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Abstract: First, using a simulator, a detailed comparison of the butterfly and direct aggregation/broadcast methods on 
both hypercube and fully connected multicomputers, both with and without simulation of congestion, is made. Second, 
the communication overhead an IBM pSeries 655 is examined. 
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1. INTRODUCTION 
Parallel versions of Jacobi’s Method using the 

message-passing paradigm were run both in a 
Pascal-based simulator [1] and on an IBM pSeries 
655 (8 processors, 1.1GHz Power4, 16 GB memory, 
36 GB scratch disk, 1Gbps Ethernet network) 
located at Boston University in Boston, MA, USA.  

First, the results produced by the simulator are 
used to make a detailed comparison of the butterfly 
and direct aggregation/broadcast methods on both 
hypercube and fully-connected multicomputers, both 
with and without simulation of congestion. 

Second, the results produced by the IBM pSeries 
655 were used to make a detailed examination of the 
three phases of parallel computation—the 
distribution, computation, and communication 
phases—and to take a careful look at the 
communication overhead on the IBM pSeries 655. 

The same algorithm—Jacobi’s method, a well-
known iterative algorithm used to solve diagonally 
dominant linear systems of equations—is used in 
both the simulator and pSeries portions of this study. 
For more on Jacobi’s method and its implementation 
as a computer program, see, for example, [2] and 
[3].  
 
2. SIMULATION: COMPARISON OF THE 

DIRECT AND BUTTERFLY 
AGGREGATION / BROADCAST 

METHODS ON A 5-DIMENSIONAL 
HYPERCUBE 

 

Using a Pascal-based simulator [1], a system of 
32 equations was solved on a 5-dimensional 
hypercube using both the direct and butterfly 
multiple broadcast/aggregation methods.    In the 
direct method, each of the processors sends/receives 
a message to/from each of the others in each step of 
the algorithm, flooding the communication network 
with messages and causing congestion. The butterfly 
method, however, avoids congestion by restricting 
communication to direct links. The elapsed time and 
the speedup of the parallel region are depicted in 
Figs. 1a and 1b. In this simulation, the methods 
rank: 

 
 

 
 
 
When the simulator takes into account the cost of 

congestion, the butterfly method outperforms the 
direct method (because the butterfly method avoids 
congestion and the direct method does not). When 
the simulator ignores the cost of congestion, 
however, the simpler direct method outperforms the 
more complex butterfly method. 
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 Fig. 1a – Elapsed Time vs. Communication Delay 
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 Fig. 1b – Speedup vs. Communication Delay 
 

3. SIMULATION: COMPARISON OF THE 
DIRECT AND BUTTERFLY 

AGGREGATION/BROADCAST 
METHODS ON 2, 3, 4, AND  5-
DIMENSIONAL HYPERCUBES 

 

As in Lester [1], the direct and butterfly 
aggregation/broadcast methods (with congestion on) 
were compared for linear systems of size = 4, 8, 16, 
and 32 on hypercubes of dimension = 2, 3, 4, and 5, 
respectively.   

On any size hypercube, the simpler direct method 
outperforms the butterfly method for small values of 
the delay, but as the delay increases, the 
performance of the direct method degrades more 
quickly than that of the butterfly method.  

The crossover point—the value of the 
communication delay at which the butterfly method 
becomes superior—was found by graphing the 
performance of the direct and butterfly methods 
(Figs. 2a – 2d). These figures imply that for a small 
number of processors and a modest communication 
delay, the simpler direct method is superior, but that 
the more complex butterfly method becomes 
superior with either a larger number of processors or 
a longer communication delay. Furthermore, as the 
number of processors increased, the crossover point 
occurred at steadily smaller values of the 
communication delay: 
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 Fig. 2c – Comparison of Direct and Butterfly Methods 
on a 4-Dimensional Hypercube 
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 Fig. 2d – Comparison of Direct and Butterfly 
Methods on a 5-Dimensional Hypercube 
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4. SIMULATION: COMPARISON OF THE 
HYPERCUBE AND FULLY CONNECTED 

MULTICOMPUTER ARCHITECTURES 
 

In order to avoid the degradation resulting from 
congestion, we would like every multicomputer to 
have a direct link between each pair of processors, 
but unfortunately, the excessive cost of such systems 
forces us to settle for a compromise. One of the most 
common multicomputer architectures is the 
hypercube, which performs well at a reasonable cost. 
Using the simulator [1], a fully connected 
multicomputer (the ideal architecture) is compared 
to a hypercube (an affordable alternative). 

Figs. 3a and 3b compare the running times of 
Jacobi’s method on a 5-dimensional hypercube and a 
fully connected multicomputer. In Fig. 3a, the effect 

of congestion is ignored by the simulator, while in 
Fig. 3b, the effect of congestion is included. 
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Fig. 3a implies that with if congestion is ignored, 

the direct and butterfly methods perform comparably 
on each architecture. Although the results for the 
two architectures differ little, the fully connected 
architecture performed slightly better than the 
hypercube for both the butterfly and the direct 
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methods, and the direct method performed better 
than the butterfly method, reflecting the relative 
complexity of the two aggregation and broadcast 
methods. 

Comparing Figs. 3a and 3b illustrates the 
expected result: congestion degrades the 
performance of the direct aggregation/broadcast 
method running on a hypercube far more than the 
remaining method/architecture combinations. In the 
butterfly version running on a hypercube and in any 
program running on a fully connected architecture, 
communication is limited to neighboring processors. 
Thus, of the combinations tested, only the direct 
method running on the hypercube requires messages 
to be forwarded, incurring additional delays. 
 

5. THE IBM PSERIES 655:  
ELAPSED TIME, SPEEDUP, AND 

PROCESSOR EFFICIENCY 
 

A parallel version of Jacobi’s Method using MPI 
was run on an IBM pSeries 655. The running time, 
speedup, and processor efficiency found for linear 
systems of sizes 32 – 1024 are summarized in Figs. 
4a – 4c. 

For small systems of equations, the 
communication overhead overwhelms the small 
granularity of the computation, degrading 
performance. For example, for N = 32, the parallel 
program slows down as the number of processors 
increases; for N = 64, the parallel program runs 
slower on 8 processors than it does on 4 processors; 
and for N = 128, the parallel program fails to speed 
up appreciably when the number of processors is 
increased from 4 to 8.  
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Fig. 4a – Elapsed Time vs. Number of Processors 
Size of Linear System = 32, 64, 128, 256, 512, 1024 

 

As the granularity of the computation becomes large 
enough to warrant the cost of communication, the 
results improve: for N = 256, 512, and 1024, the 
speedup increases with increasing numbers of 
processors. 
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6. THE IBM PSERIES 655:  
THE DISTRIBUTION, COMMUNICATION, 

AND COMPUTATION PHASES 
 

To further clarify the communication overhead, 
Figs. 5a–5c depict the time taken by the distribution, 
communication, and computation phases of the 
program for linear systems of size N = 64, 256, and 
1024. The partition size is defined to be the number 
of unknowns computed by each processor. 
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In the distribution phase, the linear system’s 
coefficient matrix and right-hand side are distributed 
to the processes using MPI_Scatter, and the initial 
guess of the solution vector is broadcast using 
MPI_Bcast. In the computation phase, the new 
values of the solution vector are calculated using the 
previous values. Finally, in the communication 
phase, the new values of the solution vector and the 
global Boolean value governing termination are 
collected and sent to all the processes using 
MPI_Allgather and MPI_Allreduce. 
It is apparent from Figs. 5a – 5c that: 

• The time taken by the computation phase is 
directly proportional to the size of the 
partition. This corresponds well with the 
algorithm: for a linear system of size N, the 
computation phase requires N 
multiplications and N – 1 additions for each 
of the k rows, where k = partition size = 
number of unknowns computed by each 
processor. 
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Fig. 5a – Size of Linear System = 64 
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 Fig. 5b – Size of Linear System = 256 
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 Fig. 5c – Size of Linear System = 1024 
 

• The time taken by the distribution phase 
does not increase with the partition size. 
This reflects the data used to produce these 
graphs: N, the size of the system of 
equations, is constant for each graph, but the 
number of processors is not. Thus, for all 
partition sizes, the total number of items 
being scattered and broadcast in the 
distribution phase is constant: N * (N + 2).  

• Both the time taken by the computation 
phase and the time taken by the distribution 
phase increase by an order of magnitude as 
N increases from 64 to 256, and again by an 
order of magnitude as N increases from 256 
to 1024. Furthermore, the time taken by the 
distribution phase relative to the 
computation phase is nearly constant as N 
increases but plummets as the partition size 
increases. 

• The communication phase consumes less 
time relative to the computation phase as 
both the partition size and N increase. 

The time taken by the computation phase 
dominates the time taken by the distribution and 
communication phases, and this domination 
increases with both increasing N and increasing 
partition size. Consequently, as both N and the 
partition size increase, the communication overhead 
decreases, improving the performance of the 
program. 
 

7. THE IBM PSERIES 655: A CLOSER 
LOOK AT THE COMMUNICATION 
PHASE AND COMMUNICATION 

OVERHEAD 
 

The Communication Phase 
Fig. 6a, which compares the communication 

phase for N = 64, 256, and 1024 (taken from Figs. 
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5a – 5c), implies that the time taken by the 
communication phase increases with increasing N, 
but by a factor less than N. 

Fig. 6b depicts the same data as Fig. 6a, but with 
three changes: 

• The horizontal axes differ. 
• Smoothed lines connect the data points in 

Fig. 6a, but not in Fig. 6b. 
• Logarithmic trend lines were added in Fig. 

6b. 
The close fit of the logarithmic trend lines in Fig. 6b 
strongly suggests that the most significant term in 
the cost of the communication phase is 
O(log(#processors)). That is, for this implementation 
of Jacobi’s method running on the IBM pSeries 655, 
the cost of MPI_Allgather and MPI_Allreduce 
appears to be strongly related to the log of the 
number of processors involved in the global 
communication and less strongly related to the 
number of items contained in the messages. 
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Communication Overhead 
Fig. 7a illustrates the relationship between the 

communication overhead and the number of 
processors. 

Comparing Figs. 4c and 7a, it appears that for 
this program, especially for large N: 
 
Processor Efficiency ≈ 1 – Communication Overhead 

  
This implies that the time the time lost in 
synchronizing the processors following the 
computation phase of the algorithm is much less 
than the time spent in the communication phase—
and that this difference increases with increasing N. 
Thus, for large systems of equations, the time spent 
synchronizing processes at the end of the 
computation phase is responsible for little of the lost 
efficiency, while the time spent sending and 
receiving messages is responsible for most of the 
lost efficiency. 

Fig. 7a also illustrates that: (1) for a fixed number 
of processors, as N increases, the communication 
overhead decreases; and (2) for fixed N, as the 
number of processors increases, the communication 
overhead increases. Both of these observations are 
related to the granularity of the function responsible 
for computing the values of the unknowns. As the 
granularity of the function increases, the time spent 
in the computation phase increases relative to the 
time spent in the communication phase, decreasing 
the communication overhead.  
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Communication Overhead vs. Number of Processors 

Size of Linear System: 32, 64, 128, 256, 512, 1024 
 

Fig. 7b illustrates the relationship of the 
communication overhead to the size of the linear 
system for various fixed partition sizes. The lines 
shown in Fig. 7b are logarithmic trend lines. 
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For a fixed value of N, the communication 
overhead decreases as the partition size increases, 
and although there are few data points, Fig. 7b 
suggests that for a fixed partition size, the 
communication overhead might be O(log(N)). 
 

8. CONCLUSIONS 
 

A well-known report [4] uses the LINPACK 
benchmark program to compare the performance of 
many computer systems by solving linear systems of 
equations. A second study [5] thoroughly 
benchmarks the IBM pSeries 690, and a third study 
[6] derives models for MPI primitives in order to 
facilitate estimating the communication overhead on 
the Fujitsu AP3000 using those models. 

As in the references cited, this paper uses the 
results obtained by solving linear systems on a 
parallel computer, measures results on an IBM 
pSeries, and models MPI communication primitives. 
Unlike those studies, however, this paper focuses on 
three fundamental issues in parallel programming: 
aggregation/broadcast methods, multicomputer 
architectures, and communication overhead. Using a 
simulator and a software implementation of 
communication primitives, it was found that the 
simpler direct aggregation/broadcast method can 
outperform the more complex butterfly method on 
either a hypercube of small dimension or on a 
system with minimal communication delay, and on 
the IBM pSeries 655, the results suggest that: 
• The cost of MPI_Allgather and MPI_Allreduce 

is O(log(#processors)); 
• Processor Efficiency ≈ 1 – Communication 

Overhead, i.e., the time lost in synchronizing the 

processors is far outweighed by the cost of 
communication; and 

• The communication overhead when solving a 
linear system of size N using Jacobi’s method is 
O(log(N)). 
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