
Goutam Kumar Saha / Computing, 2006, Vol. 5, Issue 1, 26-30

 26

SOFTWARE IMPLEMENTED HARDWARE-TRANSIENT FAULTS
DETECTION

Goutam Kumar Saha

Centre for Development of Advanced Computing, Kolkata, India

Mail to: CA-2 / 4B, Baguiati, Deshbandhu Nagar, Kolkata 700059 India
gksaha@rediffmail.com

Abstract: This paper examines a software implemented self-checking technique that is capable of detecting processor-
registers' hardware-transient faults. The proposed approach is intended to detect run-time transient bit-errors in
memory and processor status register. Error correction is not considered here. However, this low-cost approach is
intended to be adopted in commodity systems that use ordinary off-the-shelf microprocessors, for the purpose of
operational faults detection towards gaining fail-safe kind of fault tolerant system.

Keywords: Processor's hardware transient - bit-errors detection, low-cost software approach.

1. INTRODUCTION
The objective of this proposed software based

self-checking technique is to detect multiple
transient bit errors (soft errors) in processor memory
and processor status word (PSW). No error
correction [7] is considered here. The issue of
eliminating software design bugs is also not
considered here. The proposed approach is intended
to complement the intrinsic Error Detection
Mechanisms (EDM) of a system (exceptions,
memory protection, etc.) with software fix. There
are various approaches that intend to complement
the intrinsic EDM with a set of carefully chosen
software- based error -detection techniques. Such
techniques include Algorithm Based Fault Tolerance
(ABFT) [2], Control Flow Checking (CFC) [3], and
Assertions [4]. ABFT is suited for applications that
use regular structures and therefore its applicability
is valid for a limited set of problems. In CFC, the
application program is partitioned in basic blocks
and a deterministic signature is computed for each
block and faults can be detected by comparing the
run-time signature with a pre-computed one. The
main problem with CFC is to tune the test
granularity that needs to be used. The basic idea of
Assertions is to insert logic statements at different
points in the program that reflect invariant
relationships between the variables of the program
may lead to different problems , since assertions
are not transparent to the programmer and their
effectiveness depends on the nature of the
application and on the ability of the programmer

[8]. Readers may refer to the work [11] that makes
available different fault-tolerant configurations and
maintains run-time adaptation to changes in the
availability requirements of an application. The
work in [10] describes various fault tolerance
approaches (Recovery Block and N-version
Programming Schemes, Triple Modular Redundancy
etc.,) that use design diversity.

The proposed work is intended to verify for
immunity for electrical short-duration noises [5,9].
We detect the operational faults in a microprocessor
or micro controller system by examining the
Processor Status Word (PSW) bits - pattern. In this
approach, we use a number (say, twenty) of
successive No-Operation (NOP) instructions that are
preceded and followed by PUSH PSW instructions.
We need to save the PSWs into the stack area, one is
before and another one is after the execution of the
NOP codes. Then we pop both the PSWs from the
stack and compare them to check for similarity at the
corresponding flag bits of both the PSWs. We know
that the execution of NOP codes does not alter the
PSW flag bits - pattern. The effectiveness in
detection of errors by this approach relies on either
the unintended alterations (by transients) in the bits
of the NOP codes (resulting in codes for some other
instructions e.g., ADD, SUB) or in the processor
status register. Again we have used a number of
branch instructions (say, five) immediately after this
proposed program code in order to bring the faulty
program control (if a NOP code is changed to a
branch or jump code) that takes the program flow

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Goutam Kumar Saha / Computing, 2006, Vol. 5, Issue 1, 26-30

 27

out of the proposed program code, to the beginning
of the detection code for ensuring the re-execution
of the proposed code. However, if a NOP code is
changed to a branch instruction that causes the
program control to skip few NOP instructions, then
such alteration remains fail-silent. In addition, in
order to check for operational fault at a
microprocessor environment or to harden a
microprocessor system, programmer can insert
(manually or by a macro) this detection- program
code at the critical parts of an application program.
In case, a disagreement between the PSWs is
observed, programmer can bring the program control
to a safe and known stable state (through error flags)
in order to re-start the application for gaining fail-
safe type of fault tolerance. This approach has the
fault coverage limiting over the random and multiple
bit errors in the memory area containing NOP codes,
PUSH or POP PSW instruction codes, or in memory
stack or in the processor status register containing
the PSW bit-pattern and over a limited program
control errors. The program code for Intel 8085
microprocessor is shown as an example. However,
this method can also be easily implemented in
modern microprocessors also. The work in [1]
describes various automated fault injection tools.
The effectiveness of the proposed transient errors
detection scheme is verified on the microprocessor
based system through debugging the manually
modified (random single-bit flip) source program.
This proposed approach is also useful for detecting
the various kind of faults in a faulty processor that
generates wrong and random answers (i.e.,
Byzantine faults). The proposed low-cost software-
fix scheme is intended to detect run-time multiple
transient errors at a part of the memory space and
processor registers.

2. SOFTWARE IMPLEMENTATION
The proposed transient errors detection program

module consists of the following basic steps. The
coding involves primarily a number of NO-
Operation codes that are preceded and followed by
PUSH PSW and (PUSH PSW, POP PSW)
respectively.

Step 1. Save the processor status word

 (PSW) onto a stack.

Step 2. Execute a few number of extra NO-

 Operation codes.

Step 3. Save the current processor status

 word (PSW) onto a stack.

Step 4. Pop both the PSWs from the stack.

Step 5. If both the PSWs are same, Then:

 "No operational transient fault"

 ;Go forward with application.

 Else:

 "Error Detected"

 ;Jump to an Error-Handling-

 ;Routine to reset because

 ;transient errors are found at the

 ;operational environment.

 Endif

[End of Fault Detection Steps]

 The proposed approach can easily be
implemented using any modern microprocessor.
Though the software implementation is shown,
as an example, for Intel 8085 assembler for
better understanding, this approach is easily
scalable to any 16/32/64-bit microprocessors. In
fact, the code size is less and code-complexity is
reduced for modern microprocessors.

Modern microprocessors have limited hardware
error detection, especially for transient faults, which
are vast majority of hardware failures. About 30%
failures are reported because of transient faults. At
present, the frequency of the transient faults is low.
However, small device size, increasing transistor
counts, high clock frequency and low power supply
that are accompanied with deep sub-micron
technology, do not only reduce noise margin and
reliability but also increase the impact of defects
[12].

The probability to detect errors in an application,
in this proposed approach, is proportional to (m*n /
(m*n + N)). Here, n is the number of extra NOP
codes, m is the number of macro calls to this
detection code and N is the application size in bytes
without any software fix toward fault tolerance. The
advantage of this proposed approach over simple
write, read and check for consistency is its faster
detection and wider coverage for errors at both the
memory as well as at the processor registers
including PSW.

Intel 8085 is an 8 – bit microprocessor [6]. This
software fix can also be applied to any
microcomputer-based application. Intel 8085
microprocessor handles 8 – bit data at a time. It has
the following registers:

(i) One 8- bit accumulator (ACC) i.e.,
register A.

(ii) Six 8 – bit general-purpose
registers. These are B, C, D, E, H,
and L.

Goutam Kumar Saha / Computing, 2006, Vol. 5, Issue 1, 26-30

 28

(iii) One 16 –bit stack pointer, SP.
(iv) One 16 – bit Program Counter, PC.
(v) Instruction Register.
(vi) Status register.
(vii) Temporary register.

In order to handle 16 – bit data two 8 – bit
registers can be combined. The combination of two
8 – bit registers is called a register pair. The valid
register pairs in INTEL 8085 are B-C, D-E, and H-
L. The H-L pair is used to address memories. The
processor status word (PSW) consists of five status
flags and three undefined bits. PSW and the ACC
are treated as a 16- bit unit for stack operations.
CF Carry Status Flag
PF Parity Status Flag
X Undefined Bit
ACF Auxiliary Carry Flag
ZF Zero Status Flag
SF Sign Status Flag
NOP (NO Operation): States: 4, Flags: None,
Machine Cycle: 1.

Nothing happens when this instruction is
executed. The registers and flags remain unaffected.
Micro-operation PUSH PSW:
 [[SP] – 1] [A]

 [[SP] – 2] PSW
 [SP] [SP] – 2

The content of the accumulator is pushed into the
stack. The contents of status flags are also pushed
into the stack. The content of the register SP is
decreased by 2 to indicate new stack top.
Micro-operation POP PSW:

 PSW [SP]
 [A] [[SP] + 1]
 [SP] [[SP] + 2]

The processor status word that was saved earlier
during the execution of the program is moved from
stack to PSW. The content of the accumulator that
was also saved is moved from the stack to the
accumulator.
Micro-operation PCHL (Jump to address specified
by H-L pair):
 [PC] [H-L]
 [PCH] [H]
 [PCL] [L]

The content of the H-L pair is transferred to
program counter. The content of register H is
moved to high-order 8 bits of the register PC. The
content of register L is transferred to low – order 8
bits of register PC.

The program code is stated below.
/* Operational faults at the processing system is
verified by this built-in self-checking code. No-
Operation (NOP) instructions are used as an on-line
test bed. */

 PUSH PSW
; push the current processor status word into ;stack
 NOP
; execute extra No Operation instructions
 NOP
 NOP
 NOP
 NOP ; No operation
 NOP
 NOP

NOP
NOP

 NOP
 NOP ; execute extra
;No Operation instructions
 NOP
 NOP
 NOP
 NOP ; No operation
 NOP
 NOP

NOP
NOP

 NOP
PUSH PSW ; push PSW
 ; into stack
POP H ; move the
;latest PSW (i.e., the one that
;was saved after executing -
; the extra NOP
;instructions) to H-L pair.

 ;POP D
; move the earlier PSW (that was saved
;before executing the NOP-
; - instructions) to D-E pair.
; compare both the PSWs' bit patterns.
 MOV A, L
; move L to register A
 CMP E
; compare with the content of register E
 JNZ ERR
; if not zero, jump to an error handler ERR
 MOV A,H
 CMP D
; compare contents of H and D
 JNZ ERR
; if not zero (i.e., mismatch of PSWs) , then
;jumps to ERR for re-execution or to
;restart.

MVI A, 80H
; move data 80H (active value) to register A

STA 2020H
; active data 80H at the location 2020H,
;designated as Flag_OK
; Flag_OK is active.
 XRA A
; register A is Exclusive ORed with A

Goutam Kumar Saha / Computing, 2006, Vol. 5, Issue 1, 26-30

 29

 STA 2021H
; 2021H is meant for Flag_Fault, data 00H
;is to mean inactive, data 80H at 2021H
;indicates that Flag_Fault is active.
; Flag_Fault is inactive
 RET
; return to the calling program or jump to
;the beginning for
; re-executing this code by a JMP code in
;place of RET

ERR: XRA A
; Accumulator is cleared to zero
 STA 2020H
; Set Flag_OK to 00H i.e., Flag_OK is
;inactive
 MVI A, 80H
; Accumulator is set to 80H (active data)
 STA 2021H
; set Flag_Fault byte to 80H to mean the
;Flag_Fault as active.
 RET
; return to the calling program or, jump to
;the beginning for
; re-executing this code by a JMP code in
;place of RET

3. DESCRIPTION
We save the current PSW into the stack area

prior to execution of extra NOP instructions. A set
of twenty NOP instructions is executed and then we
save the PSW. We compare both the PSWs for an
agreement. If both the PSWs' flag-bits are similar
then it indicates that there has been no bit errors at
the NOP codes and at PSWs. Any disagreement
between the PSWs indicate bit errors at NOP codes
or at the PSWs. Because the execution of a NOP
code does not alter the flag bits of a PSW. Again, the
number of NOPs can be varied from ten to forty
(depending on the allowed time and space
redundancy of an application and its size). It is
intended to keep the size of the software fix close to
a typical application size. This approach is not
intended to detect transient bits- errors at the
application program code. This is useful towards
detection of operational faults at a microprocessor
system with an overhead of (x 2) in both the
memory space and time redundancy for a typical
system with same size. This scheme is also intended
to be useful to take preventive measures because the
errors in NOPs indicate the possibility of errors in an
application code also and vice versa.

4. EXPERIMENTAL RESULTS

Intel SDK85 kit, an 8085 based microcomputer
(after assembling the parts) has been used for
experimenting the effectiveness of this proposed

technique. Machine language program has been
entered (in hexadecimal format) and debugged
sitting at the small keyboard. Specific keystroke
sequences have been used to examine the contents of
8085 register and memory locations. In order to
practically evaluate the feasibility and effectiveness
of the proposed approach, the fault model of single-
bit flip (at random bit number) into memory
locations (at the extra NOP instructions) has been
adopted by manually modifying the machine
language program (while entering the source
program in hexadecimal code) and then debugged.
It has been observed that about 21.4% of errors have
been detected by the intrinsic Error Detection
Mechanisms (EDM) of the system (microprocessor
exceptions, memory protections etc.). The
proposed software code could detect about 26.7%
errors. While the Fail Silent errors (i.e., they did
not produce any difference in the program behavior)
were of 38.3%. While the rest errors (13.6%) were
found to be of Fail Silent Violations (i.e., they have
not been detected by any EDM and have produced a
different behavior). Transient bit errors at the NOP
codes that might have occurred prior to executing
this code are detected by this low cost software fix.

5. CONCLUSION
The proposed low-cost software-fix scheme is

intended to detect run-time operational multiple
transients caused bit-errors at a part of the memory
space and processor registers. On complementing
the intrinsic EDM, this scheme is particularly suited
for safety-critical applications implemented by low-
cost embedded systems where memory availability
and execution speed are not a concern. The work can
also be extended for a faster microprocessor with
proper modification thereof towards gaining a
reliable commodity system. System engineers can
find the scheme as a useful one to harden a
microprocessor system also. This approach can
easily be implemented in a modern microprocessor
system also. It is intended that while designing an
application based on this approach, the overhead in
execution time (caused by extra NOPs and
examining the PSWs) will be compensated by using
an affordable and faster processor.

6. REFERENCES
[1] M-C Hsueh, T.K. Tsai, R.K. Iyer, "Fault

Injection Techniques and Tools," IEEE
Computer, pp 75-82, April 1997.

[2] K.H. Huang, J.A. Abraham, "Algorithm - Based
Fault Tolerance for Matrix Operations," IEEE
Transactions on Computers, vol 33, Dec 1984,
pp 518-528.

Goutam Kumar Saha / Computing, 2006, Vol. 5, Issue 1, 26-30

 30

[3] S. Yau, F. Chen, "An Approach to Concurrent
Control Flow Checking," IEEE Transactions on
Software Engineering, vol. SE-6, No. 2, March
1980, pp. 126-137.

[4] M. Zenha Rela, H. Madeira, J.G. Silva,
"Experimental Evaluation of the Fail-Silent
Behaviour in Programs with Consistency
Checks," Proc. FTCS - 26, 1996, pp. 394-403.

[5] T.L. Criswell, et.al, "Single Event Upset Testing
with Relativistic Heavy Ions," IEEE Trans Nucl.
Sci., vol. 31, no. 6, 1984, pp. 1559-1562.

[6] Roger L. Tokhcim, “Theory and Problems of
Microprocessor,” McGraw Hill Book
Company, 1997.

[7] Stephen B. Wicker “Error Control Systems for
Digital Communication and Storage,” Prentice
Hall, NJ, USA, pp.72- 127, 1995.

[8] A. Benso, P.L. Civera, M. Rebaudengo, M.
Sonza Reorda, "An Integrated HW and SW
Fault Injection Environment for Real -Time
Systems," Proc. IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems,
pp. 117-122, 1998.

[9] T.P. Ma, P. Dussendorfer, "Ionizing Radiation
Effects in MOS Devices and Circuits," Wiley,
N.Y., 1989.

[10] Jean-Claude Laprie, Jean Arlat, Christian
Beounes, Karama Kanoun, "Hardware- and
Software - Fault Tolerance: Definition and
Analysis of Architectural Solutions," Proc. 17th
International Sympsium Fault-Tolerant

Computing, Computer Society Press, Los
Alamitos, Calif., pp. 116-121, 1987.

[11] Goutam Kumar Saha, "Transient Software
Fault Tolerance Using Single-Version
Algorithm," ACM Ubiquity, vol.6(28), ACM
Press, USA, August, 2005.

[12] T. Sato and I. Arita, "Tolerating Transient
Faults in Microprocessors," 13th Joint
Symposium on Parallel Processing, 2001, Japan.

Goutam Kumar Saha
In his last seventeen years'
research and development
experience, he has worked as a
scientist in LRDE, Defence
Research & Development
Organization, Bangalore, and at
Electronics Research &
Development Centre of India,

Calcutta. At present, he is with the Centre for
Development of Advanced Computing, Kolkata,
India, as a Scientist-F. He has authored around one
hundred research papers at various national and
international journals, magazines and proceedings
that include SAMS Journal, ACM, C&EE J., IEEE,
CSI, Elsevier Science and International Conference
Proceedings etc. He is a senior member in IEEE,
Computer Society of India, ACM and Fellow in IETE
etc. He has received various awards, scholarships
and grants from national and international
organizations. He is a reviewer of the CSI Journal,
AMSE Journal, IJCPOL, IJZUS and IEEE Magazine.
His field of interest is on software based fault
tolerance, dependable computing and NLP. He can
also be reached by <sahagk@gmail.com>.

