
Gopalan N.P., Nagarajan K / Computing, 2006, Vol. 5, Issue 1, 92-99

 92

CONSISTENCY OF DISTRIBUTED SYSTEM WITH ACTIVE INITIATOR
PROCESS WITHOUT USELESS CHECKPOINTS

Gopalan N.P., Nagarajan K.

Dept. of Computer Science and Engg, National Institute of Tech., Tiruchirappalli, Tamilnadu, India – 620 015

{gopalan, csk0303}@nitt.edu

Abstract: Checkpointing mechanism is the one of the best attractive approach for providing software fault tolerance in
distributed message passing systems. This paper aims to implement a distributed checkpointing technique, which
eliminates the drawbacks of the centralized approach like “domino effect”, “useless checkpoint” (checkpoints that do
not contribute to global consistency), and “hidden and zigzag” dependencies. The proposed checkpointing protocol has
a checkpoint initiator, but, coordination among the local checkpoints is done in a distributed fashion. This guaranty
that no message would be lost in case of failure occurs, has been maintained in this work by exchange of information
among the processes. However, there is no central checkpoint initiator, but each of the processes takes turn to act as an
initiator. Processes take local checkpoints only after being notified by the initiator. The processes synchronize their
activities of the current checkpointing interval before finally committing their checkpoints. Thus, the checkpointing
pattern described in this paper takes only those checkpoints that will contribute to the consistent global snapshot
thereby eliminating the number of useless checkpoints.

Keywords: Asynchronous distributed system, software fault tolerance, consistent global checkpoint, useless checkpoint,
checkpointing Interval, initiator process and consistent state.

1. INTRODUCTION
In a distributed system a finite set of processes

interact to achieve a common goal. The processes
are synchronized by exchanging messages over a
reliable communication network, in the absence of a
global clock. The delay in the message transfer is
finite and unpredictable. These are the
characteristics of the well-known “asynchronous
distributed systems” [6]. When computation is
extensive, the possibility of process failures may be
on the rise. Many techniques have been developed to
increase reliability of the system making them
highly available. One of them is rollback-recovery;
which is the process of undoing the computations
from the most recent checkpoint (CP) and resuming
processing [12]. The CP is a snapshot of the state of
a process saved on nonvolatile storage.

A global checkpoint (GCP) of a system is a set of
local CPs one from each process [19]. During
message transmission, if a receiver is down, then the
message becomes missing and if the sender crashes,
the message is termed as orphan. A system can have
consistent global checkpoint (CGCP) while these
two types of messages are absent [7]. A process,
designated as CP-initiator takes care of CGCPs in
the present work and each process is made to take

turn and act as the initiator. Generally, processes
take local CPs after being notified by the initiator
except in certain cases. The processes synchronize
their activities before committing their CPs. This
removes inconsistency, if any, when CPs are
committed [22]. In the present study disallows the
formation of zigzag paths and cycles [9] by this
strategy as the checkpointing pattern makes use of
only that CPs that will contribute to a CGCP. If the
ith set of the CPs can be proved to be consistent, then
in case of recovery the system has to rollback only
up to this state [5].

The processes do not post their status information
along with computation messages but update-their
status whenever a message is sent or received.
Whenever process fails, all its dependent processes
may not necessarily rollback to the most recent
consistent CP. When processes resume after roll-
back, they get duplicate messages from other
processes using suitable request, inspect stable
storage log information for the already received
messages from other processes. Alternatively,
duplicate messages can be received or sent to other
processes using communication primitives.

 Dependent processes are identified using the
information piggy-backed with the sent and received
messages. The CPs from every pair of dependent

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Gopalan N.P., Nagarajan K / Computing, 2006, Vol. 5, Issue 1, 92-99

 93

processes is used to construct a GCP for each group
of dependent processes and this is found to be
consistent in the present study. One of the processes
in the system acts as CP-initiator and is considered
to be reliable until CGCP is established. For all
dependent processes after which the next designated
process takes over its jobs and a complex election
algorithms should the CP-initiator be prone for
downtimes. Complex and complicated election
algorithm may be thought of in this contest. The rest
of the paper is organized as follows: Section 2
throws light on some related works in this area.
Section 3 describes the system model and its
notations. Section 4 discusses in details of the
checkpointing algorithm with a proof and section 5
shows the result of simulation. Section 6 provides
the comparison with the earlier work of the message
passing systems with different checkpointing
protocols and section 7 concludes the paper.

2. RELATED WORK

With reference to Chandy and Lamport [5],
Wang et. al [21], Tsai and Kuo [20] states that “A
GCP ‘M’ is consistent if no message is sent after a
CP of ‘M’ and received before another CP of ‘M’ ”.
Following these observations we regard consistency
as the scenario where if a sender ‘S’ sends a message
‘m’ before it has taken its ith CP, then message ‘m’
must have to be received by a receiver ‘R’ before the
receiver has taken its ith CP. A message will be
termed ‘missing’ if its send is recorded but receipt is
not and otherwise it is termed as ‘orphan’ [18].
Suppose a node fails after taking its ith CP, it is
desirable that the system in such a scenario should
rollback to the last (ith) saved state and resume
execution from there. If a system can ensure that
there is no missing or orphan message in the
concerned ith GCP, then the set of all the ith CPs
taken by its constituent processes is bound to be
consistent. Unlike the approach that should exist in a
distributed system, Kalaiselvi and Rajaraman [10]
have kept record at the message sending end and at
the message receiving end. A CP coordinator
matches the log it gets from all the processes at each
checkpointing time. The present system also keeps
records of messages sent and received in each
process but the log is matched in a distributed
fashion. Due to disparity in speed or congestion in
the network, a message belonging to (i+1)th
checkpointing interval (CPI) may reach its receiver
who has not yet taken its ith CP. Such a message is
discarded in [3, 4] and sender retransmits it. Another
method of dealing with such messages is to prevent
their occurrences by compelling the sender to wait
for a certain time before sending a message after any
checkpoint [1]. The present work discards such a

message by adopting a technique in receiving
whereas in another approach [7] any process refrains
from sending during the interval between the receipt
of CP initiation message and completion of
committing that CP. Distributed systems that use the
recovery block approach [6, 10] and have a common
time base may estimate a time by which the
participating processes would take acceptance test.
These estimated instants form the pseudo point times
as described in [14]. The disadvantages of such a
scheme are more than one, like, fast processes may
have to wait for slow processes to catch up and other
fault tolerance mechanisms like time out may be
required. In [12, 14] the authors have analyzed
checkpoints taken in a distributed system having
loosely synchronized clocks [13, 16]. No special
synchronization messages have been used in those
methods but the existing clock synchronization
messages were utilized. The work described in [1, 3]
however, allows processes to take CPs on one’s own
and then a CGCP is constructed from the set of local
CPs. The drawback of the method is that useless CPs
can’t be avoided. The approach taken by Strom et al.
in [17] does not maintain a CGCP at all times but
has to save enough information to construct such a
CP when need arises. So, this requires logging of
messages. Contrary to the present checkpointing
protocol, Prakash et. al. [15] presents minimal
snapshot collection protocol where dependency is
calculated during checkpointing also.

3. SYSTEM MODEL AND NOTATIONS
The system consists of ‘n’ processors, P0, P1, …,

Pn-1. Let i
kC denote the ith CP of kth process (for

example, the kth process, initial-CP is 0
kC (for i=0),

first-CP is 1
kC (for i=1), second-CP is 2

kC (for i=2)
and so on). The CPI is the time interval between any
two consecutive CPs and its ith CPI ends at i

kC . The

kth process starts its execution at 0
kC (k = 0,k =

1,…,k = n-1). To begin with a process, say P0,
initiates checkpointing procedure. The next
checkpoint initiation is done by P1 and so on and
forth. Further, the initiation of checkpointing at
regular intervals is done by processes. Asynchronous
communication has been assumed among the
processes. Acknowledgement and time-out are part
of the communication protocols.

4. ALGORITHMS AND DESCRIPTIONS

The algorithm has a CP initiator which sends an
implicit CP synchronization messages. The initiator
sends the initiation message to all other processes
with the information such as: (i) The number of

Gopalan N.P., Nagarajan K / Computing, 2006, Vol. 5, Issue 1, 92-99

 94

messages sent to processes in the current CPI and
(ii) The number of messages received from
processes in the current CPI. It must be mentioned
here that the additional information regarding
messages would not be sent during the initial CP
since it is taken just after the system has been
initialized and hence it is assumed that
communication among processes has not yet started.
The information means that if Pk has sent a total of
two messages to Pj in the current CPI, then Pk would
write 2 as number of messages and j as process id
(PID) as part of the first information. Similarly if Pj
has indeed received all the two messages from Pk it
would write 2 as number of messages and k as PID
as part of the second information. Pj checks whether
the total number of messages sent by Pk matches
with that received by Pj. If the answer is positive, Pj
takes the checkpoint. If not, then it waits for the
undeceived message(s) and takes the CP after
receiving it (them). During this time only those
messages are received for which Pj is waiting and
any unwanted messages is discarded.

The list of variables used in the algorithm is

described as follows:
Own_Pid: PID of the process responding to

the communication.
Initiator: PID of CP initiator.
CP_Seq: CP sequence number, initially 0.

CP_Indx: Index of the current CPI, initially 0
MSTi[j] : Values denote the number of

messages sent by the process i to
process j in the current CPI.
(Example, MST2[5] = 3, specifies
that the process P2 has sent 3
messages to P5 in the current CPI).

MRFi[j]: Values denote the number of
messages received by the process i
from process j in the current CPI.
(Example, MST0[2] = 1, specifies
that the process P0 has received 1
message from P2 in the current
CPI).

CP_Consistency is the subroutine and

Send_CP_Req, Receive_CP_Req, Send_PSI and
Receive_PSI are the set for communication
primitives used by the proposed algorithms.

Algorithm Checkpoint
{
1. if (Own_Pid = Initiator) then {
2. if (CP_Seq = 0) then {
3. Take a CP and increment CP_Seq by 1;
4. ∀PID: (0≤ PID ≤ n-1 and PID ≠ Own_Pid)
 Send_CP_Req (CP_Seq, CP_Indx);}
5. else { // CP_Seq ≠ 0

6. Take a tentative CP and increment CP_Seq
 and CP_Indx by 1;
7. ∀PID: (0≤ PID ≤ n-1 and PID ≠ Own_Pid)
 Send_CP_Req (CP_Seq, CP_Indx) and
 Send_PSI (CP_Seq, CP_Indx, MST, MRF);}}
8. else { // PID ≠ Initiator
9. if(CP_Seq = 0) then {
10. Receive_CP_Req (Rcvd_CP_Seq,
 Rcvd_CP_Indx) from process P0;
11. Repeat line 3.;}
12. else { // CP_Seq ≠ 0
13. Receive_CP_Req (Rcvd_CP_Seq,

Rcvd_CP_Indx) from the initiator;
14. ∀PID: (0≤ PID ≤ n-1 and PID ≠ Own_Pid) do

{Receive_PSI (Rcvd_CP_Seq,
Rcvd_CP_Indx, Rcvd_MST, Rcvd_MRF);

15. Send_PSI (CP_Seq, CP_Indx, MST, MRF)
check CP_Consistency (Rcvd_MST,
Rcvd_MRF);}

16. Receive_PSI (Rcvd_CP_Seq, Rcvd_CP_Indx,
Rcvd_MST, Rcvd_MRF);

17. Check CP_Consistency (Rcvd_MST,
Rcvd_MRF);}}

18. }

Algorithm CP_Consistency (MST, MRF)
1. {
2. for(i=0;i≤n-1;i++)
3. for(j=0;i≤n-1;j++){
4. if((i≠j){
5. if((MSTi[j] = MRFj[i])){
6. Convert a tentative CP of ith and jth
 processes are permanent;
7. Increment CP_Seq by 1 and reset CP_Indx
 to initial value;}
8. else if (j = Own_Pid){
9. Receive_CP_Req (Rcvd_CP_Seq,
 Rcvd_CP_Indx) from the initiator;
10. ∀PID: (0≤ PID ≤ n-1 and PID ≠ Own_Pid) do
 Receive_PSI(Rcvd_CP_Seq,Rcvd_CP_Indx,
 Rcvd_MST, Rcvd_MRF);
 Check CP_Consistency (Rcvd_MST,
 Rcvd_MRF);}
11. else{ // MSTi[j] ≠ MRFj[i]
12. Discard the tentative CP;
13. Expand the CP_Indx and Decrement
 CP_Seq by 1;}}}
14. }

The Checkpoint algorithm works as follows: The

initial checkpoint is taken after system initialization
by the CP-initiator (Cf. lines 1-4) and other
processes (Cf. lines 9-11). For any other CPs, the
initiator first sends a ‘CP-request’ along with its
process status information within the current CPI
(Cf. lines 6 and 7). Other than the initiator processes

Gopalan N.P., Nagarajan K / Computing, 2006, Vol. 5, Issue 1, 92-99

 95

receive and send their status information to the
initiator and exchanges among them, which is
described in lines 12-15. Some slow process may
wait and receiving status information in line 16.
After it receives status information from all others it
goes on to check system consistency in line 17.
When the system is consistent, commit the tentative
CP (Cf. lines 5-7); otherwise discard the tentative
CP (Cf. lines 11-14) using CP_Consistency
subroutine. This is demonstrated using Boldoni et.al.
algorithm in [2] and Lamport ‘happened before
relation’ [21] as follows:

Theorem 1

A GCP { }ikC is consistent only when all pair of

local CPs { }{ }i
k

i
k CC 1, + is consistent

(where, 10, −≤≤∀ nkk) and the CP taken by the
algorithm forms a CGCP.

Proof: This theorem is proved by contradiction.
Let us consider the checkpoints form an

inconsistent GCP. Then there should be a checkpoint
i
sC that happened before [11] another

checkpoint i
rC . This implies that, the two scenarios

were obtained as follows:
1. There should be at least a message ‘m’

sent by the process Ps after i
sC but

received by the process Pr before i
rC .

2. There should be at least a message ‘m’
sent by the process Ps before i

sC but

received by the process Pr after i
rC .

Therefore, the pair (i
sC , i

rC) in not a consistent
CP and it is not a part of CGCP. This can be proved
in the following way:
Case 1:

Fig. 1

Let us consider figure 1 and a fault-free scenario

where messages reach destinations correctly.
Assumptions:

1. Message ‘m’ not recorded sent.
2. Message ‘m’ recorded received.

3. 1−i
sC and 1−i

rC are the CGCPs.

4. i
sC and i

rC are the tentative local CP
(initially not recorded in the stable
storage) taken by the processes Ps and Pr
respectively after the CP request message
received.

The following scenario is observed:
i. Message ‘m’ is sent at t3 and tentative i

sC
taken by the process Ps at t2. (t2 < t3 by
assumption 1)

ii. Message ‘m’ is received at t4 and tentative
i
rC taken by the process Pr at t5. (t4 < t5 by

assumption 2)
iii. When process Ps takes CP at t2 (by

assumption 1 and step i).
a. Ps has reached line 17 of algorithm

via lines 12-16.
b. Ps has checked its consistency with

other (n-1) processes including Pr
using algorithm CP_Consistency.

iv. In line 15 Ps sends its status and Pr receives
it in line 16.

a. Pr check the system consistency in
lines 1-5 using algorithm
CP_Consistency and no
discrepancies are noted.

b. Pr reaches line 6 and takes i
rC by

step ii. Therefore, violating
assumption 2 and scenario ii.

c. Message ‘m’ reaches Pr and
eventually gets rejected using lines
8-14 of algorithm CP_Consistency
(by step i).

d. Step iv. (b and c) contradicts
assumption 2.

Therefore, there can’t be any message ‘m’ that is
not recorded sent but recorded received in the
same GCP.

Case 2:

Let us consider Figure 2.

Fig. 2

Ps

Pr

m

i
sc

1−i
rc

1−i
sc

1−i
rc

 t1 t2 t3 t4 t5 t6 t7

Pr

Ps

m

−i
rc

i
sc

1−i
rc

1−i
sc

 t1 t2 t3 t4 t5 t6 t7

Gopalan N.P., Nagarajan K / Computing, 2006, Vol. 5, Issue 1, 92-99

 96

Assumptions:

1. Message ‘m’ is recorded sent.
2. Message ‘m’ is not recorded received.
3. 1−i

sc and 1−i
rc are the CGCPs.

4. i
sc and 1−i

rc are the tentative local CP
(initially not recorded in the stable storage)
taken by the processes Ps and Pr
respectively after the CP request message
received.

The following scenario is observed:
i. Message ‘m’ is sent at t3 and tentative

i
sc taken by the process Ps at t5. (t3< t5 by

assumption 1)
ii. Message ‘m’ is received at t4 and

tentative 1−i
rc taken by the process Pr at t2. (t2

< t4 by assumption 2)
iii. When process Ps takes CP at t5 (by

assumption 1 and step i).
a. Ps has reached line 17 and recorded

sent of message ‘m’ (by assumption 1
and step i) via lines 12-16 of
algorithm checkpoint.

b. Ps has checked its consistency with
other (n-1) processes including Pr
using algorithm CP_Consistency.

iv. Similarly, when Pr takes CP at t2.
a. Pr reaches line 6 using algorithm

CP_Consistency.
b. Pr has checked its consistency with

other (n-1) processes including Ps
using lines 1-5 of algorithm
CP_Consistency.

c. Pr finds that message ‘m’ from Ps is
yet to be received by it. (by step i).

d. Pr checks the system consistency in
line 16 via lines 12-16. But the
message ‘m’ is not actually received
in line 16 of algorithm Checkpoint.

e. Therefore, Pr can’t reach line 17 and
can’t take CP.

f. Step iv.e. contradicts assumption 2.
Therefore, there can’t be any message ‘m’ that is
recorded ‘sent’ but not recorded ‘received’ in the
same GCP protocol.

5. PERFORMANCE EVALUATION
The experiments were performed on a cluster of

PCs under Linux 2.4.18. The cluster consists of 8
nodes connected by a 100 MBPS Ethernet and
equipped with AMD processors running at 1.2GHz
with 128KB catch, 256MB of main memory and
20GB of stable storage.

A Dense matrix multiplication (MM) application

[8] is used for the performance evaluation of the
proposed algorithm. The program implementations
use the LAM/MPI version 1.2.5 and the program
was compiled using the GNU GCC version 2.96.
The same application is executed using distributed
check pointing (DCP), coordinated check pointing
(CCP) and communication induced check pointing
(CICP) protocols for the comparison study.

Fig. 3 - Execution Time Vs No. of Processors

The Figure 3 illustrates the execution time under

different CP protocols performance, when the
numbers of processors are varied in the cluster. With
the increasing synchronization overhead and failures
with the increase in number of processors gets
degraded in CCP and CICP. Hence, the execution
times are found to be higher by about (38%,
25.04%), (69.46%, 47.34%), (147.25 %, 69.6%),
(158.7%, 103.04%) and (196.4%, 143.6%) than
those observed in the present DCP model using
1,2,3,4 and 8 processors in action.

Fig. 4 - Performance of different checkpointing

protocols

Gopalan N.P., Nagarajan K / Computing, 2006, Vol. 5, Issue 1, 92-99

 97

Due to the possible occurrences of domino effect
and the dependent processes overheads in CICP and
CCP, the failures are increases with proportional to
the number of processors. This is clearly described
in Figure 4. The performance of DCP variations are
qualitatively similar until 3 processors are in action
and increases drastically when 4 or more processes.
The performance (in Mega Flops) of DCP is (48%
and 30%), (54.5% and 50.34%) and (56.19% and
58.59%) higher during compression with CCP and
CICP protocols when 1, 4 and 8 processors are in
action.

6. COMPARISON WITH THE EARLIER

WORK
Table 1 summarizing the comparison of different

checkpointing techniques that are discussed in the
survey paper [6, 10]. The following notations are
used to compare the present work:

Cuni: Cost of sending a message from one
process to another process.

Cbrd: Cost of broadcasting a message to all
processes.

Tch: The checkpointing time. i.e,
Tch=Tmsg+Tdata+Tdisk .

Tdisk : Delay incurred in saving a checkpoint on
the stable storage.

Tdata: Delay incurred in transferring a
checkpoint to the stable storage.

Tmsg: Delay incurred by system messages
during a checkpointing process.

Nmin : The number of processes that need to
take checkpoints.

n: The total number of dependent processes
in the system.

Ntmp: The number of tentative checkpoints
during a checkpointing process.

Ndep: The average number of processes on
which a process depends.

Table 1. Comparison of various checkpointing approaches

 Uncoordinated
Checkpointing

Coordinated
Checkpointing

Communication
induced

Checkpointing

Distributed
Checkpointing

Checkpoint
Initiator Process

Must be a
Separate Process

May or may not
be a separate process

May or may not
be a separate

process

Any of the n
processes

Domino effect
and useless CP

Possible [3] Possible [4,14,16] Possible
[12,19,20,21]

Absent

Total Number
of CPs

Not possible
to say

Nmin Nmin n

Blocking
Time

0 Nmin*Tch Nmin+(Tch*Ntmp) n*Tch

Checkpointing
Cost

Not possible
to say

3*Nmin*Ndep+Cbrd Nmin+Ndep+Cuni 2*(n+Cuni)

Total number
of messages
required for

synchronization

System is not
set to be

synchronized

3 messages.
(Request, reply

and
Acknowledgement)

Not a separate
message

2 (Request
and Reply)

Vast Network
Traffic while

synchronization

Towards to
the monitor

process

Towards to the
coordinated process

Piggybacked
with the

application
message

Distributed

7. CONCLUSION

The check-pointing algorithm proposed in this
paper constructs consistent distributed checkpoints,
without useless checkpoints. Also, the occurrences
of missing and orphan messages, hidden and Zigzag
paths are avoided. The need for a separate
coordinator process doesn’t arise.

Further, only a consistent global checkpoint is
used and this result in significant performance
improvement as the increasing synchronization
overhead and failures with the increase in number of
processors gets minimized in this approach.

Gopalan N.P., Nagarajan K / Computing, 2006, Vol. 5, Issue 1, 92-99

 98

8. REFERENCES

[1] Aurelin, L.Pierre, K.Geraud, C.Franck,
“Coordinated checkpoint versus message log for
fault tolerant MPI,” Proceeding of the IEEE
International Conference on Cluster Computing,
PP: 242 – 250, IEEE CS Press, 1-4 Dec. 2003.

[2] Baldoni, R., J.M.Mostefaoui, A and Raynal M.,
“A Communication Induced Checkpointing
Protocol that Ensures Rollback Dependency
Tractability”, IRISA Research Report 1076, Jan
1997.

[3] Bosilca, G., Bouteiller, A., Cappello, F., Djilali,
S., Fedak, G., Germain, C., Herault, T.,
Lemarinier P., Lodygensky O., Magniette F.,
Neri V., and Selikhov A., “MPICH-V: Toward a
Scalable Fault Tolerant MPI for Volatile
Nodes”, Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, Baltimore,
Maryland, PP: 1 - 18, 2002

[4] Bouteiller Bouteiller, Franck Cappello, Thomas
Herault, Krawezik Krawezik, Pierre Lemarinier,
Magniette Magniette. "MPICH-V2: a Fault
Tolerant MPI for Volatile Nodes based on
Pessimistic Sender Based Message Logging,"
sc’03, ACM/IEEE press, PP: 25- 42, 2003.

[5] Chandy, M. and Lamport, L., “Distributed
snapshots: Determining global states of
distributed systems”, ACM Transactions on
Computing Systems, Vol. 3, No. 1, PP: 63-75,
Aug. 1985.

[6] Elnozahy, E. N., Alvisi, L., Wang, Y.M., and
Johnson D. B., “A survey of rollback-recovery
protocols in message-passing systems”, ACM
Computing Surveys, Vol. 34, No. 3, PP: 375–
408, 2002.

[7] Gopalan, N.P. and Nagarajan, K., “Self-Refined
Fault Tolerance in HPC using Dynamic
Dependent Process Groups”, Lecturer Notes in
Computer Science (LNCS), Springer-Verlag,
LNCS 3741, pp. 153 – 158, Dec 2005..

[8] Gunnels, J; Lin, C; Morrow, G; and Van de
Geijn, R; “Analysis of a Class of Parallel Matrix
Multiplication Algorithms,” Proc. Int’l Parallel
Processing Symp., 1998.

[9] Jichiang Tsai, “On Properties of RDT
Communication-Induced Checkpointing
Protocols”, IEEE Transactions on Parallel and
Distributed Systems, Volume 14, Issue 8, Pages:
755 – 764, August 2003.

[10] Kalaiselvi, S. and Rajaraman, V, “A survey of
rollback and recovery strategies for computer
programs”, IEEE Transaction on Computer,
Vol. 25: PP 489–510, October 2000.

[11] Lamport, L., “Time, Clock and the ordering of
events in a Distributed System”,

Communications of ACM, 21(7): 558-567, 1978.
[12] Manivannan, D.; Netzer, R.H.B.; Singhal, M.;

“Finding Consistent Global Checkpoints in a
Distributed Computation”, IEEE Trans. On
Parallel & Distributed Systems, Vol. 8, No.6,
June 1997, PP 623 – 627.

[13] Manivannan, D., “Quasi-Synchronous
Checkpointing: Models, Characterization and
classifications”, IEEE Trans. On Parallel and
Distributed Systems, Vol. 10. No. 7, July 1999,
PP 703 –713.

[14] Neogy, S. Sinha, A; Das, P.K., “Finding
Consistent Checkpoints in a Distributed System
with Synchronized Clocks”, IASTED
International Conference on Applied Informatics
AI -2001, February 19 – 22, Australia.

[15] Prakash, R; Singhal,M; “Low-Cost
Checkpointing and Failure Recovery in Mobile
Computing Systems”, IEEE Trans. On Parallel
and Distributed System, Vol. 7, No. 10, PP
1035-1048, October 1996.

[16] Sinha, A; Das, P.K.; Basu, D.; “Implementation
and Timing analysis of Clocks Synchronization
on a Transporters based replicated systems”,
Information & Software Technology, 40(1998),
PP 291 –309.

[17] Strom, R.E.; Yemini, S.; “Optimistic Recovery
in Distributed Systems”, ACM Trans. On
Computer Systems, Vol. 3. No. 3, Aug. 1985, PP
204 –226.

[18] Tong. Z.; Richard, Y.K. & Tsai, W.T.;
“Rollback Recovery in distributed systems using
loosely synchronized clocks”, IEEE Trans. On
Parallel and Distributed Systems, Vol. 3. No.2,
March 1992, PP 246- 251.

[19] Tsai, J.; Kuo, S.; “Theoretical Analysis for
Communication Induced Checkpointing
protocols with Rollback Recovery Dependency
Tractability”, IEEE Trans. On Parallel and
Distributed Systems, Vol. 9, No. 10, Oct. 1998,
PP 963-971.

[20] Tsai, J.; Wang, Y.;Kuo, S.; “Evaluation of
Domino free communication induced
checkpointing protocols”, Information
Processing Letters 69(1999),PP 31- 37.

[21] Wang, Y.M..; Lowary, A; Fuchs, W.K.;
“Consistent Global Checkpoint Based on
Dependency tracking”, Information Processing
Letters, Vol. 50, No. 4, 1994, PP 223-230.

[22] Wong, F. and Franklin, M., “Checkpointing in
distributed systems,” Journal of Parallel &
Distributed Systems, Vol. 35, No. 1, PP 67–75,
May 1996.

Gopalan N.P., Nagarajan K / Computing, 2006, Vol. 5, Issue 1, 92-99

 99

Gopalan N.P. is the Head of the
department of Computer Science
and Engineering at National
Institute of Technology,
Trichirapalli, India. He received his
Ph.D. from Indian Institute of
Science, Bangalore, India, 1983.
His research includes
Combinatorics, Grid Computing,
Distributed & Parallel Computing,
Data mining and Algorithms.

Nagarajan K. is a Research
Scholar of Computer Science and
Engineering at National Institute of
Technology, Trichirapalli, India. He
received his Master of Computer
Science and Engg. Degree from
Jadavpur University, Kolkatta,
2003. His research includes
Distributed Systems, Parallel
Processing and Algorithms

