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Abstract: In this paper, I cover in more detail two specific applications where Computational Intelligence systems have 
been used in industry.  In particular, I consider the problems of path optimization through an inhomogeneous road 
network, and data analysis for financial applications.  This paper will deal with several important questions about the 
applicability of those techniques in real-world scenarios, and will show how some of these issues have been directly 
addressed in order to create value for our business partners. 
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1. INTRODUCTION 
Computational Intelligence techniques have 

existed for several decades, but are only now being 
seriously applied to real-world industrial problems.  
In previous work [1], I have given a general 
overview of a number of projects in progress in this 
area.  In this paper, I will expand on some of those, 
giving a more detailed analysis of technologies in 
development. 

Computational Intelligence techniques are 
usually conceptually straightforward, with very little 
or no complicated analysis required before applying 
them to an industrial problem.  However, the skill 
involved in applying these techniques accurately lies 
in knowing which techniques are suitable for which 
problem, and how can one tune and optimise the 
algorithms used in order to avoid the issue of 
suboptimal or misleading performance. 

So the skill in applying Natural Computation 
(NC) algorithms lies not in extended mathematical 
analysis, nor in exceptional programming expertise, 
but rather in the thorough understanding of one’s 
problem space; in the intuitive comprehension of the 
inherent drawbacks and dangers of stochastic, 
population-based search; and in the perception 
necessary to recognise and diagnose potential 
systematic errors. 

In this paper, I assume a basic understanding of 
NC techniques, including a familiarity with the 
concept of population-based stochastic search, and 
the components of a standard genetic algorithm.  I 
will also assume some understanding of the 
problems to which we are applying these techniques, 

as these have been introduced in the previous paper 
in this series [1]. 

In section 2, I will cover once more the question 
of salting truck routing optimisation, which has 
direct applications in the field of route optimisation 
and constrained search.  The third section will revisit 
the problem of data mining for financial analysis, 
which covers issues of data bias, incompleteness and 
efficient choice of representation. Section four 
summarises and concludes. 
 
2. ROUTE OPTIMISATION FOR SALTING 

TRUCKS 
In the first paper in this series [1], I introduced 

the issue of Capacitated Arc Routing within the 
optimization of routes through real-world transport 
networks.  Our partners, Entice Technology Ltd., 
have developed an advanced prediction model to 
calculate road surface temperature based on climate 
models and geographical data, together with 
meteorological data gathered in real time from the 
government. 

Our task was to design a system which took these 
data directly from their prediction model, and 
merged them with existing map data, available from 
the government transport authorities, in order to 
create the most efficient routes for salting trucks 
through this complex, constrained network. 

 Conventional route optimization techniques, for 
example A-star [2,3], rely on a depth-first search 
through the available nodes which, as the network 
complexity increased, rapidly becomes prohibitive.  
In fact, the general family of these problems, known 
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as the ‘Travelling Salesman Problem’ (TSP), belong 
to the class of NP-hard problems. That is to say, 
there is no known deterministic polynomial-time 
algorithm for solving these problems in a provably 
optimal manner.  All solutions are non-
deterministically polynomial at best in the number of 
nodes in the network under consideration and, 
perhaps more importantly, any problem in the class 
NP can be transformed in polynomial time into an 
instance of the TSP.  This means that an efficient 
solution to the TSP would have important 
implications throughout computer science. 

Analytical solutions, such as A-star and more 
specific solutions to the example of a closed loop 
path, such as ‘cutting planes’ [4] provide some 
powerful approaches to this problem.  However, 
they are still NP in complexity, and are based on 
very fragile mathematics, which become completely 
invalidated by even the most trivial of constraints. 

Real world problems very rarely (perhaps never) 
conform to clean, uncomplicated mathematics.  For 
this reason, analytical solutions are rarely the best 
option for complex problems, especially those where 
constraints are likely to be difficult to translate into a 
tractable, analytical form. 

Travelling Salesman problems may be formalized 
using a series of definitions.  Firstly, we have a set E 
of edges, of cardinality N.  These edges join together 
vertices (about which we are not concerned at this 
time).  The edges have an associated cost, with the 
cost for edge ‘n’ denoted as Cn, in terms of distance 
and therefore time required to travel along them 
(which is expected to be proportional to the 
distance).  We have a set T of trucks, with 
cardinality K, each of which has a maximum work 
capacity.  The capacity for truck ‘i’ is denoted Pi.  
Often these capacities are the same, though here we 
consider the potential for variability. 

In the conventional TSP formulation, we must 
visit a set of vertices once and once only each.  In 
this particular salting truck application, we are 
concerned with visiting a set of edges, not the 
vertices, but the problem is directly equivalent. 

Each truck then must visit an ordered list of 
edges, giving a total complexity (summing over 
trucks ‘i’ and edges ‘n’): 
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Here, the function Δni gives a value of 1 if truck 

‘i’ visits edge ‘n’, and a zero otherwise. This sum is 
only valid if the following constraint holds: 
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That is to say, no truck exceeds its maximum 

capacity.  So far, we are only considering capacity as 
a general ‘ability to work’, supposing that a truck 
can travel a certain distance before having to stop, 
for whatever reason. 

So far we have not considered any obligations on 
the edges which need to be salted, which would of 
course provide a further constraint. 

 
Evolutionary Framework 

The TSP is tackled using an evolutionary 
algorithm with a number of important variations.  
Evolutionary algorithms are population-based 
techniques consisting of a population of encoded 
potential solutions, and three major functional 
components, namely selection, mutation and 
crossover. 

An individual in the TSP is encoded as a vector 
of points, representing the order in which a certain 
set of destinations is to be visited.  In this vector, 
technically a permutation of the available vertices, 
each value must appear exactly once and once only.  
This causes problems later when we consider the 
three evolutionary operators and how they may be 
applied to an order-based individual. 

Selection is usually based on a ‘fitness function’, 
measuring the accuracy with which any individual 
solves a given problem.  In this case, the fitness 
function is obvious, being a descending measure of 
the total cost of traversing the links given, with 
lower numbers being superior. 

Mutation is the process by which candidate 
solutions are slightly altered in order to introduce 
new information in the population of individuals 
(which can be thought of as our gene pool, or space 
of potential solution elements).  For a route, this is 
not a difficult proposition, with several simple 
mutations conventionally used: 

• Swap mutation: Swap the position of two 
randomly chosen elements in the genome 

• Permutation mutation: Choose a short 
subsection of the genome, and permute the 
order of the elements within that subsection. 

• Optimisation mutation: Choose a short 
subsection of the genome, and exhaustively 
search for the optimum (i.e. the shortest) 
permutation of the elements in this section. 

 
Crossover is the process by which candidate 

‘parent’ individuals are merged together to create 
new individuals for the next generation. 
Conventionally, when dealing with individuals 
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represented as vectors of values, it is straightforward 
simply to perform an N-point crossover, where the 
components of the resultant ‘child’ vectors are taken 
from each parent, alternating in sections between 
arbitrarily chosen loci. 

However, for the TSP, this approach cannot be 
used as it may lead to ‘illegal’ solutions.  For 
example, given the two (legal) tour vectors 
(1,2,3,4,5,6) and (6,5,4,3,2,1), a one-point crossover 
after the third digit would produce the two ‘children’ 
(1,2,3,3,2,1) and (6,5,4,4,5,6).  These were produced 
by taking the first half of one vector and 
concatenating onto it the second half of the other 
vector. These offspring are both ‘illegal’ because 
they visit certain destinations more than once, and 
others not at all. 

We can define various order-based crossover 
operators for the TSP, of which the simplest is 
perhaps to consider neighbours in each string and, 
starting with a random point, choose subsequent 
points at random (without replacement) from the 
pool of (yet unused) neighbours to that point from 
the parent genomes.  In the case where there is no 
available subsequent point, a new (yet unused) point 
is chosen at random and the algorithm continues. 

These steps outline a methodology by which the 
TSP may be solved using an evolutionary algorithm.  
However, the challenges are twofold, concerning not 
only the internal workings of the (analytically 
simple) theoretical TSP, but also dealing with the 
extra constraints that inevitably arise from a real-
world application. 

 
Real World Constraints 

The challenge in this problem is in designing a 
route for a variable number of trucks to follow, in a 
timely and efficient manner.  That efficiency is in 
terms of distance travelled, grit spread, and time 
taken to cover a sufficient fraction of the road 
network.  There are a number of strong constraints 
on the road network, that we can denote more 
formally in the following (non-exhaustive) list: 

Trucks only have a certain maximum fuel and 
grit load.  So far we have only considered one 
single potential capacity for each truck, analogous to 
a fuel supply.  However, in reality we must consider 
two separate costs for each edge, namely the amount 
of grit required for each edge, and the amount of fuel 
required in order to traverse it.  Hence we can 
introduce a new capacity Si as the maximum salt 
capacity that each truck is able to provide. 

Certain roads will have more severe ice cover 
than others.  This means that the cost of salting a 
road is not uniquely proportional to the length of that 
road.  Or, to put this another way, the two costs (fuel 
vs. grit) are not directly proportional.  In addition, 

some roads are steep, meaning that it is far easier for 
a truck to navigate them in one direction than in the 
other, suggesting that the cost matrix in this case 
should by asymmetric.  That is to say Cn(AB) ≠ Cn(BA) 
in general, where A and B are the two vertices 
spanning this edge. 

We may have to retrace our steps over 
already-salted routes.  In this case, we obviously 
don’t need to deposit salt a second time, so we need 
to consider which edges have already been salted 
(either by ourselves or by another truck).   

One issue here is that of potential synchronicity.  
For example, the trucks will be operating in parallel, 
so we would need to consider, when truck A passes 
over edge X, whether or not truck B has already 
passed that way first, or whether truck B will arrive 
later.  This depends on the sum of the costs to each 
of these trucks of the routes that they traverse before 
arriving at edge X. 

In practice, we can ignore the effects of 
synchronicity here because we have no problem with 
two trucks occupying the same edge simultaneously, 
and the efficiency of the evolutionary algorithm we 
are to apply will penalize solutions for which two 
different trucks both salt the same edge. 

Some roads only allow traffic to move in one 
direction.  We mentioned the possibility of an 
asymmetric cost matrix for steep roads, but another 
situation in which this could cause problems in when 
a road only permits traffic in one direction, in which 
case we have two options: 

Our first option is to alter our algorithm 
fundamentally so as to forbid the generation of 
solutions which incorporate travelling down a one-
way road.   

The second, more attractive, and far simpler 
solution is to alter the costs for one-way roads so 
that the cost for traversing it in the opposite direction 
is extremely high.  This way, the core algorithm will 
remain unaltered, and will prune out any individuals 
which attempt to traverse a ‘backwards’ link 
automatically. 

Some roads are more vital than others.  Not 
only will some roads have more severe ice cover, 
and therefore necessitate more salt, and will require 
a more urgent treatment, but also some roads are 
intrinsically more important than others.  For 
example, major inter-city highways are more 
important than small residential streets. 

Therefore there is an innate hierarchy in terms of 
the importance of each road.  So we can define not 
only a cost function (as above), but also a benefit 
function, which measures how effectively we have 
salted the required roads.  This seemingly 
straightforward constraint expands this problem to a 
multi-criterion optimization problem in which we 
have more than one goal which we need to trade-off 
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against each other. 
For example, for some governments, money may 

be tight, necessitating a more frugal approach to 
salting. One solution to this issue is to linearly 
combine the two objectives together with user-
defined weights which quantify the degree of 
importance assigned to each objective.  Another way 
to proceed is to investigate the family of multi-
objective evolutionary algorithms such as SPEA, 
SPEA2 or similar [5,6] which allow a family of 
solutions to be evolved for a multi-objective 
problem, retaining an archive of optimally-diverse 
non-dominated solutions.  That is, solutions which, 
when arranged in a partial ordering based on all 
fitness measures, are not absolutely inferior to any 
other solution.  A formal treatment of this class of 
algorithms is beyond the scope of this paper. 

Different roads have different speed limits. 
This means that the mapping from edge length to 
edge cost is further complicated.  In addition, the 
speed limit for a road might depend on whether a 
salting truck has already covered that particular 
road, hinting that our fitness calculation is going to 
have to consider some level of chronology of the 
parallel salting operations. 

Some roads are too narrow for the trucks to 
pass through.  This means that certain potential 
routes are not feasible.  The options here are to 
remove those edges from the network entirely, or 
simply to assign them extremely high costs.  The 
latter is generally preferable, as it solves the problem 
with no complexities. 

The trucks are not homogeneous.  This is an 
important constraint, which implies several 
alterations need to be made to our algorithm.  
Firstly, trucks have varying capacities, which means 
that the value of Pi is not generally the same for any 
pair of trucks.  This also goes for our second 
capacity value, related to the volume of salt that 
each truck carries, denoted as Si (see above). 

The fact that trucks are not the same means that 
the cost function of each edge will also depend on 
the truck traversing it. For example, some trucks will 
be too wide to traverse narrow country lanes, and 
may not have the necessary power to climb steep 
slopes.  Some junctions may be impossible for larger 
trucks.  So our cost function for each edge, Cn, now 
becomes two cost functions, based on the fuel and 
salt costs respectively, and each of these varies with 
truck number ‘i’.  So we have: 
 
Cni = Fuel cost for truck ‘i’ to traverse edge ‘n’.   
Lni = Salt cost for truck ‘i’ to traverse edge ‘n’. 
 

Note that each edge is now effectively a pair of 
edges, as we have to specify different costs from the 
two different directions.  Therefore, the (directed) 

edge joining nodes A and B will not be the same as 
the edge joining nodes B and A.  This cost matrix, 
giving the cost of traversing the edge between any 
two points, is now asymmetric, and three-
dimensional (in order to accommodate variation by 
truck number).  It is also sparse (in general, most 
points are not connected). 

The updated constraints, after modifying 
equation (2), are shown below: 
 

( ) ini
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Where here we have also defined δni, as the 
number of times truck ‘i’ must visit edge ‘n’ without 
depositing salt.  This allows us to deal with potential 
routes where a truck must return to its depot along 
roads it has already salted, or which have been salted 
by other trucks.  Allowing routes to overlap is a very 
useful strategy, as it enormously simplifies the 
network required.  In fact, in most cases it is 
absolutely necessary, especially if many trucks all 
depart from and returns to the same depot. 

 
Proposed Fitness Components 

A proposed route must optimise most of the 
objectives that we have already mentioned.  This 
gives us a convenient way to define our fitness 
function, F, for this constrained version of the TSP 
as a modification of equation (1): 
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n
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However, at this point our mathematical 

treatment begins to break down as we consider the 
more hazily-defined objectives that we must now 
introduce into this formulation. 

Minimise the total journey length, and thus 
minimize fuel cost.  This has already been included 
into the above formula (5) as the sum of the 
components of the summation involving the fuel 
cost of an individual edge for a specified truck, Cni.   

Minimise the total journey time, and this grit 
the roads as quickly as possible.  We haven’t 
specifically considered journey time yet, given that 
the cost Cni only tells us the fuel cost of traversing 
edge ‘n’ with truck ‘i’.  This may not be directly 
proportional to the time it takes to do so. For 
example, on roads where the speed limit is very 
slow, the fuel efficiency will be lower.  We could 
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introduce a further matrix here specifying the time 
cost for traversing edge ‘n’ with truck ‘i’.  However, 
we must also realize that this will, of course, depend 
on whether that edge has already been salted.  So 
this takes us back to the point raised earlier about 
synchronicity of traversing edges that must be 
visited by two or more different trucks. 

Clearly, it is becoming very difficult to insert this 
term into our well-behaved analytical fitness 
function, though this is not at all a problem for 
evolutionary computation.  We can add in any term 
we wish into a fitness function, even if it involves 
complex calculations such as that described above. 

Maximise the speed with which major roads 
are covered.  As we mentioned earlier, some roads 
are more important than others, so we might want to 
reward any solution that approaches those roads 
earlier in the route in order to get them cleared as 
soon as possible.  This can be done by adding in a 
scaled reward function into our fitness function, 
based on the importance of roads (which would be 
manually assigned) and the delay before which they 
are serviced. 

Maximise the coverage of roads with the most 
severe ice risk, whilst �minimizing the coverage 
of roads with lower risk.  We have been given a 
series of surface temperature predictions from our 
partner company, which must also be added into 
this fitness function at this point.  This can be done 
by biasing the importance of roads based on how 
likely they are to be icy. 

One can also introduce the concept of obligatory 
edges – that is to say, edges which must be salted at 
some point.  This can be done either formally (by 
prohibiting the production of any potential solution 
which doesn’t cover all required edges). Or, far 
more clearly and simply, by increasing the 
importance of those edges by a large amount and 
penalizing heavily individuals which do not 
satisfactorily cover every single one. 

Further details on our own approach to this 
problem can be found in our earlier review paper [1] 
and in papers by colleagues and collaborators 
[7,8,9,10]. 
 

3. STOCK FILTERING USING 
EVOLUTIONARY TECHNIQUES  

In collaboration with the Investor’s Chronicle 
(IC) magazine, Financial Times group, UK. 

 
The Challenge 

The problem formulation was introduced in my 
earlier paper [1].  In this paper, I will cover more of 
the algorithms involved in the analysis of financial 
data. 

The main problem in the domain of financial 

analysis is in obtaining a sufficient data set.  That is 
to say, we require a data set that is both unbiased 
and complete. 

The problem with bias is a difficult one.  For 
example, when selecting companies that exist in the 
top indexes today, such as the FTSE-100 in London, 
one is already selecting for companies with a past 
record of success.  One is also skewing the analysis 
towards companies which have a large market 
capitalisation, and therefore companies within 
certain sectors. The FTSE-100, for example, is 
heavily biased towards energy stocks and banking. 

However, in most cases, what we are interested 
in is not the absolute gain in a company’s net 
enterprise value (EV), but rather the percentage 
gain, and how this is reflected in the stock price. 
Therefore, the absolute value of a company is of 
little interest, with the caveat that it must be large 
enough for its bid-offer spread (the gap between 
buying and selling prices for the stock) not to swamp 
any plausible gains, and also for a sufficient value of 
stock to be available. 

Because of this goal, and also because of the 
limitations of efficiently-analysed companies (see 
‘Efficient Market Hypothesis’ below), most of the 
work presented in this paper concerns a complete 
listing of all companies listed on the London Stock 
Exchange (LSE), limited only by a minimum market 
capitalisation of £10m, and a maximum bid-offer 
spread of 10% of the median share price. 

In terms of completeness, our main problem is a 
pre-processing one.  Not only are data predictably 
incomplete, due to the regular intrusion of public 
holidays and substantial political events (e.g. 
terrorist attacks, war etc.) but they are also rendered 
incomplete by financial forces specific to each 
company. 

Firstly, companies merge and de-merge, which 
complicates the data enormously.  One must learn 
how to deal with such instances either by slicing the 
data at the point of merger, or else by ignoring the 
companies involved entirely.  Often the latter is the 
best course of action, as mergers predictably cause 
abnormal stock behaviour that is perhaps not 
characteristic of the trends that we are trying to 
extract. 

Secondly, companies start trading at different 
times.  Some temporarily de-list from the stock 
exchange, and some permanently de-list or go 
bankrupt.  This means that, for many companies, the 
time range over which we have satisfactory data 
varies. 

Thirdly, companies often perform stock splits or 
consolidations, where the number of shares and the 
price per share are altered in a consistent way.  For 
example, if a company issues one million shares at 
one pound each, and then the company’s market 
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capitalisation reaches 50 million pounds, the shares 
will now be worth 50 pounds each.  It would be wise 
for that company to split its shares so that an 
individual share is not so valuable.  The company 
could perform a 100:1 share split, increasing the 
number of issued shares to 100 million, and reducing 
the price-per-share by a factor of 100 to £0.50 to 
compensate.  This would show up on the share price 
register as a sudden drop in share price of 100 times, 
but the market capitalisation of the company would 
remain constant. 

One way to deal with this problem is to consider 
the market capitalisation itself, instead of the 
individual share price.  The problem here is that 
market capitalisation data are generally harder to 
find than individual share prices.  This problem is 
usually straightforward to correct for directly in the 
data, by matching sudden large price changes with 
news items from archived regulatory news 
announcements. 

 
The Efficient Markets Hypothesis 

The Efficient Markets Hypothesis (EMH) states 
that stock market prices already factor in all the 
available information about any stock at any time.  
Because of this, it is claimed that it is impossible to 
make any justifiable prediction about the future price 
movements of any stock without possessing 
information which has not yet been disclosed to the 
market as a whole. 

Because of this, the majority of analytical work 
within major banks does not focus on spotting mid- 
to long-term trading opportunities, but rather on 
analysis of risk profiles, and also in micro-trading 
with a sub-second temporal resolution. These are 
beyond the scope of this paper. 

However, the EMH is on shaky theoretical 
ground.  The larger a company, the more analysts 
will be watching it in general.  Large investment 
banks are only primarily interested in companies in 
which they can gain a sufficient shareholding to 
make a measurable absolute increase to their 
turnover.  A bank worth £50Bn is unlikely to 
consider it worthwhile analyzing a textiles 
manufacturer worth only £10m, of which only a few 
tens of thousands of pounds worth of shares will be 
freely available at any one time. 

This tends to suggest that the EMH will apply 
more accurately to larger companies, whereas within 
the ranks of smaller companies should lie a larger 
number of insufficiently-well analyzed companies 
which may give far greater possible returns. 

Indeed, work by several researchers including 
Tsang et al. [11] shows that arbitrage opportunities 
do exist within the LSE, showing that the markets 
are still not completely efficient, even within the 

arena of exclusively large companies. 
 

Long-Term Systematic Variation 
Of fundamental interest in a study of 

computational intelligence applications within 
financial data mining is the simple underlying 
assumption that markets behave in a reasonably 
consistent, stable manner, even when given the 
effects of changing social, economic and 
technological influences. 

Data mining, in the form covered here, concerns 
learning patterns from large volumes of past data, 
and using that knowledge to inform decisions about 
the future.  For this to be a valid approach, one 
assumes that patterns detected in the past are 
relevant to the future. 

This question reduces to two fundamental issues, 
both of which are worthy of further discussion. 

Firstly, to what degree is trading behaviour 
affected by predictable underlying human 
psychology and solid mathematical techniques? 

This is an important question, as it not only 
covers the question of applying predictive models 
trained on historic data to present and future market 
states, but it also applies to transferring extensively 
trained models amongst different stock exchanges. 

If the behaviour of a market is largely dependent 
on the transient social and psychological whims of 
its traders, then one might expect that models trained 
on a British financial dataset may not apply in the 
US or Germany, for example.  However, if that 
behaviour were based on solid, underlying 
mathematics and psychology (such as innate fears 
and desires, which might be reasonably assumed to 
remain constant between nations) then we would 
expect that models trained at a different time or 
location may be applicable globally. 

This also gives us an interesting avenue for study 
as nowadays, with the world of Internet investment, 
it is becoming more straightforward to invest in 
diverse markets around the world.  Does this imply 
that the behaviour of all markets will become more 
uniform?  To what degree do the underlying 
economic mechanisms in each country (tax rates, 
regulations, employment law) affect the stock prices, 
and to what extent are they affected by human social 
and psychological differences? 

I believe that this is an open question, and an 
extremely interesting one which merits much further 
study. 

Secondly, are data mining methods learning 
real knowledge that depends on human trading 
behaviour, or are they merely learning to predict 
patterns in arbitrary time series? 

This is an important question, as it affects our 
likelihood to trust models generated from a data 
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mining process.  Is it relevant that markets work in a 
different way in Germany and Japan to Britain and 
the US?  Can we still predict what the share price is 
going to do in each case purely based on solid 
signal-processing techniques?  It may be that the 
underlying political, economic and sociological 
factors in each of these different countries do indeed 
alter the way company prices respond to 
expectations, but that may be inconsequential when 
one comes to predict those same price movements. 

An analogy: If we were to analyse two dancers 
with completely different styles such as ballet and 
rock, we would agree that their movements are 
totally different, driven by different desires and 
portraying a different underlying scheme and 
psychology.  However, if they were both to execute 
a jump in their routine, we could still predict when 
they would land.  This is because we are trying to 
predict something based on the law of gravity – a 
law external to the superficialities of their unique 
dancing styles. 

To return to the world of financial analysis, we 
could agree that companies in Britain may behave 
differently from companies in Japan, and even that 
banks might behave differently from software 
companies, but certain underlying economic laws 
still apply, such as those of supply and demand. 

 
Genetic Programming for Stock Filtering 
As explained in the first paper in this series [1], 

the technique of Genetic Programming (GP) is ideal 
for classification learning tasks such as stock 
filtering or individual stock analysis.  Genetic 
Programs (GPs) are tree-based functional models 
which can be evolved in a standard evolutionary 
algorithm just as we can manipulate a vector of 
integers, or a bit-string. 

Stock filtering involves reducing a large number 
of stocks in a statistically reliable way down to a far 
smaller subset which is expected to be likely to 
perform above average. 

Stock filters, or ‘screens’, have been in existence 
for many years, and are usually based on solid 
economic rationalisation rather than anything from 
quantitative data mining.  Examples are those 
screens by Benjamin Graham [12] designed to short-
list stocks deemed safe and reliable for the risk-
averse investor. 

Genetic programming offers a powerful way to 
automate generation of stock screens using a blind, 
supervised technique that has no prior knowledge of 
investment techniques, and works purely from the 
data.  One would expect that such a process could 
help derive investment strategies that are both  
reliable and accurate, possibly finding relationships 
that would be too counterintuitive for a human ever 

to investigate. 
A detailed background to genetic programming 

can be found elsewhere, especially in Koza’s 
foundational book [13].  Here, I want to discuss 
some of the potential pitfalls with this technique 
when applied to such a complex data mining 
problem.  These issues generally fall into two 
separate categories, namely those concerning the 
fitness function, and those concerning the space 
complexity and the issue of diversity to avoid 
suboptimal maxima in the fitness landscape. 

Fitness function issues are always a problem in 
any canonical genetic algorithm (GA). It is 
important that one chooses a fitness function that is 
accurately aligned with the outcomes that one 
wishes to obtain.  Evolutionary algorithms will 
always find a way to exploit any poorly-considered 
fitness function in order to fulfil it to the letter, but 
with a potential solution tat does not achieve what 
you actually desire. 

For example, a fitness function that measures, 
and aims to minimise, the number of trading errors 
placed by an automatic trader would be trivially 
satisfied by a trader that makes no trades 
whatsoever.  Similarly, a fitness function that aims 
to spot the highest-gain stocks with great certainty 
would simply invest in all stocks, blindly, therefore 
guaranteeing success. 

It should be clear that both of these scenarios, 
though literally fulfilling the fitness function exactly, 
are functionally useless in any trading environment. 

So how does one specify a fitness function that 
will drive evolved solutions towards ends that are 
actually valuable to the user?  One possibility is to 
create a fitness function as a simulation.  That is to 
say, start with a pot of money on day one, and 
follow exactly what your evolved individual says to 
do for (say) one year, and tally up the total value of 
your portfolio at the end.  This, as it turns out, is a 
rather useful way to proceed, though the main 
problem is that it learns very little when faced with a 
monotonically increasing or decreasing index.  One 
must also remember to factor in trading costs and 
bid-offer spread into the simulation, in order to 
discourage rash buying and selling over short 
timescales. 

One further implementation problem with this 
scenario is that the GP individual will usually not be 
able to give a degree of confidence in its prediction.  
So when a GP says ‘buy’, one must decide what this 
is to mean, in terms of the simulation.  For example, 
one could implement a standard iterative scenario, 
where ‘buy’ means ‘buy one unit’ (provided you 
have enough spare cash) and ‘sell’ means ‘sell one 
unit’ (provided you own some). 

The GP would be trained to give one numerical 
outcome which would imply ‘buy’ if the value is 
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positive, and ‘sell’ if the value is negative.  
Alternatively, one could implement a three-signal 
scenario where GP values within a certain tolerance 
of zero are treated as ‘neutral’ or ‘no-operation 
(NOP)’ signals. 

The drawback of these simple strategies is that 
they are unable to take advantage of epochs in which 
a rapid sale or purchase of a large number of shares 
is clearly indicated, such as directly before an 
imminent market crash. 

An extension to this two-signal (buy/sell) or 
three-signal (buy/neutral/sell) strategy is a five-
signal strategy in which some degree of severity is 
offered by the GP.  In this case, in addition to the 
three signals explained above, signals of high 
absolute magnitude would imply that the maximum 
possible quantity should be sold or bought.  This 
leads to a 5-signal (buy-all/buy-one/neutral/sell-
one/sell-all) strategy.  In an extension, one could 
design a scheme where the quantity to buy or sell is 
proportional to the output of the GP. 

The main drawback of this method is simply that 
the GP is encouraged to act severely, very rarely 
taking the cautious route.  For example, if a positive 
gain can be achieved by playing cautiously, then a 
far greater positive gain can be achieved by trading 
on the same occasions, but more recklessly.  The 
problem here being that the GP may well take 
advantage of an excellent buying opportunity early 
on, and then find a superior one without an 
intervening selling opportunity, and be unable to 
take advantage of it. This can be partly moderated 
by the introduction of checks allowing only a 
maximum value of shares to be traded on any one 
day, but this strategy too is not without drawbacks. 

Further strategies, each with their advantages and 
disadvantages, have been investigated.  The 
conclusion is that it is very difficult to specify an 
accurate fitness function which will drive the 
evolution of an ideal GP solution. As in so many 
other data mining applications, the conscientious 
researcher is encouraged to test any proposed 
algorithm on a wide variety of unseen data before 
claiming wildly favourable results. 

The fitness landscape in most real world 
problems is a great deal more complex than in 
simple, analytical test problems. Share-price data are 
by no means an exception to this rule.  One of the 
major problems is that a lot of naïve methods work 
reasonably well, and this means that the fitness 
landscape is littered with a large number of 
suboptimal maxima. 

Another problem is simply that the fraction of the 
available solution space that is valuable is actually 
extremely tiny: most possible filters are average or 
worse.  A random filter is likely to (approximately) 
find companies that track the index. So 

differentiating between poor, average and good 
filters is not straightforward.  The dynamic range is 
not very large (a few percentage points is a big 
improvement in finance) and the fraction we’re 
looking for is tiny.  As opposed to the previous 
example of route optimisation where the difference 
between a poor and a good route is very clear and 
substantial. 

All these points mean that the power of 
evolutionary computation – monotonically urging 
the population of filters towards greater and greater 
fitness – is substantially reduced. Without a clear 
and sharp fitness gradient, evolutionary search 
becomes far more stochastic in nature. 

Given all these caveats, it is surprising that a GP 
approach to stock filters works at all.  However, 
moderately successful GP filters can be evolved in a 
relatively short time, and they tend to select 
companies which are not, at first glance at least, 
unreasonable.  Overwhelmingly, these filters pick 
out companies with high recent relative strength 
(that is, substantial share price growth relative to the 
index) and a sensible PE ratio (indicating that the 
stock is relatively cheap compared to its earnings 
potential). 

This technique, known as momentum investing, 
tends to be successful primarily in bull markets – 
where the share prices are, on the whole, moving 
upwards.  However, it is a generally applicable 
algorithm, making sound investment sense in a 
variety of economic climates. 
 

Evolutionary Conjunctive Rules Algorithm 
One of the drawbacks of GP is that, because of its 

great flexibility and ability to model such a complex 
family of functions, it is unfortunately a very slow 
algorithm, attempting to cover an enormous, 
heavily-exponential search space.  It is also very 
susceptible to suboptimal local maxima, becoming 
stuck in areas of solution space that are not close to 
optimal globally. 

In order to deal with this issue, and thanks to the 
‘no free lunch’ theorem[14,15], we can gain speed 
and reliability only at the cost of losing one of GPs 
virtues, namely its extraordinary flexibility.  One 
such compromise is achieved by using Evolutionary 
Conjunctive Rules (ECR). 

 ECR involves evolving a set of rules which are 
joined by ‘AND’ statements.  Companies matching 
all of these rules with no exceptions, are allowed to 
pass the filter.  All others are rejected.  Shorter and 
more economical rule sets are preferred. 

The genome encoding such rule sets is a variable 
length hierarchical genome, consisting of one or 
more rule entities.  Each rule consists of a rule type 
(‘greater than’, ‘less than’, ‘equals’ etc.), a variable 
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on which this rule applies, and a comparison value.  
In some cases, two values are required. For example, 
for the rule ‘X < variable < Y’. 

In addition to a genotype-phenotype encoding, 
the three obligatory components of an evolutionary 
algorithm, as before, are selection, mutation and 
crossover. 

Mutations are defined straightforwardly. A 
mutation can entire delete an existing rule entity (if 
there exists currently more than one), add a new one 
(generated randomly) or alter an existing one.  
Alterations are applied to any of the variables in 
each rule entity, either altering the rule type, the 
variable to which it is applied, or the comparison 
value(s). 

Crossover is also reasonably straightforward.  As 
the ordering of the rules does not matter, then one 
can simply take two parents and retain each of their 
component rules with 50% probability.  Some 
degree of mutation can, and should, also be applied 
during the crossover.  This tends to produce 
offspring with a length (number of rules) equal to 
the average of the two parents, with a maximum 
length equal to the sum of the parents’ lengths.  
There is a possibility of rejecting all of the parents’ 
rules, in which case one could randomly select one 
of the parents’ component rules to retain. 

Selection is based on the standard tournament 
selection technique, with a fitness derived from the 
accuracy of the rule set when analysed on historical 
data.  This accuracy can consist of several 
components, and it makes sense to include at 
minimum the following: 

 
• A weighted ‘error’ count, including false 

and true positives, together with false and 
true negatives, differently weighted.  
Generally in financial applications (in 
contrast with, for example, medical 
applications), a false positive is far worse 
than a false negative.  These weights can be 
tuned to suit the preferences of an individual 
investor, essentially quantifying his or her 
desired risk profile. 

• A measure of the efficiency of the rule set, 
penalising the fitness for each extra rule 
required, and for unnecessarily large bounds 
on each rule entity.  This is necessary to 
keep the search space tight, and to reduce 
unnecessary genome bloat. 

• A scaled fitness, considering errors more 
influential if they apply to companies whose 
stock movements were more drastic during 
the training period. 

 
 
 

Addendum: Work in Progress 
There are many potential extensions to this work.  

Most interestingly, the potential to analyze how 
predictive models for company success vary across 
sector type.  For example, would a model trained for 
financial service providers also work on automotive 
companies?  This reduces once more to the same 
question of the universality of predictive models 
across varying scenarios. 

As another interesting extension, it may be 
possible to introduce extra information from 
different data streams into the predictive model. For 
example, textual news sources and company results. 
Also, the performance of other companies in the 
same sector or market. 

The potential for analyzing textual information is 
exciting.  The main drawback of the stock filtering 
methods described above is that they cannot possibly 
take into account that which they do not know, such 
as news stories or global economic trends. We aimed 
to add into our models measures of external 
economic factors such as interest rates and inflation, 
though it would be possible to derive far more 
measures if we were to analyze news stories in more 
depth.  For example, oil stocks seem to move in 
correlation with the degree of political instability in 
the world, especially in the Middle East. 

In addition to global economic factors, analysis 
of text would also allow us to incorporate into our 
analysis a number of factors specific to the 
companies under scrutiny, for example share 
purchases or sales made by company directors. 
 

4. CONCLUSION 
In this paper I have covered in more detail a 

selection of algorithms from the field of 
Computational Intelligence, which are being used 
with great success in industrial applications. 

Specifically, I have covered algorithms for the 
optimisation of complex routing problems, with real 
world constraints.  I have also discussed algorithms 
for analysis of financial data, mentioning two by 
name: Genetic Programming (GP) and Evolutionary 
Conjunctive Rules (ECR) techniques. 

I have covered, in each case, a discussion of the 
pitfalls inherent in these techniques, together with 
suggested methods for dealing with these potential 
problems. 

The field of Computational Intelligence is 
becoming increasingly popular within industry as a 
large number of difficult, computationally intensive 
problems present themselves and human intuition is 
no longer sufficient to comprehend or resolve such 
complex situations manually. 

Computational Intelligence techniques give us 
the ability to solve these problems in reasonable 
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time, with a minimum of human specialist expertise 
or technical analysis.  They are also extremely 
flexible, allowing us to apply them to real world 
problems including difficult constraints, with only 
minor modifications. 
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