such 
as telemedicine or telelearning cannot rely on 
synthetic models of the manipulated objects and 
need models conformal to reality obtained from 
measurements of physical objects.  

As high rendering rates are essential for the 
quality of the high-fidelity virtual environments 
[22], high-speed techniques are needed for the 
efficient storage, model transformation, and real-
time rendering of large numbers of hapto-visual 
object models evolving in the virtual operation 
theater. 

Neural networks (NN) which are able to learn 
nonlinear behaviors from a limited set of 
measurement data can provide efficient and compact 
multi-media object modeling solutions. Due to their 
continuous, analog-like, memory behavior, NNs are 
able to provide instantaneously an estimation of the 
output value for input values that were not part of 
the initial training set.  NNs consisting of a 
collection of simple neuron circuits provide the 

massive computational parallelism allowing for high 
rendering rates of complex models [23].  

A NN modeling technique, Fig. 10,  has recently 
been proposed by Cretu et al., [19], to map elastic 
behavior from data collected using a joint sensing 
strategy, combining tactile probing and range 
imaging. 

The force/torque sensor shown in Fig. 6 is used 
to measure the force components applied on the 
object and a laser range finder measures the 
deformation of the surface of the object under the 
given force. The laser profiling approach shown in 
Fig. 7 is used to collect 75 to 100 scans of the same 
area within a few seconds while the applied force is 
kept constant. Each geometric profile scan consists 
of 512 samples measured along a straight laser 
sweep lines on the object’s surface. In order to filter 
out the measurement noise, the mean value of all 
deformation profiles obtained under any given force 
is computed. The resulting mean value profiles, 
profile(fi), are then saved for each magnitude of 
normal force, fi , applied on the object and for each 
cluster of similar elasticity. This provides efficient 
means to cope with the noise in the range data. 

The process is initially guided by vision to define 
regions where the object lies. Then starting from the 
resulting cloud of 3D data, a neural gas NN yields a 
reduced set of cluster points on the 3D object’s 
surface which are relevant for the tactile probing 
[24]. For each cluster of similar elasticity, a 
feedforward NN with two input neurons (Y and F), 
25 hidden neurons and one output neuron (Z) is 
employed to learn the relation between the applied 
forces measured by the force-torque sensor and the 
corresponding geometric profiles measured by the 
range finder. One network is needed to model the 
elastic behavior of each cluster. Once trained, the 
NN takes as inputs the position along the profile, Y, 
and the force, F, and outputs the surface deformation 
coordinate, Z, with respect to the unloaded surface 
location, as illustrated in Fig. 11 and Fig. 12. 
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Fig. 10 - Neural network mapping and clustering of elastic behavior from tactile and range imaging data. 
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Fig. 11 - Real and NN modeled (Y, Z) geometric 

profile of a semi-stiff material under  
a normal force F=0.37 N.  

 
Fig. 12 - Real and NN modeled (Y, Z) geometric 

profile of a semi-stiff material under  
a normal force F= 2.65 N. 

The feedforward NNs were trained for 10000 
epochs using the Levenberg-Marquardt 
backpropagation algorithm with the learning rate set 
to 0.009. The whole data set is used for training in 
order to provide enough samples. For the semi-stiff 
material, the mean square error reached during 
training is 3.50x10-7. 

The resulting hapto-visual NN model allows not 
only to recover the elastic parameters in the sampled 
points but also provides an estimate on the elastic 
behavior on surrounding points that are not part of 
the selected sampling point set. This model can be 
used in combination with the hapto-visual human 
interface, in place of the classical strain-stress 
mapping. This provides the interface with complex 
nonlinear features that cannot be accurately 
represented with standard linear models.  
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