
Linda Markowsky / Computing, 2005, Vol. 4, Issue 3, 110-116

 110

A COMPARISON OF AGGREGATION/BROADCAST METHODS AND
MULTICOMPUTER ARCHITECTURES, AND AN EXAMINATION OF THE

COMMUNICATION OVERHEAD ON THE IBM PSERIES 655

Linda Markowsky

University of Maine, Orono, ME, USA
lmarkov@umcs.maine.edu

Abstract: First, using a simulator, a detailed comparison of the butterfly and direct aggregation/broadcast methods on
both hypercube and fully connected multicomputers, both with and without simulation of congestion, is made. Second,
the communication overhead an IBM pSeries 655 is examined.

Keywords: aggregation/broadcast methods, multicomputer architecture, communication overhead, IBM pSeries 655

1. INTRODUCTION
Parallel versions of Jacobi’s Method using the

message-passing paradigm were run both in a
Pascal-based simulator [1] and on an IBM pSeries
655 (8 processors, 1.1GHz Power4, 16 GB memory,
36 GB scratch disk, 1Gbps Ethernet network)
located at Boston University in Boston, MA, USA.

First, the results produced by the simulator are
used to make a detailed comparison of the butterfly
and direct aggregation/broadcast methods on both
hypercube and fully-connected multicomputers, both
with and without simulation of congestion.

Second, the results produced by the IBM pSeries
655 were used to make a detailed examination of the
three phases of parallel computation—the
distribution, computation, and communication
phases—and to take a careful look at the
communication overhead on the IBM pSeries 655.

The same algorithm—Jacobi’s method, a well-
known iterative algorithm used to solve diagonally
dominant linear systems of equations—is used in
both the simulator and pSeries portions of this study.
For more on Jacobi’s method and its implementation
as a computer program, see, for example, [2] and
[3].

2. SIMULATION: COMPARISON OF THE

DIRECT AND BUTTERFLY
AGGREGATION / BROADCAST

METHODS ON A 5-DIMENSIONAL
HYPERCUBE

Using a Pascal-based simulator [1], a system of
32 equations was solved on a 5-dimensional
hypercube using both the direct and butterfly
multiple broadcast/aggregation methods. In the
direct method, each of the processors sends/receives
a message to/from each of the others in each step of
the algorithm, flooding the communication network
with messages and causing congestion. The butterfly
method, however, avoids congestion by restricting
communication to direct links. The elapsed time and
the speedup of the parallel region are depicted in
Figs. 1a and 1b. In this simulation, the methods
rank:

When the simulator takes into account the cost of

congestion, the butterfly method outperforms the
direct method (because the butterfly method avoids
congestion and the direct method does not). When
the simulator ignores the cost of congestion,
however, the simpler direct method outperforms the
more complex butterfly method.

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Linda Markowsky / Computing, 2005, Vol. 4, Issue 3, 110-116

 111

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

10 20 30 40 50 60 70 80 90

Communication Delay (time units)

El
ap

se
d

Ti
m

e
(ti

m
e

un
its

)

Butterfly (Congestion Off)
Butterfly (Congestion On)
Direct (Congestion Off)
Direct (Congestion On)
Sequential Program

 Fig. 1a – Elapsed Time vs. Communication Delay

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90

Communication Delay (time units)

Sp
ee

du
p

Butterfly (Congestion Off)
Butterfly (Congestion On)
Direct (Congestion Off)
Direct (Congestion On)
Optimal Speedup

 Fig. 1b – Speedup vs. Communication Delay

3. SIMULATION: COMPARISON OF THE
DIRECT AND BUTTERFLY

AGGREGATION/BROADCAST
METHODS ON 2, 3, 4, AND 5-
DIMENSIONAL HYPERCUBES

As in Lester [1], the direct and butterfly
aggregation/broadcast methods (with congestion on)
were compared for linear systems of size = 4, 8, 16,
and 32 on hypercubes of dimension = 2, 3, 4, and 5,
respectively.

On any size hypercube, the simpler direct method
outperforms the butterfly method for small values of
the delay, but as the delay increases, the
performance of the direct method degrades more
quickly than that of the butterfly method.

The crossover point—the value of the
communication delay at which the butterfly method
becomes superior—was found by graphing the
performance of the direct and butterfly methods
(Figs. 2a – 2d). These figures imply that for a small
number of processors and a modest communication
delay, the simpler direct method is superior, but that
the more complex butterfly method becomes
superior with either a larger number of processors or
a longer communication delay. Furthermore, as the
number of processors increased, the crossover point
occurred at steadily smaller values of the
communication delay:

6000

8000

10000

12000

14000

10 20 30 40 50 60 70 80 90

Communication Delay (time units)

El
ap

se
d

Ti
m

e
(ti

m
e

un
its

)

Butterfly Direct

 Fig. 2a – Comparison of Direct and Butterfly
Methods on a 2-Dimensional Hypercube

Congestion On

20000

25000
30000

35000

40000

45000
50000

55000

10 20 30 40 50 60 70 80 90

Communication Delay (time units)

El
ap

se
d

Ti
m

e
(ti

m
e

un
its

)

Butterfly Direct

 Fig. 2b – Comparison of Direct and Butterfly
Methods on a 3-Dimensional Hypercube

Congestion On

Linda Markowsky / Computing, 2005, Vol. 4, Issue 3, 110-116

 112

75000

100000
125000

150000

175000

200000
225000

250000

10 20 30 40 50 60 70 80 90

Communication Delay (time units)

El
ap

se
d

Ti
m

e
(ti

m
e

un
its

)

Butterfly Direct

 Fig. 2c – Comparison of Direct and Butterfly Methods
on a 4-Dimensional Hypercube

Congestion On

250000

500000

750000

1000000

1250000

10 20 30 40 50 60 70 80 90

Communication Delay (time units)

El
ap

se
d

Ti
m

e
(ti

m
e

un
its

)

Butterfly Direct

 Fig. 2d – Comparison of Direct and Butterfly
Methods on a 5-Dimensional Hypercube

Congestion On

4. SIMULATION: COMPARISON OF THE
HYPERCUBE AND FULLY CONNECTED

MULTICOMPUTER ARCHITECTURES

In order to avoid the degradation resulting from
congestion, we would like every multicomputer to
have a direct link between each pair of processors,
but unfortunately, the excessive cost of such systems
forces us to settle for a compromise. One of the most
common multicomputer architectures is the
hypercube, which performs well at a reasonable cost.
Using the simulator [1], a fully connected
multicomputer (the ideal architecture) is compared
to a hypercube (an affordable alternative).

Figs. 3a and 3b compare the running times of
Jacobi’s method on a 5-dimensional hypercube and a
fully connected multicomputer. In Fig. 3a, the effect

of congestion is ignored by the simulator, while in
Fig. 3b, the effect of congestion is included.

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

10 20 30 40 50 60 70 80 90

Communication Delay (time units)

El
ap

se
d

Ti
m

e
(ti

m
e

un
its

)

Butterfly (5-D Hypercube)
Butterfly (Fully Connected)
Direct (5-D Hypercube)
Direct (Fully Connected)
Sequential

Fig. 3a – Elapsed Time vs. Communication Delay
Size of Linear System = 32

Congestion Off

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

10 20 30 40 50 60 70 80 90

Communication Delay (time units)

El
ap

se
d

Ti
m

e
(ti

m
e

un
its

)

Butterfly (5-D Hypercube)
Butterfly (Fully Connected)
Direct (5-D Hypercube)
Direct (Fully Connected)
Sequential

Fig. 3b – Elapsed Time vs. Communication Delay
Size of Linear System = 32

Congestion On

Fig. 3a implies that with if congestion is ignored,

the direct and butterfly methods perform comparably
on each architecture. Although the results for the
two architectures differ little, the fully connected
architecture performed slightly better than the
hypercube for both the butterfly and the direct

Linda Markowsky / Computing, 2005, Vol. 4, Issue 3, 110-116

 113

methods, and the direct method performed better
than the butterfly method, reflecting the relative
complexity of the two aggregation and broadcast
methods.

Comparing Figs. 3a and 3b illustrates the
expected result: congestion degrades the
performance of the direct aggregation/broadcast
method running on a hypercube far more than the
remaining method/architecture combinations. In the
butterfly version running on a hypercube and in any
program running on a fully connected architecture,
communication is limited to neighboring processors.
Thus, of the combinations tested, only the direct
method running on the hypercube requires messages
to be forwarded, incurring additional delays.

5. THE IBM PSERIES 655:
ELAPSED TIME, SPEEDUP, AND

PROCESSOR EFFICIENCY

A parallel version of Jacobi’s Method using MPI
was run on an IBM pSeries 655. The running time,
speedup, and processor efficiency found for linear
systems of sizes 32 – 1024 are summarized in Figs.
4a – 4c.

For small systems of equations, the
communication overhead overwhelms the small
granularity of the computation, degrading
performance. For example, for N = 32, the parallel
program slows down as the number of processors
increases; for N = 64, the parallel program runs
slower on 8 processors than it does on 4 processors;
and for N = 128, the parallel program fails to speed
up appreciably when the number of processors is
increased from 4 to 8.

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

1 2 3 4 5 6 7 8

Number of Processors

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

N = 32 N = 64 N = 128
N = 256 N = 512 N = 1024

Fig. 4a – Elapsed Time vs. Number of Processors
Size of Linear System = 32, 64, 128, 256, 512, 1024

As the granularity of the computation becomes large
enough to warrant the cost of communication, the
results improve: for N = 256, 512, and 1024, the
speedup increases with increasing numbers of
processors.

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Number of Processors

Sp
ee

du
p

N = 32 N = 64 N = 128
N = 256 N = 512 N = 1024
Optimal

Fig. 4b – Speedup vs. Number of Processors
Size of Linear System = 32, 64, 128, 256, 512, 1024

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 3 4 5 6 7 8

Number of Processors

Pr
oc

es
so

r E
ff

ic
ie

nc
y

N = 32 N = 64 N = 128
N = 256 N = 512 N = 1024

Fig. 4c – Processor Efficiency vs. Number of
Processors

Size of Linear System = 32, 64, 128, 256, 512, 1024

6. THE IBM PSERIES 655:
THE DISTRIBUTION, COMMUNICATION,

AND COMPUTATION PHASES

To further clarify the communication overhead,
Figs. 5a–5c depict the time taken by the distribution,
communication, and computation phases of the
program for linear systems of size N = 64, 256, and
1024. The partition size is defined to be the number
of unknowns computed by each processor.

Linda Markowsky / Computing, 2005, Vol. 4, Issue 3, 110-116

 114

In the distribution phase, the linear system’s
coefficient matrix and right-hand side are distributed
to the processes using MPI_Scatter, and the initial
guess of the solution vector is broadcast using
MPI_Bcast. In the computation phase, the new
values of the solution vector are calculated using the
previous values. Finally, in the communication
phase, the new values of the solution vector and the
global Boolean value governing termination are
collected and sent to all the processes using
MPI_Allgather and MPI_Allreduce.
It is apparent from Figs. 5a – 5c that:

• The time taken by the computation phase is
directly proportional to the size of the
partition. This corresponds well with the
algorithm: for a linear system of size N, the
computation phase requires N
multiplications and N – 1 additions for each
of the k rows, where k = partition size =
number of unknowns computed by each
processor.

0,0E+00
1,0E-04
2,0E-04
3,0E-04
4,0E-04
5,0E-04
6,0E-04
7,0E-04

0 10 20 30 40 50 60 70

Partition Size

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Distribution Phase
Communication Phase
Computation Phase

Fig. 5a – Size of Linear System = 64

0,0E+00
2,0E-03
4,0E-03
6,0E-03
8,0E-03
1,0E-02

0 50 100 150 200 250

Partition Size

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Distribution Phase
Communication Phase
Computation Phase

 Fig. 5b – Size of Linear System = 256

0,0E+00
2,0E-02
4,0E-02
6,0E-02
8,0E-02
1,0E-01
1,2E-01
1,4E-01
1,6E-01

0 200 400 600 800 1000

Partition Size

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

Distribution Phase
Communication Phase
Computation Phase

 Fig. 5c – Size of Linear System = 1024

• The time taken by the distribution phase
does not increase with the partition size.
This reflects the data used to produce these
graphs: N, the size of the system of
equations, is constant for each graph, but the
number of processors is not. Thus, for all
partition sizes, the total number of items
being scattered and broadcast in the
distribution phase is constant: N * (N + 2).

• Both the time taken by the computation
phase and the time taken by the distribution
phase increase by an order of magnitude as
N increases from 64 to 256, and again by an
order of magnitude as N increases from 256
to 1024. Furthermore, the time taken by the
distribution phase relative to the
computation phase is nearly constant as N
increases but plummets as the partition size
increases.

• The communication phase consumes less
time relative to the computation phase as
both the partition size and N increase.

The time taken by the computation phase
dominates the time taken by the distribution and
communication phases, and this domination
increases with both increasing N and increasing
partition size. Consequently, as both N and the
partition size increase, the communication overhead
decreases, improving the performance of the
program.

7. THE IBM PSERIES 655: A CLOSER
LOOK AT THE COMMUNICATION
PHASE AND COMMUNICATION

OVERHEAD

The Communication Phase
Fig. 6a, which compares the communication

phase for N = 64, 256, and 1024 (taken from Figs.

Linda Markowsky / Computing, 2005, Vol. 4, Issue 3, 110-116

 115

5a – 5c), implies that the time taken by the
communication phase increases with increasing N,
but by a factor less than N.

Fig. 6b depicts the same data as Fig. 6a, but with
three changes:

• The horizontal axes differ.
• Smoothed lines connect the data points in

Fig. 6a, but not in Fig. 6b.
• Logarithmic trend lines were added in Fig.

6b.
The close fit of the logarithmic trend lines in Fig. 6b
strongly suggests that the most significant term in
the cost of the communication phase is
O(log(#processors)). That is, for this implementation
of Jacobi’s method running on the IBM pSeries 655,
the cost of MPI_Allgather and MPI_Allreduce
appears to be strongly related to the log of the
number of processors involved in the global
communication and less strongly related to the
number of items contained in the messages.

0.0E+00
1.0E-04
2.0E-04
3.0E-04
4.0E-04
5.0E-04
6.0E-04
7.0E-04

0.0 0.2 0.4 0.6 0.8 1.0

Partition Size / N

C
om

m
un

ic
at

io
n

Ph
as

e
(s

ec
on

ds
)

N = 64 N = 256 N = 1024

Fig. 6a – Comparison of the Communication Phase for
Linear Systems of Size 64, 256, and 1024

0.0E+00
1.0E-04
2.0E-04
3.0E-04
4.0E-04
5.0E-04
6.0E-04
7.0E-04

0 1 2 3 4 5 6 7 8 9

Number of Processors

C
om

m
un

ic
at

io
n

Ph
as

e
(s

ec
on

ds
)

N = 64 N = 256 N = 1024

Fig. 6b – Comparison of the Communication Phase for
Linear Systems of Size 64, 256, and 1024

Communication Overhead
Fig. 7a illustrates the relationship between the

communication overhead and the number of
processors.

Comparing Figs. 4c and 7a, it appears that for
this program, especially for large N:

Processor Efficiency ≈ 1 – Communication Overhead

This implies that the time the time lost in
synchronizing the processors following the
computation phase of the algorithm is much less
than the time spent in the communication phase—
and that this difference increases with increasing N.
Thus, for large systems of equations, the time spent
synchronizing processes at the end of the
computation phase is responsible for little of the lost
efficiency, while the time spent sending and
receiving messages is responsible for most of the
lost efficiency.

Fig. 7a also illustrates that: (1) for a fixed number
of processors, as N increases, the communication
overhead decreases; and (2) for fixed N, as the
number of processors increases, the communication
overhead increases. Both of these observations are
related to the granularity of the function responsible
for computing the values of the unknowns. As the
granularity of the function increases, the time spent
in the computation phase increases relative to the
time spent in the communication phase, decreasing
the communication overhead.

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8

Number of Processors

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(%

 o
f T

ot
al

 E
xe

cu
tio

n
Ti

m
e)

N = 32 N = 64 N = 128
N = 256 N = 512 N = 1024

Fig. 7a
Communication Overhead vs. Number of Processors

Size of Linear System: 32, 64, 128, 256, 512, 1024

Fig. 7b illustrates the relationship of the
communication overhead to the size of the linear
system for various fixed partition sizes. The lines
shown in Fig. 7b are logarithmic trend lines.

Linda Markowsky / Computing, 2005, Vol. 4, Issue 3, 110-116

 116

0
10
20
30
40
50
60
70
80

0 200 400 600 800 1000

Size of Linear System (N)

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(%

 o
f T

ot
al

 E
xe

cu
tio

n
Ti

m
e)

Partition Size = 16 Partition Size = 32
Partition Size = 64 Partition Size = 128
Partition Size = 256 Partition Size = 512

Fig. 7b
Communication Overhead vs. Size of Linear System

for Fixed Partition Sizes

For a fixed value of N, the communication
overhead decreases as the partition size increases,
and although there are few data points, Fig. 7b
suggests that for a fixed partition size, the
communication overhead might be O(log(N)).

8. CONCLUSIONS

A well-known report [4] uses the LINPACK
benchmark program to compare the performance of
many computer systems by solving linear systems of
equations. A second study [5] thoroughly
benchmarks the IBM pSeries 690, and a third study
[6] derives models for MPI primitives in order to
facilitate estimating the communication overhead on
the Fujitsu AP3000 using those models.

As in the references cited, this paper uses the
results obtained by solving linear systems on a
parallel computer, measures results on an IBM
pSeries, and models MPI communication primitives.
Unlike those studies, however, this paper focuses on
three fundamental issues in parallel programming:
aggregation/broadcast methods, multicomputer
architectures, and communication overhead. Using a
simulator and a software implementation of
communication primitives, it was found that the
simpler direct aggregation/broadcast method can
outperform the more complex butterfly method on
either a hypercube of small dimension or on a
system with minimal communication delay, and on
the IBM pSeries 655, the results suggest that:
• The cost of MPI_Allgather and MPI_Allreduce

is O(log(#processors));
• Processor Efficiency ≈ 1 – Communication

Overhead, i.e., the time lost in synchronizing the

processors is far outweighed by the cost of
communication; and

• The communication overhead when solving a
linear system of size N using Jacobi’s method is
O(log(N)).

9. REFERENCES

[1] B. Lester. The Art of Parallel Programming
(with accompanying Pascal-based simulator).
Prentice-Hall. Englewood Cliffs, New Jersey,
1993. pp. 183-218.

[2] S. Leon. Linear Algebra with Applications, Sixth
Edition. Prentice-Hall. Upper Saddle River, New
Jersey, 2002. Supplemental Chaper 8, “Iterative
Methods,” www.prenhall.com/Leon.

[3] P. Lee. “Techniques for Compiling Programs on
Distributed Memory Multicomputers,” Parallel
Computing 21 (12) (1995). pp. 1895-1923.

[4] J. Dongarra. “Performance of Various
Computers Using Standard Linear Equations
Software,”
www.netlib.org/benchmark/performance.ps,
June, 2005.

[5] P. Worley. T. Dunigan, Jr. M. Fahey. J. White.
A. Bland. “Early Evaluation of the IBM p690,”
Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, Baltimore, Maryland,
November 2002, pp. 1-21.

[6] J. Tourino. R. Doallo. “Modeling MPI
Collective Communications on the AP3000
Multicomputer,” Recent Advances in Parallel
Virtual Machine and Message Passing Interface:
Proceedings (6th European PVM/MPI Users’
Group Meeting), Barcelona, Spain, September
1999, pp. 133-140.

[7] J. Fastook. Personal communication.

Linda Markowsky holds a B.A.
in Mathematics from the
University of Maine, USA,
where she is currently pursuing
a Ph.D. in Computer Science.
Her areas of interest include
algorithms and the theory of
computation.

