
Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 87

INFORMATION-BASED ALGORITHMIC DESIGN OF A NEURAL
NETWORK CLASSIFIER

Robert E. Hiromoto 1), Milos Manic 2)

1) University of Idaho, Moscow, Idaho 83844-1010, USA, hiromoto@cs.uidaho.edu

2) University of Idaho, 1776 Science Center Drive, Idaho Falls, Idaho 83402, USA, misko@uidaho.edu

Abstract: An information-based design principle is presented that provides a framework for the design of both parallel
and sequential algorithms. In this presentation, the notion of information (data) organization and canonical separation
are examined and used in the design of an iterative line method for pattern grouping. In addition this technique is
compared to the Winner Take All (WTA) method and shown to have many advantages.

Keywords: Information-based complexity, artificial neural network, adaptive, non-adaptive, canonical form,
perceptron, clusters.

1. INTRODUCTION
Information is the basic building block of all

processes whether biological or physical in nature.
The design process in many engineering and
scientific fields relies in one form or another on the
organization of information, and its application to a
process under investigation. However, once a system
is designed much of the information complexity
seems lost to the understanding of the applications
oriented users.

The organization and presentation of information
represent a basic starting point for the understanding
of process driven systems. From a physical and
mathematical perspective, the casting of a system
into its canonical form is an essential analysis
process that provides insight and simplicity in
unraveling the underlying process or processes.

Although not surprisingly, the notion of
canonical forms appears not to be appreciated
outside of the theoretical realms. The solution of
application problems or the research in extending
these solution methods are many times led by past
experience rather than a deeper formulation that
relies on the information complexity that the
problem exhibits and; thus, seek a canonical
reformulation based on the interactions of the
information that defines the problem and solution
domains.

In terms of information, the present work is
inspired by Joseph Traub et al. [1] in his work on
Information-Based Complexity (IBC). IBC provides
a different perspective on the analysis of numerical
algorithms. Although, there have been some

disagreements [2,3] to IBC's contribution from the
point of view of some in the numerical analysis
(NA) community, IBC introduces the notion of
information operators, where information is
partially derived and used by a computation (an
algorithm A that defines the information-based
solution method) to solve a problem. The number of
iterations In measures the solution rate to
convergence. Formally, if F is a set of problem
elements f and G the solution domain then the
solution operator S is defined by

 S : F → G∀f ∈ F (1)

Partial information about f is gathered by computing
the information operations L(f), where L ∈ Λ and
Λ denotes a collection of information operations
that maybe computed. If U is the approximation to
the solution S then the sharp lower bound on the
worst case error of U is within some radius of
information r(N) that does not exceed some error ε,
where N is the computed information about f and

 N(f) = {Li(f) | i = 0, 1, ... , n}, Li ∈ Λ , (2)

then U is guaranteed to be an ε-approximation.
This attention to information operations furnishes a
comparison of algorithmic performance based on the
information operator that is used. As an iterative
process, Eqn. (2) can be formulated in two distinct
forms: 1) non-adaptive information operators
defined by

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Journal

 of Computing

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 88

 N(f) = {L0(f), L1(f), … , Ln(f) }, ∀f ∈ F (3)

where the partially computed information about f
only depends upon the current iterative state. Thus
within each iteration, the operation Li(f) defines
independent processes that can be performed in
parallel; or 2) adaptive information operators
defined by

 N(f) = {L0(f), L1(f:λ0), … , Ln(f:λ0,λ1…λn-1 }, (4)

where λIs represent various combinations of
previously learned information; and therefore,
requires a sequential sweep throw each iteration
step.

Within the context of the IBC representation, the
introduction of the information operator and
information operations represents a novel and
attractive approach to algorithm analysis and design
in general, and speaks to a broader possible
application than originally intended. From an
algorithmic point of view, the flow and manipulation
of information is the very essence of an algorithm's
design.

The IBC, though steeped in the analysis of
computationally relevant information, limits itself to
only the analysis. In the following sections, we
explore this question, and in so doing provide an
example where the analysis of information flow or
the use of information operators when placed in a
form of a canonically mapped information flow may
yields more optimal algorithmic designs when
possible.

2. CANONICAL INFORMATION FLOW
Traditionally in mathematics, a canonical form of

a function is a function that is written in the most
standard, conventional, and logical way. In its
standard form, examples include the Jordan normal
form of matrices, the canonical prime factorization
of positive integers, the decomposition of a
permutation into a product of disjoint cycles, and the
alignment of system of equations along an
orthogonal basis function.

Intimately connected with these canonical forms
is the simplest description of the underlying
systemic properties that defines the function or
process. Once transformed into its canonical form,
the interdependence between parameters can be
uncoupled to expose the full degrees of freedom.

From an algorithmic perspective, the
transformation to canonical form also reduces the
computational complexity of applying the
information operations Li as defined in IBC.
Anyone who has attempted to prove Kepler's laws of
planetary motion using Newton's equation for

gravity when choosing the coordinate system of the
Earth as the basis, no doubt is aware of the
complications that are introduced.

In effect, the information complexity can be
viewed as a virtual complexity where the reduction
to canonical form reorganizes the information to its
simplest complexity. In this representation, IBC is
certain to detect a more optimal algorithm.

Unfortunately, the adherence to canonical form
tends to be lost or ignored when dealing with the
actual implementation of an algorithm at the
processor level. The art of computing appears more
like an art than a rigorous set of well-founded
principles. Typically, an algorithm is assembled to
fit the programming style or programming language
that represents the fashions of the day. Algorithms
are designed with little worry of cache utilization
issues, problem sizes that are too large to remain in
local memory, iterations schemes that maximize the
inefficient manipulation of information, and so on.
All of these examples are examples of the inefficient
use of information that results in the notion that
could be termed virtual information complexity.

In many optimization techniques, the reliance on
randomness has played a significant role in the
implementation of problem solutions that are
intractable. Random treatment of problem solutions
has proved to provide a convenient approach in
surveying landscapes for optimization problems
where the solutions space is vast and appears to
follows no predetermined schedule or route. Monte
Carlo techniques [4] are invaluable in the estimation
of otherwise hard problems. However, in many
situations the application of these approaches may
be applied without merit but still used as an easy and
direct solution technique. The practical question to
be asked is how can information be organized in a
Monte Carlo approach in order to achieve a
canonical form for information. Not surprisingly
Sequential Monte Carlo techniques [5] have been
proposed and studied, where adaptive information
operations are applied to the Monte Carlo procedure
to organize and more effectively utilize the previous
iterated information. The value of reformulating
information in terms of a canonical formulation
should not be down graded as less important or
orthogonal to the solution method [6].

The approach proposed here introduces a notion
of Information-Based Algorithmic Design where
information flow of an algorithm is examined and
then reformulated into a canonical mapping or an
information re-mapping that better integrates the
problem-solution domains. Rather than simply
mapping a given algorithm to a particular processing
unit, the task requires a fundamental analysis of the
information complexity in terms of enhancing the
specific information operator. In this approach a

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 89

canonical information mapping is sought.
In the context of canonical information flow

description, the analysis is done at a higher level
than that of IBC.

3. BACKGROUND
In this presentation, the application of an

information-based design approach for a neural
network algorithm is considered. The importance of
neural network applications and the advancement of
their theory are widely acknowledged in both the
academic and industrial communities. Entire
conferences are held to disseminate the latest
practices and techniques in optimization, search, and
recognition problems. Although the neural network
community has moved quite far from the
anticipation that the science of neural networks
might solve the fascinating mystery of the functional
operation of the brain, the introduction of the
artificial neural networks (ANNs) into the science of
optimization techniques has had a serious impact on
the solution of intractable problems.

The science of ANNs is still a challenging field.
The simplistic approach to an artificial neuron can
become very complex with numerous possibilities of
combining these units and learning rules. The basic
network is formed from an input layer, an output
layer, and if needed a hidden layer of neuron nodes.
Learning rules are conceptually easy to comprehend.
Depending upon simultaneous or iterative data feed,
the learning procedure is batch or incremental.
These approaches are all well defined; however, the
ambiguities of the problem domain make the process
of building a universal ANN solution difficult to
define. This difficulty can be understood in terms of
the network parameters such as the number of inputs
required for training, the number of initial nodes
required for a given hidden layer, the relevance of
the information contained within the input for
training, the number of iterations required during the
training process, etc. On the other hand, similar
issues arise in other optimization techniques whether
it is Genetic Algorithms or Monte Carlo techniques.
So ANNs are not unique in these regards.

One intriguing question, which is the focal point
of this presentation, is the role that information may
play in facilitating and/or addressing some of the
issues raised above. Clearly the use of a heuristic is
one time-honored form of an information-based
strategy to circumvent the learning process to
achieve faster convergence. How one identifies and
selects the appropriate information is not always
clear. A few approaches distinguish themselves in
this realm.

One approach known as “design by training” is
very effective when it comes to applications where

knowledge of a problem exists. For example, two-
layered Counter Propagation Networks (CPN) are
very effective with hetero-associative memory type
of applications [7].

Another approach known as Genetic Algorithm
Neural Networks (GANNs) relies on determination
of neural network parameters by genetic search. The
genetic approach is used to increase robustness in
network training with respect to the problem of
convergence [8-11].

Yet another approach refers to data mining of
new information in existing data and articulating that
knowledge as an extra part of the architecture. The
representatives of such approaches are Functional
Link and Polynomial Networks [12,13].

However, a universal approach to determining
network parameters is not known. Can an ANN be
designed a priori without training? Is there a
canonical form for neural network architectures that
is dictated solely by the problem specifications? If
so how can it be realized?

In the following sections, a simple analysis of the
perceptron neuron is presented within the context of
its information-based complexity or information
operators. This analysis then leads to a clustering
algorithm whose associated architecture is uniquely
defined in a general {n,m}-matrix space and is
shown to support computational parallelism.

4. PERCEPTRON
The Rosenblatt’s concept of a Perceptron neuron

dates back to the 1958 [14]. The perceptron
computes a single output from multiple real-valued
inputs by forming a linear combination according to
its input weights. Mathematically the actual net
value can be written as

 bxwnet
n

i
ii += ∑

=1
 (5)

where wi and xi are the vectors of weights and
inputs, respectively. In general, each iteration of the
inputs and corresponding weights may be passed
through some nonlinear activation function φ and a
bias b, such that,

 out = φ(wi xi
i=1

n
∑ + b) (6)

or in vector notation

 out = φ(W T x + b) (7)

Although a single perceptron is shown not to be a
very general learning algorithm, it is the building

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 90

block of a much larger and more practical multilayer
perceptron (MLP) network that consists of a set of
source nodes forming the input layer, one or more
hidden layers of computation nodes, and an output
layer of nodes. The input signal propagates through
the network layer-by-layer in a feedforward fashion.
Feedback networks are not considered in this
presentation.

A supervised learning rule for a single perceptron
neuron with learning constant α is given by

 ∇Wi = αδXi

 Wi+1 = ΔWi + Wi (8)

 δ = d − o = (d − sign(Neti))

where d is the desired response and o is the actual
output.
The information-based complexity of Eqn. (4)
represents an adaptive information operator where
the i-th net result depends upon the previous i-1
sequential iterations. In the perceptron model, Eqn.
(4) is overloaded in the sense that it represents both
an approximation methods and an optimization
search technique. In two-dimensions, xi may be
viewed as a two-dimensional vector that undergoes
both a linear translation and rotation within a simple
two-dimensional region. This dual composition of
transformations and approximation methods can
readably be uncoupled into a much simpler
canonical form that exposes these composite
operations into pairs of non-adaptive information
operators. The transition from adaptive to non-
adaptive forms also implies the existence of a
transformation from a sequential to a parallel
algorithmic formalism. Fig. 1 and Table 1 show a
simple pattern detection application of the
perceptron training rule for a single neuron defined
by Eqn. (8). A soft activation function is used and
the effect of different learning constants α can be
observed. Fig. 1 illustrates two important features of
the information operator as it is applied to the
specific problem defined by Table 1. Upon closer
examination of Fig. 1, two separate independent
(orthogonal) degrees of freedom are present. If the
separation line is taken as the basic geometric unit
then the line undergoes two linearly independent
motions: 1) translation and 2) rotation. It is through
the learning procedure of determining ΔWi where
the coupling of these motions is performed. In
addition, it is the value of α that dictates the ranges
of rotations and the spacing between lines per
iteration. Thus the effects of ΔWi and α suggest
that the dependences between subsequent updates is

an artifact of the organization of the information
operator rather than the information required for
convergence. In other words, an information
operator exists that splits the perceptron procedure
into separate translation and rotation operations.
Within this context, we examine the consequences
of a canonical re-formulation of the perceptron's
order of rule application. In the following sections, a
canonical neural network emerges that exhibits a
fixed network complexity per iteration level and
defines a sparse solution matrix.

Fig. 1 - 2-D detection (a) α = 0.3 (b) α = 0.1

Table 1. A simple pattern detection example
in two-dimensions

 Desired
Output

Pattern1 1 2 +1 -1
Pattern2 2 1 +1 +1
Initial Weights 1 3 -3
Final Weights (a) 1 -0.5 -0.5
Final Weights (b) 1 -1 -0.5

5. CANONICAL PERCEPTRON MODEL
The orthogonality of the proposed neural network

architecture consists of two essential layers: one
input layer that performs an orthogonal search, and
one output layer that performs a rotational search.
Fig. 2 illustrates such an architecture that is applied
to a two-dimensional space.

The first input layer performs an orthogonal pass
through a search space in the x and y directions. This
layer consists of two sets of nodes (in two-
dimensions) that can be executed in parallel. Each
sets of nodes performs an orthogonal scan (one set in
the x and another in y direction) of the search space.
Each set of nodes therefore produces a set of stripes.
The output of the first layer can be viewed as a set of
intersections of these stripes. In the simple example
of a two-dimensional scan space, each of these sets
performs a y-horizontal and x-vertical striping of the

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 91

search space that results in a set of rectangular areas
that may possibly contain the patterns as illustrated
in Fig. 3.

The second, output layer (depicted in Fig. 2 as
nodes with {x,y} inputs) performs a further
reduction of the search space. In case of a 2-
dimensional space, this layer is similar to the first
input layer but differs by a rotation as defined by the
{x,y} coordinate pairs. This layer is necessary in
order to uniquely eliminate empty rectangular sub-
zones (associated with the stripped two-dimensional
space). This layer performs diagonal striping across
the search space. Though further layers are not
necessary, each additional layer will only sharpen
the cluster of patterns within the space, hence
improving clustering resolution.

The resolution of the pattern depends directly on
scanning step size δ . The smaller the step size of δ ,
the better is the resolution. The lower boundary of
this search is recognition of the whole set of patterns
as belonging to a single cluster, while the upper
boundary is recognition of clusters with single
pattern belonging to it. In cases where the patterns
are sparsely distributed, the computational search
time for the initial space can be dramatically reduced
if the value of δ is chosen appropriately.
The complexity of the proposed neural network
architecture goes as follows. Assume a two-
dimensional rectangular region of lengths lx and ly,
where lk = lkr – lkl defines the right-left boundary
extent of the space in the k = x or y direction; and
suppose that we select the orthogonal search space
increments as δx and δy , such that, n searches

 nx =
lx
δx

and ny =
ly
δy

 (9)

are performed incrementally along the x direction
and y direction. An orthogonal search must be
completed before the corresponding rotations can be
performed. The results of the search network can be
represented by an nx x ny matrix of cluster (pattern)
positions. This matrix can be used in subsequent
cluster analysis.

For an n x m input layer, the corresponding set of
nodes consists of n x m Orthogonal Search Element
(OSE) nodes, respectively (Fig. 4). These input node
signals are intersected in pair-wise fashion. The n x
m output layer nodes of the Rotational Search
Element (RSE) refine the resulting signals.

The orthogonal search can be generalized to a d-
dimensional space. For simplicity, assume that the
region of interest is a higher dimensional cuboid
with sides of length l1, l2,..., ld. The corresponding
architecture (not presented in this paper) would be
embellished by nx x ny d-dimensional d hyperplanes.
For an orthogonal search in the i-th dimension, ni
number of incremental hyperplane displacements is
performed along the length li

ni =
li
δi

where δi is the orthogonal search increment along
the direction li as defined by Eqn. (9).

Fig. 2 - Basic two-layer neural network

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 92

Fig. 3 - Output of first input layer

Fig. 4 - The OSE Architecture

The complexity for the total number of
orthogonal search for all nx x ny hyperplanes;
therefore, is

Θ(nx × ny)
The corresponding rotational complexity is of the

same order O(nx × ny), where the big-O notation is
used to emphasize that all enclosed volumes may or
may not necessarily contain a pattern. The big-O
here should, therefore, be understood as defining an
upper bound.

The OSE node architecture is illustrated in Fig. 5.
The OSE node consists of 3 neurons. Intersected
signals from the first two neurons result in
“stripped” areas, for both dimensions of an
orthogonal search space. x-low and x-high (y-low
and y-high), are signals extracted and used in RSE
nodes. The RSE node architecture is illustrated in
Fig. 6. The RSE node also consists of 3 neurons,
which performs a rotational search about the
“stripped” areas. The sum of signals x-low and x-
high (y-low and y-high), is used for the biasing of
the first two neurons in the node, as illustrated by
Fig. 6. The process of combining signals through a
network is illustrated by Fig. 7, as a part of the
complete network from Fig. 4.

6. PARALLEL ARCHITECTURE

The OSE architecture (Fig. 4) is parallel. The
orthogonal searches can be performed sequentially
or in parallel. Only synchronization points are
required between the end of the parallel orthogonal
searches and the beginning of the rotation phase. In
other words, an orthogonal search must be
completed before the corresponding rotations can be
performed. This barrier synchronization is essential
in identifying those strips that may possibly contain
patterns in which rotations are required for
verification. Assuming that all orthogonal searches
complete in the same amount of time, the
corresponding rotations can then be applied
sequentially or in parallel, or in a data flow
scheduled manner.
For a parallel architecture with a limited number of
parallel processing units Pcpu, the maximum number
of parallel steps (iterations) Ip required by the OSE
architecture to complete the orthogonal search is
given by

I p =
nx × ny

Pcpu

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥
.

In a similar fashion, if the number of parallel

processing units Pcpu limits the number of parallel
rotations then a similar expression can be written
down.

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 93

Fig. 5 - The OSE Architecture.

Fig. 6 - The RSE Architecture

7. ORTHOGONALITY

The orthogonality of the proposed neural network
lends itself to the notion of “grow as needed,” the
principle of the Cascade Correlation Network
architecture [15]. The canonical combinations of
orthogonal translations and rotations add units of
nodal layers to the network as required to achieve a
certain degree of clustering resolution.
The algorithm developed above represents a
canonical formulation of a clustering technique;
however, it can also be used as a preconditioning
search algorithm regardless of the dimensionality of
the search space. As a preconditioning process, the
orthogonality of the proposed algorithm can simplify

the initial stages for deducing specific properties for
a given search space. This acquired knowledge may
ensure more accurate application of neural network
algorithms that are characterized by a high
dependence on the starting parameterization set
chosen. Algorithms such as Levenberg-Marquardt
algorithm [15,16] are examples of this dependence.
They are proven to be very fast when the initial
weight-set is chosen close to a solution but
otherwise almost always fail to converge. Other
algorithms based on gradient search, such as Error
Back Propagation [12,19-20], suffer from typical
oscillation and flat spot problems when weights are
chosen far from the solution.

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 94

Fig. 7 - The combining signal network

8. HIGHER-DIMENSIONAL PROPERTIES
Given a number of patterns Np, a volume per

pattern (space pattern) density can be defined as

Dp =
1

Sd ⋅ N p

where

Sd =

d
l1l2Lld

is the space density, and li for i = 1, 2, ... , d is the
length of each of the d-orthogonal directions.

In a parametric space of dimension d, similarities
of patterns can be correlated by their locality within
common clusters. As such, regions with anomalous
patterns will be designated with low pattern
densities. This suggests that searching around large
clusters of related events could accelerate the search
for unusual events. Although not discussed in this
paper, this will introduce a possible learning strategy
for adapting the search space parameter δ .

9. ORTHOGONAL SEARCH vs. WTA
The Center of Gravity (COG) algorithms such as

the Kohonen WTA algorithm [21,22] are highly
dependent on the initial choice of parameters: the

order of patterns applied; the initial configuration of
the architecture; the initial weight-set; and the
selected radius of attraction. The initial weight-set,
if not judicially selected, may bias the centers of
gravities and result in obstructing the learning of
new patterns; thereby, influencing the number of
final clusters detected. The order in which patterns
are applied can also influence the selection of the
center of gravity for the final clusters. The weights
determined by the patterns that have already been
learned limit the mobility towards unseen patterns.
In addition, the number of neurons initially used to
construct the neural network also influences the final
clustering of patterns. For example, too larger a
number of initial neurons used in the construction of
a network can result in the over-learning (over-
fitting) of a problem, which could result in a larger
number of particularly small clusters. On the other
hand, too small a number of neurons may prevent
the network from learning the relationship between
new clusters resulting in less resolution.

The WTA approach is particularly sensitive to
the distribution of patterns in the search space. For
patterns that are already grouped, the WTA
approach performs satisfactorily. This assumes that
a priori knowledge about a problem's organization
exists and is used. The result of each run of the
WTA algorithm is, therefore, expected to be the
same when 1) patterns are fed to the WTA network a
cluster at a time, and 2) the process of determining a

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 95

cluster center is not based on a weighted calculation.
For patterns that are scattered throughout the search
space, the result of each run of WTA method may
dramatically differ depending on 1) the initial choice
of all the parameters; and 2) the order in which
patterns are applied. The initial parameter choice
applies especially to the cluster radius chosen.

Ideal cases for WTA are problems with
distinctively grouped patterns that are distributed at
far distances. Here if the radius of attraction is much
smaller than the distance between clusters, the WTA
approach is likely to return fast and repeatable
results.

Even though different variations of the WTA
approach may rely upon a single iteration through all
the patterns, more general WTA algorithm may
require a number of iterations. Although sometimes
computationally very fast, the former WTA
approaches have the negative effect of producing
dramatically different clustered patterns for each of
the different runs. These iterative approaches do
little in learning to anticipate the possible cluster
positions. As a consequence, the knowledge gained
from any one application of the WTA method does
not guarantee an improvement on subsequent
applications. In essence, the careful selection of the
starting parameters is key criteria to the performance
of the WTA method.

In contrast to the WTA algorithm, the orthogonal
search algorithm is deterministic in the sense that the
algorithm returns the same clustering of patterns,
irrespective of the order in which the patterns are
shown to the network. Hence, as additional patterns
are subsequently added to the search space, no
previous information about patterns already
processed is lost. This property distinguishes the
advantages of the orthogonal approach over the
WTA method, and underscores the importance of
formulating information-based operations in an
orthogonal (independent) fashion.

The orthogonal search algorithm may result in a
larger number of clusters; some of which may
contain only a single pattern. A repetitive orthogonal
search would naturally increase pattern recognition
resolution up to a single pattern. For this reason, the
orthogonal search may be very effective for
detecting patterns, rather than clusters. However,
this is not a limitation. The resolution of the pattern
depends directly on the scanning step size δ . Unlike
the WTA method, the orthogonal search algorithm
does not rely on the use of a learning-constant, even
though it is an unsupervised method. Furthermore,
the orthogonal search algorithm returns the same
result with each run.

Both the WTA and the orthogonal approaches
generalize easily to higher-dimensional problems.
In higher-dimensions, the orthogonal search may

prove to be slower than WTA; however, the parallel
and deterministic nature of the orthogonal search
method can still be exploited. In addition, the
orthogonal search approach has the advantage of
decoupling the problem domain into subspaces that
can be explored systematically. This is done through
the recursive application of the RSE architectural
unit layer, where each pair of dimensions is
investigated individually. The one most important
architectural aspect of the orthogonal search
approach is the recursive application of this
algorithm.

In Fig. 8 and 9 an application of a COG (with α
= 1) and the orthogonal approaches are illustrated,
respectively. For the COG method, the possible
clustering depends upon the value of α , so that the
example of patterns used is susceptible to several
different clustering possibilities depending upon the
value selected for α .

Fig. 8 - COG clustering

Fig. 9 - Orthogonal clustering

In the orthogonal approach the learning constant

α does not even exist, hence the clustering is
determined once and is never changed. The heavy

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 96

solid and heavy dashed black lines depict the two
orthogonal searches. For a fixed radius of attraction,
a solid black line that serves as one boundary and a
corresponding dashed black line on the opposite
boundary surround all patterns grouped into one
cluster. As a consequence of the cluster invariance
for the orthogonal approach, a matrix representation
of the cluster arrangement can be formulated. In this
formulation, as the patterns are clustered into larger
groups the matrix becomes sparse and thus the
cluster locations can easily be manipulated during
subsequent analysis. Fig. 10 pictures the
corresponding matrix associated with the results of
the orthogonal scanning technique. For the
orthogonal approach, this representation is fixed and
provides a concise formulation of the clustered
space.

In Fig. 9, the bounded or stripped areas that
contain the clustered patterns enclose areas that are
filled with pattern-less regions. For this reason, the
rotations are applied to verify or eliminate patterns
that do or do not occupy positions defined by the
initial orthogonal search. In fact, this is in part the
motivation to formulate the cluster positions in a
sparse matrix representation.

As a simple example, Fig. 11 illustrates the
rotation about a stripped area, where the lines of
rotation (dashed) are given by y = -x +1.5 and y = -x
+ 2.7. The rotations in this example are chosen to be
at 45°s to the orthogonal {x,y} but this is not a
requirement.

Fig. 10 - Sparse matrix representation

10. ARCHITECTURAL STRUCTURE

The orthogonal search neural network
architecture is an unsupervised, feed-forward type of
network. The network is recursively applied to the
search space defined by the problem domain in two-
or higher-dimensions. The architecture is built from
two basic layers that are combined recursively as it
is applied to the search space. Although only two
layers are necessary, additional layers can be added
to enhance the sharpness of detecting, refining and
smoothing cluster boundaries within the search
space.

Fig. 11 - Rotational Example

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 97

The first layer combines orthogonal search

signals in the { n × m}-matrix space, and their
outputs are combined with the rotational searches
applied in the next layer. At each of these levels, the
computational dependence allows for and defines
the parallel aspects of the architecture. Within this
architectural framework, a highly parallel
implementation is easily achievable. This property
is the result of the non-adaptive nature of the
information operators defined by this architecture.
Rather than the original formulation of the
perceptron model where the information operations
are defined by Eqn. (1), this new canonically
simplified orthogonal architecture uniquely defines
without ambiguities the number of nodes required
within each layer of an { n × m}-matrix network.

11. CONCLUSION
The notion of information-based algorithmic

design is an abstraction that offers potential to
achieve a canonical formulation of solution
techniques. In this presentation, the information
operator associated with the perceptron-learning
algorithm is separated into two independent
components and used in a non-adaptive formulation
that defines an ANN architecture with unambiguous
number of nodes per translation and rotation layers.
Specifically, the basic design of the proposed ANN
network defines three { n × m}-layers that make up
the basic building blocks of the network. The
recursive application of this basic ANN block results
in finer overall resolution. It is important to realize
that the proposed ANN architecture is deterministic.
The number of nodes in the input layer and in the
secondary rotational (hidden) layer is specified by
the dimensionality of the problem space; as well as,
the degree of parallelism chosen. What remains
undetermined is the orthogonal displacement δ that
defines the incremental stride taken along each
orthogonal direction. However, this ambiguity can
be recast in an adaptive and constructive way that
allows for a variable stride step size to rapidly
sweeping through each orthogonal direction. The
details of this adaptive approach are left for a future
work. The non-adaptive nature of the proposed
algorithm exhibits a canonical structure that is
computationally parallel and specifies uniquely the
number of neural nodes within each layer as
required to define the architecture exactly. The
nature of the parallelism allows for a divide-and-
conquer approach for limited number of processors
where regions of the search space can be subdivided
and scheduled as processors become available. In
addition, the advantages of high-level parallelism
can be captured in hardware. As such, embedded

systems can be designed to enhance the efficiency of
this algorithm.

Both the WTA and the orthogonal algorithms
belong to the unsupervised type of learning, where
learning the desired outcome (number of clusters) is
not known ahead of time. The orthogonal search
algorithm excels at detecting patterns rather than
clusters. However with a predefined search step it
can also produce clustering of the pattern space. An
advantage of the orthogonal algorithm is the
simultaneous execution of the two sets of input layer
nodes. Once the input layers have completed their
orthogonal { n × m} search, the second layer of
rotations can assimilate the knowledge discovered
by the first layer in a parallel fashion as well. The
final result is a clustered space.

12. REFERENCES
[1] J. F. Traub, G. W. Wasilkowski, and H.

Wozniakowski. Information-Based
Complexity, Academic Press Series In
Computer Science And Scientific Computing
Archive, 1988.

[2] B. N. Parlett. Some Basic Information on
Information-Based Complexity Theory, Bulletin
of the American Mathematical Society, 1992,
Vol. 26, No. 1, pp. 3-28.

[3] J. F. Traub and H. Wozniakowski. Perspectives
on Information-Based Complexity, Bulletin of
the American Mathematical Society, 1992, Vol.
26, No. 1, Pages 29-52.

[4] M. H. Kalos and P. A. Whitlock. Monte Carlo
Methods, Volume I: Basics, Wiley-Interscience
Publications, John Wiley and Sons 1986, New
York.

[5] Doucet, N. de Freitas, and N. Gordon.
Sequential Monte Carlo Methods in Practice,
Springer 2001.

[6] M. Gunzburger, R. E. Hiromoto, and M. Mundt.
Analysis of a Monte Carlo Boundary
Propagation Method, Journal of Computers and
Math. with Applic. 1996, Vol. 31, No. 6, pp. 61-
70.

[7] Hecht-Nielsen, R. Counter-Propagation
networks, IEEE First International Conference
on Neural Networks, Volume II, 1987.

[8] V. Maniezzo. Genetic evolution of the topology
and weight distribution of neural networks, IEEE
Transactions on Neural Networks, 1994, Vol. 5,
No.1, pp. 39-53.

[9] S. Mizuta , T. Sato, D. Lao, M. Ikeda, T.
Shimizu. Structure design of neural networks
using genetic algorithms, Complex Systems,
2001, 13, pp. 161-175.

[10] K. Balakrishnan , V. Honavar. Evolutionary

Robert E. Hiromoto, Milos Manic / Computing, 2006, Vol. 5, Issue 3, 87-98

 98

design of neural architectures – preliminary
taxonomy and guide to literature, Artificial
Intelligence Group, Iowa State University,
Ames, Tech. Rep. CS TR#98-01, 1995.

[11] Manic, M. Wilamowski, D. Robust Neural
Network Training Using Partial Gradient
Probing, IEEE Int. Conf. on Industrial
Informatics, INDIN 2003, August 21-24, Banff,
Alberta, Canada.

[12] J. M. Zurada. Introduction to Artificial Neural
Systems, West Publishing Company 1992.

[13] Wilamowska, K., Manic, M. Unsupervised
pattern clustering for data mining, IECON'01 -
27. Annual Conference of the IEEE Industrial
Electronics Society, Denver, Colorado, Nov 29
to Dec 2, 2001, pp.1862-1867.

[14] F. Rosenblatt. The Perceptron: A Probabilistic
Model for Information Storage and Organization
in the Brain, Psychological Review, 1958 v65,
No. 6, pp. 386-408.

[15] Fahlman and Lebiere. The Cascade-Correlation
Learning Architecture, in Advances in Neural
Information Processing Systems 2, D.Touretzky,
ed., San Mateo, CA, Morgan Kaufmann, 1990,
pp.524-532.

[16] Marquardt, D. An Algorithm for Least-Squares
Estimation of Nonlinear Parameters, SIAM J.
Appl. Math. 1963, 11, 431-441.

[17] Rumelhart, D.E., McClelland, J.L. (1986)
Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, MIT Press
Cambridge, MA. 1986, Vol. 1.

[18] Rumelhart, D.E., Hinton, G.E., and Williams,
R.J. Learning Internal Representation by Error
Propagation, Parallel Distributed Processing,
MIT Press, Cambridge, MA. 1986 Vol.1,
pp.318-362.

[19] Sejnowski T.J., Rosenberg, C.R. Parallel
Networks that Learn to Pronounce English Text,
Complex Systems, 1987, Vol. 1, 145-168.

[20] Kohonen, T. Self-organized formation of
topologically correct feature maps, in Biological
Cybernetics, 1982, 43:59-69.

[21] Kohonen, T. Self-Organization and Associative
Memory, Springer-Verlag, 1988 2nd Ed. New
York.

Dr. Robert E. Hiromoto,
received his Ph.D. degree in
Physics from University of
Texas at Dallas. He is
professor of computer science
at the University of Idaho. His
areas of research include the
automated flight formation of
Unmanned Aerial Vehicles,
Information-based design of
sequential and parallel

algorithms, decryption techniques using set theoretic
estimation, and parallel graphics rendering
algorithms for cluster-based systems.

Dr.Milos Manic, IEEE Senior
Member, received his Ph.D.
degree in Computer Science
from University of Idaho,
Computer Science Dept. He
received his M.S. and a
Dipl.Ing. in Computer Science
and Electrical Engineering
from the University of Nis,
Faculty of Electronic
Engineering, Serbia. He is an
assistant professor at the UI Computer Science
Dept. and adjunct faculty with the UI ECE Dept. He
is also a program director for University of Idaho CS
& ECE programs in Idaho Falls, and serves as an
IEEE IES AdCom member and webmaster. His
areas of research include artificial neural networks,
fuzzy logic, and performability of fault tolerant
systems.

