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Abstract: An approach to prediction of the arrival time of interplanetary shocks using neural networks based on the 
data gathered from single EPAM (Electron, Proton and Alpha Monitor) channel of NASA’s ACE (Advanced 
Composition Explorer) spacecraft is proposed in this paper. A short description of ACE spacecraft and the data, 
published online on the appropriate web-site, are considered. A data choice to fulfill a prediction of interplanetary 
shocks is proven and structure of neural network is described. The results of simulation modeling in MATLAB are 
considered in the end of the paper. 
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1. INTRODUCTION 
Interplanetary shocks in the space are the regions 

created by supersonic gas flow with sharp 
differences of gas density, pressure, temperature, 
ionization and other its parameters [1]. The solar 
wind, putting this gas to the Earth, goes to the 
Earth’s magnetosphere at about 500 km/s and makes 
a shock due to a resistance of Earth’s magnetic field. 
The energetic storm particle (ESP) events are 
associated with interplanetary shocks passages and 
close related to the geomagnetic storms. Both these 
events negatively influence on spacecrafts and 
satellites on a low-orbital Earth’s orbit, terrestrial 
high-frequency radio communications and radars, 
electrical grids and electrical power systems, and 
people’s health [2]. For example, GOES-7 weather 
satellite lost half of its solar cells during a large 
proton release by the sun during the powerful March 
13, 1989 storm which cut the operating life span of 
this satellite in half. ANIK E-1 and E-2 (January 20-
21, 1994) two Canadian communications satellites 
were disabled due to the elevated activity of high-
energy electrons in the magnetosphere. On January 
11, 1997 AT&T experienced a massive power 
failure in its Telstar 401 satellite [3]. There are much 
more examples of satellites lose and their temporal 
disabling caused by the interplanetary shocks. 
Therefore there are urgent tasks to predict the solar 
activity and its influence on Earth’s magnetosphere 
and the time of interplanetary shocks arrival and 
peak intensity of energetic particles traveling with 
the solar wind.  

During last decades many strategies were 
proposed for space weather prediction based on the 
data comes from satellites and terrestrial 
observatories. Many research teams use neural 
network approach for space weather prediction. R. 
A. Calvo and H. A. Ceccatto use feed-forward 
neural networks to study the solar dynamics, as 
measured by the annual mean value of the Wolf 
number. They conclude that neural networks are a 
reliable tool for time series analysis. In particular, 
they seem to be able to capture the intrinsic 
dynamics of solar activity, producing good long-
term forecastings for periods of at least a complete 
solar cycle [4]. A. Dmitriev and Yu. Minaeva et al. 
use recurrent ANNs for modeling of self-consistent 
time series of geomagnetic indexes Dst, Kp, AP, etc 
[5]. Z. Voros and D. Jankovicova propose prediction 
of geomagnetic activity based on a method using 
local Holder exponents a. The backpropagation 
artificial neural network model with feedback 
connection was used for the study of the solar wind - 
magnetosphere coupling and prediction of 
geomagnetic Dst index [6]. 

J. Vandegriff et al. [7] have developed an 
algorithm that can forecast the arrival of ESP events. 
The authors use historical ion data from the NASA’s 
Advanced Composition Explorer (ACE) spacecraft, 
which is stationed in a halo orbit around Lagrange 
point L1 at the distance about 1.5 million km from 
the Earth. They trained an artificial neural network 
to detect the characteristic signals that warn of an 
impending event. The network predicts the time 
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remaining until the maximum intensity of the ions is 
reached on the Earth. For the input of the prediction 
model they have used five ion channels (P1, P3, P5, 
P6, P7) provided by the web-site of NOAA (U.S. 
National Oceanic and Atmospheric Administration) 
real-time system and additional derivative 
parameters. However the choice of these data is not 
quite well explained and the average uncertainty of 
the prediction by the proposed method is 8.9 hours 
at 24-hours time interval.  

The goal of this paper is to estimate usage of 
separate ACE channels for prediction of the 
interplanetary shocks arrival time in order to 
decrease a computational complexity of a prediction 
algorithm and the relative prediction error of 
interplanetary shocks arrival time.   

 
2. ACE/EPAM DATA SET AND 

PREDICTION APPROACH 
The ACE Electron, Proton, and Alpha Monitor 

(EPAM) data can characterize the dynamic behavior 
of electrons and ions with ~0.03 to ~5 MeV that are 
accelerated by impulsive solar flares and by 
interplanetary shocks associated with Coronal Mass 
Injections. EPAM instrument includes two telescope 
assemblies with five separate apertures. The 
telescopes use the spin of the spacecraft to sweep the 
full sky. Solid-state detectors are used to measure 
the energy and composition of the incoming 
particles. The eight channels from the 
EPAM/LEMS30 (Low-Energy Magnetic 
Spectrometer) detector and their energy passbands 
[8] are presented in Table 1. 
  Table 1. Energy passbands of LEMS30/ACE detector  

Energy Channel Passband 
(MeV) Species 

P1 0.047-0.065 Ions 
P2 0.065-0.112 Ions 
P3 0.112-0.187 Ions 
P4 0.187-0.310 Ions 
P5 0.310-0.580 Ions 
P6 0.580-1.06 Ions 
P7 1.06-1.91 Ions 
P8 1.91-4.75 Ions 

 
ACE browse data are designed for monitoring 

large scale particle and field behavior and for 
selecting interesting time periods. The data are 
automatically generated from the spacecraft data 
stream using simple algorithms provided by the 
instrument investigators and published on the web 
by NOAA in real-time. We used ACE Level 2 
LEMS30 detector historical data that is suitable for a 
scientific research [9]. 

Interplanetary shock events can be recognized 
from the steam of EPAM data using two criteria [7]: 
velocity dispersion in the shock onset and a peak 

intensity greater than 105 particles/(s cm2 ster keV) 
for the 47-65 keV proton channel (see channel P1 in 
Table 1). J. Vandegriff et al. [7] have used a simple 
trigger designed to detect velocity dispersion in 
order to detect the onset. The trigger examines such 
additional parameters as the spectral slope, the 
average height of the energy spectrum, and the time 
derivatives of these quantities. All mentioned 
quantities are used for neural network training, in 
particularly the five ion channels (P1, P3, P5, P6, 
P7) provided by the NOAA real-time system, which 
are listed in Table 1 and the five quantities 
mentioned above, an anisotropy coefficient, spectral 
slope (SS), intensity midpoint (IMP) and time 
derivatives of these quantities (SS’ and IMP’). 
Therefore a neural network had ten inputs and one 
output, describing the time before shock arrival, i.e. 
the time then ion intensity became greater 105 
particles/(s cm2 ster keV). However such approach 
does not effectively use a prediction model since 
each time before arrival should correspond to the 
input part of the appropriate training vector. 
Practically this approach leads to necessity having 
an input data for neural network at each prediction 
step and therefore it is not possible to provide long-
term prediction using this model.  

In order to test our approach we have used two 
shock events similarly to [7]: 

• event 1 - onset begin at 14.00, 248 days in 
2000; shock begin at 12.00, 250 day of 2000 
(06/09/2000) and duration of this event is 46 
hours (550 points of 5-minute averaged solar 
particle fluxes);  

• event 2 - onset begin at 0.00, 21 day of 2001; 
shock begin at 6.00, 23 day of  2001 
(23/01/2001) and duration of this event is 30 
hours (360 points of 5-minute averaged solar 
particle fluxes). 

The graphs of EPAM solar particle fluxes of each 
channel P1-P8 for the event 1 are shown on Fig. 1. 
There are just an example figures, similar intensities 
are available for other shock events. A numerical 
analysis of graphs shown, that only P1 and P2 
channels can provide a peak intensity greater than 
105 particles/(s cm2 ster keV). Therefore it is 
possible to use the data from at least one channel for 
prediction the time before shock arrival. Within our 
prediction method we are going to predict an 
intensity excess of 105 particles/(s cm2 ster keV) on 
the time interval. The moment of time when the 
intensity will be greater that 105 particles/(s cm2 ster 
keV) is treated as a predicted moment of 
interplanetary shock. A comparison with a real time 
of appropriate EPAM data is considered as relative 
error of interplanetary shock arrival time. Other 
channels P4-P8 except for P3 channel could be used 
for more precise estimation of onset moment. Free 
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EPAM 1-minute and 5-minute data are accessible on 
anonymous FTP server [10]. The data are putted on 
the server each hour with a delay of 7 minutes which 
allows providing prediction in real time. 

 
3. STRUCTURE OF NEURAL NETWORK 

It is expediently to use a multi-layer perceptron 
to fulfill the prediction task, since this architecture 
has the advantage of being simple and widely used 
for prediction tasks [11-12]. 

The output value of three-layer perceptron (Fig. 
2) can be formulated as: 

⎟
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where N  is the number of neurons in the hidden 
layer, 3iw  is the weight of the synapse from neuron 
i  in the hidden layer to the output neuron, ih  is the 
output of neuron i , T  is the threshold of the output 
neuron and 3F  is the activation function of the 
output neuron.  
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 Fig. 1 – Particle intensities in separate channels P1-P8 for historical data test sequence: 

248-251 days of year 2000 
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The output value of neuron j  in the hidden layer 
is given by: 
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where ijw  are the weights from the input neurons to 
neuron j  in the hidden layer, ix  are the input values 

and jT  is the threshold of neuron j . The logistic 
activation function is used for the neurons of the 
hidden layer and the linear activation function, 
having a coefficient k , is used for the output neuron.  

The Levenberg-Marquardt algorithm is used for 
the training since it appears to be the fastest method 
for training moderate-sized feed forward neural 
networks [13]. 
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 Fig. 2 – Structure of neural network 

 
4. SIMULATION MODELLING RESULTS 

An experimental simulation modeling has been 
done in the MATLAB environment [14]. An input 
training set has been formed according to Box-
Jenkins [15] method. The size of input window we 
have chosen to be equal to 5, the size of the output 
window is equal to one since we are going to predict 
one step-by-step value of particle intensity and 
estimate when it will be greater than 105 particles/(s 
cm2 ster keV). The multi-layer perceptron with 5 
input neurons, 5 hidden neurons with tangent 
activation function and 1 output linear neuron has 
been used for prediction. We have used a 
Levenberg-Marquardt method for perceptron 
training till sum-squared error (SSE) of 10-3. The 
results of simulation modeling fulfilled several times 
for each shock event are placed below.  

The prediction result of energetic particles 
intensity for the event 1 (06/09/2000) is depicted on 
Fig. 3. The 550 five-minute data set is used for 
perceptron’s training and the same data are used for 
prediction in order to estimate a relative prediction 

error inside the training set. As it is seen the 
predicted and real data are practically the same. The 
analysis of the numerical data of the result has 
shown that the predicted time of shock arrival is 
equal to 540 value from onset and real time of shock 
arrival is equal to 545 value from onset. Therefore 
the relative prediction error inside the training set is 
less than 0.01%.  

Then, the perceptron trained on event 1 (550 data 
points) has been used to predict the shock arrival for 
the event 2 (23/01/2001) with length of 360 data 
points. As it is seen from Fig. 4, the predicted and 
real intensities are practically the same too. The 
analysis of numerical data shown, that the predicted 
time of shock arrival is equal to 352 value from 
onset and real time of shock arrival is equal to 355 
value from onset. Therefore in this case the relative 
prediction error outside the training set is less than 
0.01% too. The prediction result for the event 2 by 
the perceptron trained on the reduced data set (360 
values) from the event 1 is depicted on Fig. 5. 
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Fig. 3 – Prediction interplanetary shocks for event 1  

with 550 data in the training set 
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Fig. 5 – Prediction interplanetary shocks for event 2  

with 360 data in the training set 

The analysis of numerical data shown that the 
predicted time of shock arrival is equal to 263 value 
from onset and real time of shock arrival is equal to 
355 value from onset. Therefore the relative 
prediction error of interplanetary shock arrival is 
about 27% at reduced training set for perceptron 
training. 

 
5. CONCLUSIONS 

An approach to interplanetary shocks arrival time 
prediction is proposed in this paper based on the 
usage of separate channel’s EPAM data of ACE 
spacecraft. Neural based approach is tested using 
energetic particle intensities for the range 47-65 
keV. The data about interplanetary shock 
06/09/2000 are used for neural network training and 
the data about interplanetary shock 23/01/2001 are 
used for the testing. Experimental simulation 
modeling results have shown non-stability of the 
prediction changing in relative prediction error from 
accurate 0.01% to not quite accurate 27% gathered 
on reduced training set. Therefore in future 
investigations it is expedient to fulfill a series of 
experimental researches on usage both channels P1 
and P2 of EPAM data for the prediction and test 
both approaches on wide set of interplanetary shocks 
events.  
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