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1. INTRODUCTION 
Information is the basic building block of all 

processes whether biological or physical in nature.  
The design process in many engineering and 
scientific fields relies in one form or another on the 
organization of information, and its application to a 
process under investigation. However, once a system 
is designed much of the information complexity 
seems lost to the understanding of the applications 
oriented users. 

The organization and presentation of information 
represent a basic starting point for the understanding 
of process driven systems. From a physical and 
mathematical perspective, the casting of a system 
into its canonical form is an essential analysis 
process that provides insight and simplicity in 
unraveling the underlying process or processes. 

Although not surprisingly, the notion of 
canonical forms appears not to be appreciated 
outside of the theoretical realms. The solution of 
application problems or the research in extending 
these solution methods are many times led by past 
experience rather than a deeper formulation that 
relies on the information complexity that the 
problem exhibits and; thus, seek a canonical 
reformulation based on the interactions of the 
information that defines the problem and solution 
domains. 

In terms of information, the present work is 
inspired by Joseph Traub et al. [1] in his work on 
Information-Based Complexity (IBC).  IBC provides 
a different perspective on the analysis of numerical 
algorithms. Although, there have been some 

disagreements [2,3] to IBC's contribution from the 
point of view of some in the numerical analysis 
(NA) community, IBC introduces the notion of 
information operators, where information is 
partially derived and used by a computation (an 
algorithm A that defines the information-based 
solution method) to solve a problem. The number of 
iterations In measures the solution rate to 
convergence. Formally, if F is a set of problem 
elements f and G the solution domain then the 
solution operator S is defined by 

 
        S : F → G∀f ∈ F                      (1) 

 
Partial information about f  is gathered by computing 
the information operations L(f), where L ∈ Λ  and 
Λ denotes a collection of information operations 
that maybe computed.  If U is the approximation to 
the solution S then the sharp lower bound on the 
worst case error of U is within some radius of 
information r(N) that does not exceed some error ε, 
where N is the computed information about f  and  
 
           N(f) = {Li(f) | i = 0, 1, ... , n},    Li ∈ Λ ,     (2) 
 
then U is guaranteed to be an ε-approximation.  
This attention to information operations furnishes a 
comparison of algorithmic performance based on the 
information operator that is used. As an iterative 
process, Eqn. (2) can be formulated in two distinct 
forms: 1) non-adaptive information operators 
defined by  
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        N(f) = {L0(f), L1(f), … , Ln(f) },   ∀f ∈ F       (3) 
 
where the partially computed information about f 
only depends upon the current iterative state.  Thus 
within each iteration, the operation Li(f) defines 
independent processes that can be performed in 
parallel; or 2) adaptive information operators 
defined by  
 
    N(f) = {L0(f), L1(f:λ0), … , Ln(f:λ0,λ1…λn-1 },     (4) 
 
where λIs represent various combinations of 
previously learned information; and therefore, 
requires a sequential sweep throw each iteration 
step. 

Within the context of the IBC representation, the 
introduction of the information operator and 
information operations represents a novel and 
attractive approach to algorithm analysis and design 
in general, and speaks to a broader possible 
application than originally intended. From an 
algorithmic point of view, the flow and manipulation 
of information is the very essence of an algorithm's 
design. 

The IBC, though steeped in the analysis of 
computationally relevant information, limits itself to 
only the analysis.  In the following sections, we 
explore this question, and in so doing provide an 
example where the analysis of information flow or 
the use of information operators when placed in a 
form of a canonically mapped information flow may 
yields more optimal algorithmic designs when 
possible. 
 

2. CANONICAL INFORMATION FLOW 
Traditionally in mathematics, a canonical form of 

a function is a function that is written in the most 
standard, conventional, and logical way. In its 
standard form, examples include the Jordan normal 
form of matrices, the canonical prime factorization 
of positive integers, the decomposition of a 
permutation into a product of disjoint cycles, and the 
alignment of system of equations along an 
orthogonal basis function. 

Intimately connected with these canonical forms 
is the simplest description of the underlying 
systemic properties that defines the function or 
process.  Once transformed into its canonical form, 
the interdependence between parameters can be 
uncoupled to expose the full degrees of freedom. 

From an algorithmic perspective, the 
transformation to canonical form also reduces the 
computational complexity of applying the 
information operations Li as defined in IBC.   
Anyone who has attempted to prove Kepler's laws of 
planetary motion using Newton's equation for 

gravity when choosing the coordinate system of the 
Earth as the basis, no doubt is aware of the 
complications that are introduced. 

In effect, the information complexity can be 
viewed as a virtual complexity where the reduction 
to canonical form reorganizes the information to its 
simplest complexity. In this representation, IBC is 
certain to detect a more optimal algorithm.  

Unfortunately, the adherence to canonical form 
tends to be lost or ignored when dealing with the 
actual implementation of an algorithm at the 
processor level.  The art of computing appears more 
like an art than a rigorous set of well-founded 
principles.  Typically, an algorithm is assembled to 
fit the programming style or programming language 
that represents the fashions of the day.  Algorithms 
are designed with little worry of cache utilization 
issues, problem sizes that are too large to remain in 
local memory, iterations schemes that maximize the 
inefficient manipulation of information, and so on.  
All of these examples are examples of the inefficient 
use of information that results in the notion that 
could be termed virtual information complexity. 

In many optimization techniques, the reliance on 
randomness has played a significant role in the 
implementation of problem solutions that are 
intractable.  Random treatment of problem solutions 
has proved to provide a convenient approach in 
surveying landscapes for optimization problems 
where the solutions space is vast and appears to 
follows no predetermined schedule or route.  Monte 
Carlo techniques [4] are invaluable in the estimation 
of otherwise hard problems.  However, in many 
situations the application of these approaches may 
be applied without merit but still used as an easy and 
direct solution technique. The practical question to 
be asked is how can information be organized in a 
Monte Carlo approach in order to achieve a 
canonical form for information.  Not surprisingly 
Sequential Monte Carlo techniques [5] have been 
proposed and studied, where adaptive information 
operations are applied to the Monte Carlo procedure 
to organize and more effectively utilize the previous 
iterated information.  The value of reformulating 
information in terms of a canonical formulation 
should not be down graded as less important or 
orthogonal to the solution method [6]. 

The approach proposed here introduces a notion 
of Information-Based Algorithmic Design where 
information flow of an algorithm is examined and 
then reformulated into a canonical mapping or an 
information re-mapping that better integrates the 
problem-solution domains.  Rather than simply 
mapping a given algorithm to a particular processing 
unit, the task requires a fundamental analysis of the 
information complexity in terms of enhancing the 
specific information operator.  In this approach a 
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canonical information mapping is sought. 
In the context of canonical information flow 

description, the analysis is done at a higher level 
than that of IBC. 
 

3. BACKGROUND 
In this presentation, the application of an 

information-based design approach for a neural 
network algorithm is considered.  The importance of 
neural network applications and the advancement of 
their theory are widely acknowledged in both the 
academic and industrial communities. Entire 
conferences are held to disseminate the latest 
practices and techniques in optimization, search, and 
recognition problems.  Although the neural network 
community has moved quite far from the 
anticipation that the science of neural networks 
might solve the fascinating mystery of the functional 
operation of the brain, the introduction of the 
artificial neural networks (ANNs) into the science of 
optimization techniques has had a serious impact on 
the solution of intractable problems. 

The science of ANNs is still a challenging field.  
The simplistic approach to an artificial neuron can 
become very complex with numerous possibilities of 
combining these units and learning rules. The basic 
network is formed from an input layer, an output 
layer, and if needed a hidden layer of neuron nodes. 
Learning rules are conceptually easy to comprehend.  
Depending upon simultaneous or iterative data feed, 
the learning procedure is batch or incremental.  
These approaches are all well defined; however, the 
ambiguities of the problem domain make the process 
of building a universal ANN solution difficult to 
define.  This difficulty can be understood in terms of 
the network parameters such as the number of inputs 
required for training, the number of initial nodes 
required for a given hidden layer, the relevance of 
the information contained within the input for 
training, the number of iterations required during the 
training process, etc. On the other hand, similar 
issues arise in other optimization techniques whether 
it is Genetic Algorithms or Monte Carlo techniques.  
So ANNs are not unique in these regards. 

One intriguing question, which is the focal point 
of this presentation, is the role that information may 
play in facilitating and/or addressing some of the 
issues raised above.  Clearly the use of a heuristic is 
one time-honored form of an information-based 
strategy to circumvent the learning process to 
achieve faster convergence.  How one identifies and 
selects the appropriate information is not always 
clear. A few approaches distinguish themselves in 
this realm.  

One approach known as “design by training” is 
very effective when it comes to applications where 

knowledge of a problem exists. For example, two-
layered Counter Propagation Networks (CPN) are 
very effective with hetero-associative memory type 
of applications [7].   

Another approach known as Genetic Algorithm 
Neural Networks (GANNs) relies on determination 
of neural network parameters by genetic search.  The 
genetic approach is used to increase robustness in 
network training with respect to the problem of 
convergence [8-11]. 

Yet another approach refers to data mining of 
new information in existing data and articulating that 
knowledge as an extra part of the architecture. The 
representatives of such approaches are Functional 
Link and Polynomial Networks [12,13].  

However, a universal approach to determining 
network parameters is not known. Can an ANN be 
designed a priori without training?  Is there a 
canonical form for neural network architectures that 
is dictated solely by the problem specifications? If 
so how can it be realized? 

In the following sections, a simple analysis of the 
perceptron neuron is presented within the context of 
its information-based complexity or information 
operators.  This analysis then leads to a clustering 
algorithm whose associated architecture is uniquely 
defined in a general {n,m}-matrix space and is 
shown to support computational parallelism. 
 

4. PERCEPTRON 
The Rosenblatt’s concept of a Perceptron neuron 

dates back to the 1958 [14]. The perceptron 
computes a single output from multiple real-valued 
inputs by forming a linear combination according to 
its input weights. Mathematically the actual net 
value can be written as  
 

                             bxwnet
n

i
ii += ∑

=1
                     (5) 

 
where wi and xi are the vectors of weights and 
inputs, respectively.  In general, each iteration of the 
inputs and corresponding weights may be passed 
through some nonlinear activation function φ  and a 
bias b, such that, 
 

                             out = φ( wi xi
i=1

n
∑ + b)                 (6) 

 
or in vector notation 
 
                            out = φ(W T x + b)                      (7) 
 
Although a single perceptron is shown not to be a 
very general learning algorithm, it is the building 
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block of a much larger and more practical multilayer 
perceptron (MLP) network that consists of a set of 
source nodes forming the input layer, one or more 
hidden layers of computation nodes, and an output 
layer of nodes. The input signal propagates through 
the network layer-by-layer in a feedforward fashion. 
Feedback networks are not considered in this 
presentation. 

A supervised learning rule for a single perceptron 
neuron with learning constant α  is given by 
 
 ∇Wi = αδXi 
 
 Wi+1 = ΔWi + Wi                  (8) 

 
                        δ = d − o = (d − sign(Neti )) 
 
where d is the desired response and o is the actual 
output. 
The information-based complexity of Eqn. (4) 
represents an adaptive information operator where 
the i-th net result depends upon the previous i-1 
sequential iterations. In the perceptron model, Eqn. 
(4) is overloaded in the sense that it represents both 
an approximation methods and an optimization 
search technique.   In two-dimensions, xi may be 
viewed as a two-dimensional vector that undergoes 
both a linear translation and rotation within a simple 
two-dimensional region.  This dual composition of 
transformations and approximation methods can 
readably be uncoupled into a much simpler 
canonical form that exposes these composite 
operations into pairs of non-adaptive information 
operators.  The transition from adaptive to non-
adaptive forms also implies the existence of a 
transformation from a sequential to a parallel 
algorithmic formalism.  Fig. 1 and Table 1 show a 
simple pattern detection application of the 
perceptron training rule for a single neuron defined 
by Eqn. (8).  A soft activation function is used and 
the effect of different learning constants α  can be 
observed. Fig. 1 illustrates two important features of 
the information operator as it is applied to the 
specific problem defined by Table 1. Upon closer 
examination of Fig. 1, two separate independent 
(orthogonal) degrees of freedom are present. If the 
separation line is taken as the basic geometric unit 
then the line undergoes two linearly independent 
motions: 1) translation and 2) rotation. It is through 
the learning procedure of determining ΔWi  where 
the coupling of these motions is performed. In 
addition, it is the value of α  that dictates the ranges 
of rotations and the spacing between lines per 
iteration. Thus the effects of ΔWi  and α  suggest 
that the dependences between subsequent updates is 

an artifact of the organization of the information 
operator rather than the information required for 
convergence.  In other words, an information 
operator exists that splits the perceptron procedure 
into separate translation and rotation operations. 
Within this context, we examine the consequences 
of a canonical re-formulation of the perceptron's 
order of rule application. In the following sections, a 
canonical neural network emerges that exhibits a 
fixed network complexity per iteration level and 
defines a sparse solution matrix. 
 

 
Fig. 1 - 2-D detection (a) α  = 0.3 (b) α  = 0.1 

 

Table 1. A simple pattern detection example 
in two-dimensions 

    Desired 
Output 

Pattern1 1 2 +1 -1 
Pattern2 2 1 +1 +1 
Initial Weights 1 3 -3  
Final Weights (a) 1 -0.5 -0.5  
Final Weights (b) 1 -1 -0.5  

 
 

5. CANONICAL PERCEPTRON MODEL 
The orthogonality of the proposed neural network 

architecture consists of two essential layers: one 
input layer that performs an orthogonal search, and 
one output layer that performs a rotational search. 
Fig. 2 illustrates such an architecture that is applied 
to a two-dimensional space. 

The first input layer performs an orthogonal pass 
through a search space in the x and y directions. This 
layer consists of two sets of nodes (in two-
dimensions) that can be executed in parallel. Each 
sets of nodes performs an orthogonal scan (one set in 
the x and another in y direction) of the search space. 
Each set of nodes therefore produces a set of stripes. 
The output of the first layer can be viewed as a set of 
intersections of these stripes. In the simple example 
of a two-dimensional scan space, each of these sets 
performs a y-horizontal and x-vertical striping of the 
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search space that results in a set of rectangular areas 
that may possibly contain the patterns as illustrated 
in Fig. 3. 

The second, output layer (depicted in Fig. 2 as 
nodes with {x,y} inputs) performs a further 
reduction of the search space. In case of a 2-
dimensional space, this layer is similar to the first 
input layer but differs by a rotation as defined by the 
{x,y} coordinate pairs.  This layer is necessary in 
order to uniquely eliminate empty rectangular sub-
zones (associated with the stripped two-dimensional 
space). This layer performs diagonal striping across 
the search space. Though further layers are not 
necessary, each additional layer will only sharpen 
the cluster of patterns within the space, hence 
improving clustering resolution.  

The resolution of the pattern depends directly on 
scanning step size δ . The smaller the step size of δ , 
the better is the resolution. The lower boundary of 
this search is recognition of the whole set of patterns 
as belonging to a single cluster, while the upper 
boundary is recognition of clusters with single 
pattern belonging to it. In cases where the patterns 
are sparsely distributed, the computational search 
time for the initial space can be dramatically reduced 
if the value of δ  is chosen appropriately.  
The complexity of the proposed neural network 
architecture goes as follows. Assume a two-
dimensional rectangular region of lengths lx and ly, 
where lk = lkr – lkl defines the right-left boundary 
extent of the space in the k = x or y direction; and 
suppose that we select the orthogonal search space 
increments as δx  and δy , such that, n searches 

                         nx =
lx
δx

and ny =
ly
δy

             (9) 

 
are performed incrementally along the x direction 
and y direction. An orthogonal search must be 
completed before the corresponding rotations can be 
performed. The results of the search network can be 
represented by an nx x ny matrix of cluster (pattern) 
positions. This matrix can be used in subsequent 
cluster analysis. 

For an n x m input layer, the corresponding set of 
nodes consists of n x m Orthogonal Search Element 
(OSE) nodes, respectively (Fig. 4). These input node 
signals are intersected in pair-wise fashion.  The n x 
m output layer nodes of the Rotational Search 
Element (RSE) refine the resulting signals. 

The orthogonal search can be generalized to a d-
dimensional space.  For simplicity, assume that the 
region of interest is a higher dimensional cuboid 
with sides of length l1, l2,..., ld.  The corresponding 
architecture (not presented in this paper) would be 
embellished by nx x ny d-dimensional d hyperplanes.  
For an orthogonal search in the i-th dimension, ni 
number of incremental hyperplane displacements is 
performed along the length li 
 

ni =
li
δi

 

where δi  is the orthogonal search increment along 
the direction li as defined by Eqn. (9).  

 

 
Fig.  2 - Basic two-layer neural network
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Fig. 3 - Output of first input layer 
 

 
Fig.  4 - The OSE Architecture 

 
 

The complexity for the total number of 
orthogonal search for all nx x ny hyperplanes; 
therefore, is  

Θ(nx × ny )  
The corresponding rotational complexity is of the 

same order O(nx × ny ), where the big-O notation is 
used to emphasize that all enclosed volumes may or 
may not necessarily contain a pattern. The big-O 
here should, therefore, be understood as defining an 
upper bound. 

The OSE node architecture is illustrated in Fig. 5. 
The OSE node consists of 3 neurons. Intersected 
signals from the first two neurons result in 
“stripped” areas, for both dimensions of an 
orthogonal search space.  x-low and x-high (y-low 
and y-high), are signals extracted and used in RSE 
nodes.  The RSE node architecture is illustrated in 
Fig. 6.  The RSE node also consists of 3 neurons, 
which performs a rotational search about the 
“stripped” areas.  The sum of signals x-low and x-
high (y-low and y-high), is used for the biasing of 
the first two neurons in the node, as illustrated by 
Fig. 6. The process of combining signals through a 
network is illustrated by Fig. 7, as a part of the 
complete network from Fig. 4. 

 
6. PARALLEL ARCHITECTURE 

The OSE architecture (Fig. 4) is parallel.  The 
orthogonal searches can be performed sequentially 
or in parallel. Only synchronization points are 
required between the end of the parallel orthogonal 
searches and the beginning of the rotation phase. In 
other words, an orthogonal search must be 
completed before the corresponding rotations can be 
performed. This barrier synchronization is essential 
in identifying those strips that may possibly contain 
patterns in which rotations are required for 
verification.  Assuming that all orthogonal searches 
complete in the same amount of time, the 
corresponding rotations can then be applied 
sequentially or in parallel, or in a data flow 
scheduled manner. 
For a parallel architecture with a limited number of 
parallel processing units Pcpu, the maximum number 
of parallel steps (iterations) Ip required by the OSE 
architecture to complete the orthogonal search is 
given by 

I p =
nx × ny

Pcpu

⎡ 

⎢ 
⎢ 
⎢ 

⎤ 

⎥ 
⎥ 
⎥ 
. 

 
In a similar fashion, if the number of parallel 

processing units Pcpu limits the number of parallel 
rotations then a similar expression can be written 
down.
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Fig.  5 - The OSE Architecture. 

 

 
Fig.  6 - The RSE Architecture 

 
7.  ORTHOGONALITY  

The orthogonality of the proposed neural network 
lends itself to the notion of “grow as needed,” the 
principle of the Cascade Correlation Network 
architecture [15]. The canonical combinations of 
orthogonal translations and rotations add units of 
nodal layers to the network as required to achieve a 
certain degree of clustering resolution. 
The algorithm developed above represents a 
canonical formulation of a clustering technique; 
however, it can also be used as a preconditioning 
search algorithm regardless of the dimensionality of 
the search space. As a preconditioning process, the 
orthogonality of the proposed algorithm can simplify 

the initial stages for deducing specific properties for 
a given search space.  This acquired knowledge may 
ensure more accurate application of neural network 
algorithms that are characterized by a high 
dependence on the starting parameterization set 
chosen. Algorithms such as Levenberg-Marquardt 
algorithm [15,16] are examples of this dependence.  
They are proven to be very fast when the initial 
weight-set is chosen close to a solution but 
otherwise almost always fail to converge. Other 
algorithms based on gradient search, such as Error 
Back Propagation [12,19-20], suffer from typical 
oscillation and flat spot problems when weights are 
chosen far from the solution. 
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Fig.  7 - The combining signal network 

 
 

8. HIGHER-DIMENSIONAL PROPERTIES  
Given a number of patterns Np, a volume per 

pattern (space pattern) density can be defined as 
 

Dp =
1

Sd ⋅ N p

 

 
where 
 

  
Sd =

d
l1l2Lld

 

 
is the space density, and li for i = 1, 2, ... , d is the 
length of each of the d-orthogonal directions. 

In a parametric space of dimension d, similarities 
of patterns can be correlated by their locality within 
common clusters. As such, regions with anomalous 
patterns will be designated with low pattern 
densities.  This suggests that searching around large 
clusters of related events could accelerate the search 
for unusual events.  Although not discussed in this 
paper, this will introduce a possible learning strategy 
for adapting the search space parameter δ .  
 

9. ORTHOGONAL SEARCH vs. WTA 
The Center of Gravity (COG) algorithms such as 

the Kohonen WTA algorithm [21,22] are highly 
dependent on the initial choice of parameters: the 

order of patterns applied; the initial configuration of 
the architecture; the initial weight-set; and the 
selected radius of attraction.  The initial weight-set, 
if not judicially selected, may bias the centers of 
gravities and result in obstructing the learning of 
new patterns; thereby, influencing the number of 
final clusters detected. The order in which patterns 
are applied can also influence the selection of the 
center of gravity for the final clusters. The weights 
determined by the patterns that have already been 
learned limit the mobility towards unseen patterns.  
In addition, the number of neurons initially used to 
construct the neural network also influences the final 
clustering of patterns. For example, too larger a 
number of initial neurons used in the construction of 
a network can result in the over-learning (over-
fitting) of a problem, which could result in a larger 
number of particularly small clusters.  On the other 
hand, too small a number of neurons may prevent 
the network from learning the relationship between 
new clusters resulting in less resolution. 

The WTA approach is particularly sensitive to 
the distribution of patterns in the search space. For 
patterns that are already grouped, the WTA 
approach performs satisfactorily.  This assumes that 
a priori knowledge about a problem's organization 
exists and is used. The result of each run of the 
WTA algorithm is, therefore, expected to be the 
same when 1) patterns are fed to the WTA network a 
cluster at a time, and 2) the process of determining a 
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cluster center is not based on a weighted calculation. 
For patterns that are scattered throughout the search 
space, the result of each run of WTA method may 
dramatically differ depending on 1) the initial choice 
of all the parameters; and 2) the order in which 
patterns are applied. The initial parameter choice 
applies especially to the cluster radius chosen. 

Ideal cases for WTA are problems with 
distinctively grouped patterns that are distributed at 
far distances. Here if the radius of attraction is much 
smaller than the distance between clusters, the WTA 
approach is likely to return fast and repeatable 
results. 

Even though different variations of the WTA 
approach may rely upon a single iteration through all 
the patterns, more general WTA algorithm may 
require a number of iterations. Although sometimes 
computationally very fast, the former WTA 
approaches have the negative effect of producing 
dramatically different clustered patterns for each of 
the different runs. These iterative approaches do 
little in learning to anticipate the possible cluster 
positions. As a consequence, the knowledge gained 
from any one application of the WTA method does 
not guarantee an improvement on subsequent 
applications. In essence, the careful selection of the 
starting parameters is key criteria to the performance 
of the WTA method. 

In contrast to the WTA algorithm, the orthogonal 
search algorithm is deterministic in the sense that the 
algorithm returns the same clustering of patterns, 
irrespective of the order in which the patterns are 
shown to the network. Hence, as additional patterns 
are subsequently added to the search space, no 
previous information about patterns already 
processed is lost.  This property distinguishes the 
advantages of the orthogonal approach over the 
WTA method, and underscores the importance of 
formulating information-based operations in an 
orthogonal (independent) fashion. 

The orthogonal search algorithm may result in a 
larger number of clusters; some of which may 
contain only a single pattern. A repetitive orthogonal 
search would naturally increase pattern recognition 
resolution up to a single pattern. For this reason, the 
orthogonal search may be very effective for 
detecting patterns, rather than clusters.  However, 
this is not a limitation.  The resolution of the pattern 
depends directly on the scanning step size δ . Unlike 
the WTA method, the orthogonal search algorithm 
does not rely on the use of a learning-constant, even 
though it is an unsupervised method.  Furthermore, 
the orthogonal search algorithm returns the same 
result with each run. 

Both the WTA and the orthogonal approaches 
generalize easily to higher-dimensional problems.  
In higher-dimensions, the orthogonal search may 

prove to be slower than WTA; however, the parallel 
and deterministic nature of the orthogonal search 
method can still be exploited. In addition, the 
orthogonal search approach has the advantage of 
decoupling the problem domain into subspaces that 
can be explored systematically. This is done through 
the recursive application of the RSE architectural 
unit layer, where each pair of dimensions is 
investigated individually. The one most important 
architectural aspect of the orthogonal search 
approach is the recursive application of this 
algorithm.   

In Fig. 8 and 9 an application of a COG (with α  
= 1) and the orthogonal approaches are illustrated, 
respectively. For the COG method, the possible 
clustering depends upon the value of α , so that the 
example of patterns used is susceptible to several 
different clustering possibilities depending upon the 
value selected for α .  
 

 
Fig.  8 - COG clustering 

 

 
Fig. 9 - Orthogonal clustering 

 
In the orthogonal approach the learning constant 

α  does not even exist, hence the clustering is 
determined once and is never changed. The heavy 
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solid and heavy dashed black lines depict the two 
orthogonal searches. For a fixed radius of attraction, 
a solid black line that serves as one boundary and a 
corresponding dashed black line on the opposite 
boundary surround all patterns grouped into one 
cluster. As a consequence of the cluster invariance 
for the orthogonal approach, a matrix representation 
of the cluster arrangement can be formulated.  In this 
formulation, as the patterns are clustered into larger 
groups the matrix becomes sparse and thus the 
cluster locations can easily be manipulated during 
subsequent analysis. Fig. 10 pictures the 
corresponding matrix associated with the results of 
the orthogonal scanning technique. For the 
orthogonal approach, this representation is fixed and 
provides a concise formulation of the clustered 
space.  

In Fig. 9, the bounded or stripped areas that 
contain the clustered patterns enclose areas that are 
filled with pattern-less regions. For this reason, the 
rotations are applied to verify or eliminate patterns 
that do or do not occupy positions defined by the 
initial orthogonal search.  In fact, this is in part the 
motivation to formulate the cluster positions in a 
sparse matrix representation. 

As a simple example, Fig. 11 illustrates the 
rotation about a stripped area, where the lines of 
rotation (dashed) are given by y = -x +1.5 and y = -x 
+ 2.7. The rotations in this example are chosen to be 
at 45°s to the orthogonal {x,y} but this is not a 
requirement. 
 

 
Fig. 10 - Sparse matrix representation 

 
10. ARCHITECTURAL STRUCTURE 

The orthogonal search neural network 
architecture is an unsupervised, feed-forward type of 
network. The network is recursively applied to the 
search space defined by the problem domain in two- 
or higher-dimensions. The architecture is built from 
two basic layers that are combined recursively as it 
is applied to the search space.  Although only two 
layers are necessary, additional layers can be added 
to enhance the sharpness of detecting, refining and 
smoothing cluster boundaries within the search 
space. 

 
Fig. 11 - Rotational Example 
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The first layer combines orthogonal search 

signals in the { n × m}-matrix space, and their 
outputs are combined with the rotational searches 
applied in the next layer.  At each of these levels, the 
computational dependence allows for and defines 
the parallel aspects of the architecture.  Within this 
architectural framework, a highly parallel 
implementation is easily achievable.  This property 
is the result of the non-adaptive nature of the 
information operators defined by this architecture.  
Rather than the original formulation of the 
perceptron model where the information operations 
are defined by Eqn. (1), this new canonically 
simplified orthogonal architecture uniquely defines 
without ambiguities the number of nodes required 
within each layer of an { n × m}-matrix network.  
 

11. CONCLUSION 
The notion of information-based algorithmic 

design is an abstraction that offers potential to 
achieve a canonical formulation of solution 
techniques. In this presentation, the information 
operator associated with the perceptron-learning 
algorithm is separated into two independent 
components and used in a non-adaptive formulation 
that defines an ANN architecture with unambiguous 
number of nodes per translation and rotation layers. 
Specifically, the basic design of the proposed ANN 
network defines three { n × m}-layers that make up 
the basic building blocks of the network.  The 
recursive application of this basic ANN block results 
in finer overall resolution. It is important to realize 
that the proposed ANN architecture is deterministic.  
The number of nodes in the input layer and in the 
secondary rotational (hidden) layer is specified by 
the dimensionality of the problem space; as well as, 
the degree of parallelism chosen.  What remains 
undetermined is the orthogonal displacement δ  that 
defines the incremental stride taken along each 
orthogonal direction.  However, this ambiguity can 
be recast in an adaptive and constructive way that 
allows for a variable stride step size to rapidly 
sweeping through each orthogonal direction. The 
details of this adaptive approach are left for a future 
work. The non-adaptive nature of the proposed 
algorithm exhibits a canonical structure that is 
computationally parallel and specifies uniquely the 
number of neural nodes within each layer as 
required to define the architecture exactly.  The 
nature of the parallelism allows for a divide-and-
conquer approach for limited number of processors 
where regions of the search space can be subdivided 
and scheduled as processors become available. In 
addition, the advantages of high-level parallelism 
can be captured in hardware.  As such, embedded 

systems can be designed to enhance the efficiency of 
this algorithm. 

Both the WTA and the orthogonal algorithms 
belong to the unsupervised type of learning, where 
learning the desired outcome (number of clusters) is 
not known ahead of time.  The orthogonal search 
algorithm excels at detecting patterns rather than 
clusters.  However with a predefined search step it 
can also produce clustering of the pattern space.  An 
advantage of the orthogonal algorithm is the 
simultaneous execution of the two sets of input layer 
nodes.  Once the input layers have completed their 
orthogonal { n × m} search, the second layer of 
rotations can assimilate the knowledge discovered 
by the first layer in a parallel fashion as well. The 
final result is a clustered space. 
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