
N. Vassiliadis, A. Chormoviti, N. Kavvadias, S. Nikolaidis / Computing, 2005, Vol. 4, Issue 3, 102-109

 102

THE EFFECT OF DATA-REUSE TRANSFORMATIONS ON MULTIMEDIA
APPLICATIONS FOR APPLICATION SPECIFIC PROCESSORS

N. Vassiliadis, A. Chormoviti, N. Kavvadias, S. Nikolaidis

Section of Electronics and Computers, Department of Physics, Aristotle University of Thessaloniki, 54124

Thessaloniki, Greece, E-mail: nivas@skiathos.physics.auth.gr

Abstract: Multimedia applications are characterized by a high number of data transfers and storage operations.
Appropriate transformations can be applied at the algorithmic level to improve crucial implementation characteristics.
In this paper, the effect of data-reuse transformations on power consumption and performance of multimedia
applications, realized on an Application Specific Instruction set Processor (ASIP), is examined. An ASIP for multimedia
applications designed based on a complete methodology is used to evaluate this effect. Results prove the efficiency of
the ASIP solution and indicate benefits from the use of the data-reuse transformations in terms of energy consumption
and performance. Also, preliminary results from the exploitation of instruction buffering technique to reduce the energy
consumption of the ASIP are presented.

Keywords: ASIP, Data-Reuse Transformations, Multimedia Applications.

1. INTRODUCTION
The popularity of multimedia systems used for

computing and exchanging information is rapidly
increasing. With the emergence of portable
multimedia applications (mobile phones, laptop
computers, video cameras, etc) the power
consumption has been promoted to a major design
consideration due to the requirements for long
battery life, large integration scale and the related
cooling and reliability issues [1], [2]. Consequently,
there is great need for power optimization strategies,
especially in higher design levels, where the most
significant savings are achieved.

A number of code transformations can be applied
to any algorithm aiming at a memory hierarchy
where copies of data from larger memories that
exhibit high data-reuse are stored to additional layers
of smaller memories. In this way, exploiting the
temporal locality of data memory references [1], the
greater part of the accesses is performed on smaller
memories. Since accesses to smaller levels of the
memory hierarchy are less power costly, significant
power savings can be obtained [3], [4].

Different hardware architectures can be used for
the implementation of an application. The use of
application specific integrated circuits (ASICs) leads
to high performance, small area and power
consumption. However they completely lack
flexibility since only a specific algorithm can be
implemented on the system. A flexible solution, with

a negligible Time-to-Market (TTM), is the use of an
existing General Purpose Processor (GPP). Such a
solution is rather unlikely to be viable, due to the
fact that conventional RISC/DSP approaches pose
limitations in tuning the architecture towards narrow
application domains or they may be prohibitively
expensive in respect to energy consumption [5].
Thus, the embedded systems industry shows an
increasing interest in ASIPs. ASIPs are processors
tailored to the needs of the target application [6],
providing the right balance between flexibility,
performance, and power consumption.

In this paper a methodology for the
implementation of an ASIP from a hardware-
software perspective is followed. Based on this
methodology an ASIP for multimedia applications is
designed. The effect of data-reuse transformations
on an application, which is executed on this ASIP, is
examined. The Two Dimensional Three-Step
Motion Estimation video coding algorithm is used as
benchmark. A comparative study indicates that
known benefits from data-reuse transformations in
power and performance of GPPs are valid for an
ASIP approach.

In addition, preliminary results from the use of
the instruction buffering technique [14] to decrease
energy consumption are presented. Typically
applications executed in embedded processors
consist of small fragments of code that are heavily
executed. Such, fragments can be stored and
accessed from a small local storage structure rather

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

N. Vassiliadis, A. Chormoviti, N. Kavvadias, S. Nikolaidis / Computing, 2005, Vol. 4, Issue 3, 102-109

 103

than from the Instruction Memory. Since, accesses
to the Instruction Memory of an embedded processor
are a major source of energy consumption [15]
significant energy savings can be obtained.

In section 2, a brief description of the data-reuse
methodology and the used benchmark is given. The
followed ASIP design flow is presented in section 3.
Results are discussed and analyzed in section 4
while we conclude in section 5.

2. DATA-REUSE TRANSFORMATIONS

In data-dominated applications such as
multimedia algorithms, significant power savings
can be achieved by developing a custom memory
organization that exploits the temporal locality in
memory accesses [1]. According to the proposed
methodology, data sets that are often being accessed
in a short period of time are identified and placed
into smaller memories leading to a new memory
hierarchy. Hence, power savings can be obtained by
accessing heavily used data from smaller foreground
memories instead of large background memories.
Such an optimization requires architectural
modifications that consist of adding layers of smaller
memories to which frequently used data can be
copied. Consequently, there is a trade off here; on
the one hand, power consumption is decreased
because data is now read mostly from smaller
memories, while on the other hand, power
consumption is increased because extra memory
transfers are introduced.

An exploration of all architectural alternatives is
required for finding the optimum solution. This data-
reuse exploration is performed by applying a number
of code transformations to the original code, which
are determined by the group of data sets that are
being used in the algorithm. These transformations
are extracted according to the methodology
described in [3], [4].

As a benchmark, for the application of data-reuse
transformations, the popular motion estimation, two
dimensional Three-Step Search (TSS) algorithm is
used. Motion estimation algorithms are used in
MPEG video compression systems [7], [8] to
remove the temporal redundancy in video sequences
which is determined by the similarities amongst
consecutive pictures. Instead of transmitting the
whole picture, only the displacements of pixel
blocks (motion vectors) between neighboring
pictures (frames) and the difference values for these
blocks have to be encoded. The calculation of the
motion vector is performed by means of the
matching criterion, a cost function to be minimized
[8].

TSS consists basically of four nested loops, one
for each block in the frame, one for each step, one

for each candidate block and one for every pixel in
the block. The number of the corresponding
transformation, produced by the application of the
data reuse transformations on the TSS, and the size
of the introduced memory, given parametrically,
annotate each rectangle in Fig.1.

Fig.1 – Custom Memory Hierarchy

3. ASIP DESIGN FLOW

An important issue in ASIP design is the
identification of the tradeoffs involved in instruction
set and micro-architecture design, which requires
efficient architecture design space exploration. In
this paper an existing processor architecture is used
to initialize the design flow. The goal of the flow is
to extend the existing instruction set of the selected
processor by identifying and incorporate new
instructions from which the target application can
benefit in terms of performance and power
consumption. At the same time these newly defined
instruction should not introduce significant hardware
overhead and not increase the critical path of the
processor.

The different steps of the followed design flow
are presented below. The TSS algorithm and its data
reuse transformations are used as representative
benchmark. In addition, since the main objective of
this work is to study the effect of data reuse
transformations on ASIPs, the selection of such an
algorithm, suitable for the applications of such

N. Vassiliadis, A. Chormoviti, N. Kavvadias, S. Nikolaidis / Computing, 2005, Vol. 4, Issue 3, 102-109

 104

transformations, is straightforward.

3.1 ESTABLISHMENT OF AN
ARCHITECTURE TEMPLATE

In our work, the architecture model assumed is a
32-bit single-issue machine with a five-stage
pipeline, with separate instruction and data buses
(Harvard architecture), consistent to the RISC
(Reduced Instruction Set Computer) paradigm. The
control model is data stationary and execution is
performed in-order. Thus, a MIPS-like processor
architecture [9] was selected to initialize the design
flow.

Fig. 2 – Basic Instruction Formats

The initial 32-bit Instructions of the processor
can be grouped in three basic formats, illustrated in
Fig.2. R-type instructions use two source registers
and one destination register. I-type instructions
feature one source register, one destination register
and an immediate field containing a constant value.
Load and Store instructions and conditional
branches, for example, belong to this category. J-
type format is typically used by jump instructions
and contains only a target field.

3.2 FRONT-END COMPILATION

At first, the application described in a high level
language, in particular ANSI C, must be compiled
for the target architecture. The GNU-GCC [10] for
embedded architectures, configured as a cross-
compiler for the MIPS architecture, is used for this
reason. The TSS algorithms with the different data
reuse transformations are compiled and machine
code for each transformation is generated in this
stage.

3.3 DYNAMIC PROFILING

The produced machine code is dynamically
profiled with the GNU [10] tools (gcc, binutils, gdb)
configured for the MIPS processor. Profiling
information at the levels of C and assembly code,
generated by the execution of the application on the
target machine is collected. In this way heavily
executed portions of the code can be identified. New
candidate instructions from which the application

can benefit in terms of performance (at first) can be
revealed. Dynamic profiling was performed on all,
modified by the data reuse transformations, versions
of the application code.

Average profiling values from all the different
transformations, at the level of the C code, indicate
that the control flow of the application, namely the
loop and case statements (“for”, “while”, “loop”,
“if”) in the C code consists 24% of the total
execution cycles. The bigger portion of the
execution time is consumed on the addressing
equations and on access to the different memory
layers. That is the 62% of the total execution cycles.
Only 14% of the execution time is consumed on
pure computational micro-operations.

In addition profiling information on the assembly
code indicates that there are patterns of instructions
that appear with high frequency on the above
identified heavily executed portions of the code. In
particular the loop statements are executed with two
instructions overhead, one instruction for the
iteration of the loop and one for the conditional
branch of the program. Clearly a newly defined
complex instruction that can control the flow of the
program with one cycle overhead can boost the
performance of the processor. Also various
implementations of the branch instruction could
have the same results.

As it was observed, a large portion of the
execution time is consumed in the addressing of and
access on the different memory layers. Load and
Store instructions with opcodes refereeing directly to
a specific memory layer should be added. Also an
arithmetic operation, in particular an addition,
always exists before a memory access due to the
addressing calculation. Combining the addition with
Load Store instructions, resulting in the support of
the appropriate addressing modes, significant speed
up of the processor’s performance can be achieved.
It must be pointed out that the requirement for such
addressing modes imposes the use of different
pipeline stages for the execution and memory access
stages.

Furthermore, profiling information can be used to
deploy instruction buffering technique. Identified
heavily executed portions of the code are candidates
for storage in a local storage structure rather than the
main Instruction Memory. The trade-off between the
storage size and energy savings will determine the
instructions that will finally be included in this local
memory.

3.4 INSTRUCTION SET EXTENSIONS
The previously identified instructions, from

which the processor can benefit, must be
incorporated in the existing instruction set.

N. Vassiliadis, A. Chormoviti, N. Kavvadias, S. Nikolaidis / Computing, 2005, Vol. 4, Issue 3, 102-109

 105

Additional hardware resources and changes on the
processor architecture necessary for the execution of
the new instructions must be taken into account.

A new type of instruction is added to support an
alternative implementation of the conditional branch
instruction. Fig.3, illustrates the new B-Type format
of those instructions. The difference is that the I-
Type instruction format presented in Fig.1 can
support a conditional branch in which registers, Rs
and Rd, are compared and if the branch is taken the
program branches to the address indicated by the
immediate value. The B-Type format can support
comparison between an immediate constant value
and the Rs register and branch to the address
indicated by the target field, in the case that the
branch must be taken. The B-Type format does not
require any additional computational hardware
components. Slight changes on the Instruction
Decoding Unit, the Hazard detection Unit and the
overall control logic must be made, to support the
new format. These changes slightly increase the area
requirements with no penalty to the critical path
(performance).

Fig. 3 – The B-Type Instruction Format

A second extension to the instruction set aims to

the reduction of the loop overhead from two
instructions to one. For this reason the branch
instructions of the I-Type and B-Type are combined
with an increment operation. The Rs register is
incremented, the result is compared with the Rd
register, for the I-Type format, or the immediate
value for the B-Type format, and based on the result
a branch is performed or not. The incremented value
of the Rs register is written back in the same
register. An increment unit must be included in the
Arithmetic/Logical Unit to support the
increment/branch MOP. The delay of the new
instruction is not in the critical path length therefore
no reduction on the performance is occurred. Also
minor changes in the control logic of the processor

must be performed.
As have been observed the largest portion of the

execution cycles is consumed on the addressing
equations and memory access. Clearly new defined
addressing modes must be incorporated. Firstly
separate Load and Store operations for each memory
layer are included in the instruction set. Therefore,
overhead due to the partition of the memory
addresses is removed. Secondly the new Load/Store
operations are combined with an addition operation,
to produce a new addressing mode, since such
MOPs are always executed sequentially. The new
complex instruction has a format identical with the
R-Type. The Rs and Rt are added, result is used as a
memory address in which the content of the Rd
register will be stored, or a memory address, the
contents of which are going to be loaded in the Rd
register. In addition a complex add+Store instruction
with immediate value of the data to be stored is
included in the instruction set. The SI-Type
instruction format is illustrated in Fig.4. The Rs
register is added to the Rt register. The produced
result is used as the address of the memory layer,
provided by the opcode, in which the immediate
value is going to be stored. In order for the new
instructions to be supported by the architecture,
appropriate decoding of the opcodes must be added
to give direct access to the desired memory layer.
Then, the pipeline stages of the Execution and
Memory must be controlled for the new addressing
mode. In order for the new defined instructions to be
supported by the processor architecture, additional
decode logic and control signals, that add a slight
hardware overhead, must be included. Also, no
increase on the critical path has occurred due to the
incorporation of these instructions, resulting in no
degradation on performance. The instruction set
extensions are summarized in Table 1.

Fig. 4 – The SI-Type Instruction Format

Table 1. Instruction Set Extensions

Description/Format Instruction
Format Type

Additional Hardware
Requirements Penalty

Branch Rs, Immed, Target B-Type Control Logic Area
Inc+Branch Rs, Immed,

Target B-Type Control Logic + Incrementer Unit Area+Delay

Inc+Branch Rs, Rd, Target I-Type Control Logic + Incrementer Unit Area+Delay
Add+SW_L# Rs, Rt, Rd R-Type Control Logic Area
Add+LW_L# Rs, Rt, Rd R-Type Control Logic Area

Add+SW_L# Rs, Rt, Immed SI-Type Control Logic Area
L# is the desired level of the
custom memory hierarchy

N. Vassiliadis, A. Chormoviti, N. Kavvadias, S. Nikolaidis / Computing, 2005, Vol. 4, Issue 3, 102-109

 106

3.5 CODE RE-GENERATION

Code Re-Generation is performed by taking into
account the new defined instructions. First the
original code is parsed and the MOPs are reordered
in order to construct the previously identified
instruction patterns. The patterns are then substituted
by the new defined instructions. Finally, due to the
fact that there is no flush unit in the processor
architecture, MOPs are reordered to keep the
pipeline as full as possibly [11]. Fig.5 illustrates an
example.

Fig. 5 – Code Re-Generation

3.6 CYCLE ACCURATE SIMULATION
For the evaluation of the candidate new defined

instructions a cycle accurate simulation model, using
SystemC, is constructed. The application code with
the instruction set extensions is executed on the
simulator and execution cycles for each
transformation are derived. In addition information
about the execution of particular instructions and
access to crucial hardware components like
memories, are collected.

3.7 HARDWARE MODEL

A model in a hardware description language
(VHDL) is designed. All the necessary micro-
architectural and hardware modifications in order for
the new defined instructions to be supported by the
designed processor are incorporated. The design is

synthesized on a popular standard cell technology
and information for the performance (critical path),
power consumptions and the area requirement of the
processor are collected. Information from the
previous executed steps is collected. Results are
evaluated and they are presented in the next section.

4. EXPERIMENTAL RESULTS

The different versions of the TSS code, resulting
by the application of the data-reuse transformations
were compiled for the ASIP core. Cycle accurate
simulations were performed using the SystemC
simulator designed for this reason. Execution cycles
and accesses to different memory layers were
collected from the simulations.

The TSS was executed for a picture of
MxN=144x176 pixels. The block size B was set to
16 while the search window size [-p,p] was set to [-
7,7].

4.1 PERFORMANCE RESULTS

Total execution cycles for each transformation
are presented in Fig.6. Fig.6 actually indicates that
since data-reuse transformations simplify the
addressing calculation, it can be used not only for
energy savings but also to boost performance.
Specifically, the P4 transformation, which provides
the highest performance, achieves performance gain
of 55% compared to the original TSS.

In order to evaluate the designed ASIP efficiency
towards a GPP with architectural similarities, the
application codes were executed on an ARM9TDMI
core [12]. For the most efficient P4 transformation
the ASIP is capable to deliver 54% performance
gain compared with the ARM9TDMI core.

Fig. 6 – Executed Cycles for ASIP

N. Vassiliadis, A. Chormoviti, N. Kavvadias, S. Nikolaidis / Computing, 2005, Vol. 4, Issue 3, 102-109

 107

4.2 ENERGY RESULTS
Data-intensive applications are dominated by

power consumption due to data and instruction
memories accesses [2]. Based on this assumption,
energy consumption estimations for the different
transformations on the ASIP are presented in Fig.7.

For the calculation of the energy consumptions,
accesses to the instruction memory and the used data
memory layers for each transformation were
obtained from the cycle accurate simulations. SRAM
memories with appropriate size were used for each
layer of the data memory. For the Instruction
memory a 1KByte SRAM was used. Power
consumption for each memory was obtained from
the Embedded Memory Generator of [13].

Results indicate that energy savings can be
obtained through data-reuse transformations based
on the reduced number of accesses on the instruction
memory. P4 is also the best transformation, in terms
of energy savings achieving 61% energy savings
compared to the original TSS.

4.3 ENERGY RESULTS USING

INSTRUCTION BUFFERING
Fig.7 indicates that energy consumption is

dominated by the energy consumption due to
accesses on the instruction memory. Therefore,
Instruction Buffering can be used to dramatically
reduce the Instruction Memory energy consumption
and consequently the overall energy consumption.

As already mentioned, TSS code consists
primary of nested loops where the inner loop is the
most heavily executed one. The code of the inner

loop can be moved from the instruction memory to a
local storage structure. This structure was modelled
as a register file with negligible energy
consumption. For all transformations the size of the
instruction register file was smaller than the 25% of
the operand register file of the ASIP core. Based on
these assumptions, energy consumption estimations
for the different transformations on the ASIP with
the instruction buffering are presented in Fig.8.
Results indicate that an average reduction of 33% in
energy consumption can be obtained with instruction
buffering. Moreover, for the P4 transformation a
dramatically 68% reduction, compared to the case
with no instruction buffering, is feasible.

5. CONCLUSIONS

In this paper, the effect of data-reuse
transformations on multimedia applications
implemented on an ASIP platform has been
presented. An ASIP for multimedia applications has
been designed for this reason. The popular, on video
compression systems, TSS algorithm and its
modifications imposed by data-reuse
transformations were used as benchmarks.
Performance and energy consumption of these
benchmarks were estimated, on the ASIP.

Results indicate that the ASIP can benefit in
terms of performance and energy consumption by
selecting the appropriate custom data memory
hierarchy. In addition preliminary results on
instruction buffering indicate that significant energy
reduction is feasible.

Fig. 7 – ASIP Energy Consumption

N. Vassiliadis, A. Chormoviti, N. Kavvadias, S. Nikolaidis / Computing, 2005, Vol. 4, Issue 3, 102-109

 108

Fig. 8 – ASIP Energy Consumption with Instruction Buffering

6. REFERENCES
[1] F. Catthoor, S. Wuytack et al: Custom Memory

Management Methodology, Kluwer Academic
Publishers, Boston, 1998.

[2] A. Chandrakasan and R. Brodersen: Low Power
Digital CMOS Design, Kluwer Academic
Publishers, Boston, 1995.

[3] S. Wuytack, J-P. Diguet, F. Catthoor, H. De
Man : Formalized Methodology for Data Reuse
Exploration for Low-Power Hierarchical
Mappings, special issue of IEEE Transactions
on VLSI Systems on low power electronics and
Design, Vol. 6, No. 4, pp. 529-537, December
1998.

[4] S. Kougia, A. Chatzigeorgiou, N. Zervas, S.
Nikolaidis : Analytical Exploration of Power
Efficient Data-reuse Transformations on
Multimedia Applications. International
Conference on Acoustics, Speech and Signal
Processing, Utah, May 2001

[5] M.F. Jacome and G. de Veciana, : Design
Challenges for New Application-Specific
Processors, IEEE Design and Test of Computers,
Vol. 17, No. 2, pp. 40-50, 2000.

[6] MK. Jain, M. Balakrishnan, A. Kumar : ASIP
Design Methodologies : Survey and Issues.
Proceedings of 14th International Conference on
VLSI Design, pp. 76-81, January 2001

[7] International Organization of Standardization,
Working Group on Coding of Moving Pictures
and Audio, MPEG-4 Video Verification Model
Version 18.0, Pisa, January 2001.

[8] Vasudev Bhaskaran and Konstantinos
Konstantinides, Image and Video Compression
Standards: Algorithms and Architectures,
Second Edition, Kluwer Academic Publishers,
Boston, 1999.

[9] J.Hennessy and D.Patterson,: Computer
Architecture: A quantitative approach, Morgan
Kaufmann,1991.

[10] GNU Website : http://www.gnu.org
[11] I.-J. Huang and A. Despain, : Synthesis of

application specific instruction sets, IEEE Trans.
on CAD, pp. 663-675, 1995.

[12] ARM Ltd. ARM9 Datasheet, 2003
[13] Dolphin Website:

http://www.dolphin.fr/flip/ragtime
[14] Raminder S. Bajwa , Mitsuru Hiraki ,

Hirotsugu Kojima , Douglas J. Gorny , Kenichi
Nitta , Avadhani Shridhar , Koichi Seki ,
Katsuro Sasaki, Instruction buffering to reduce
power in processors for signal processing, IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems, p.417-424, Dec. 1997

[15] L. Benini et al., A Power Modelling and
Estimation Framework for VLIW-based
Embedded Systems, in Int. Workshop on Power
and Timing Modelling, Optimization and
Simulation, (PATMOS), pp. 2.3.1-2.3.10, 2001.

Nikolaos Vassiliadis received
the B.Sc. degree in Physics
and the M.Sc. in electronics
engineering from the Aristotle
University of Thessaloniki,
Greece in 2001 and 2004,
respectively. Currently he is in
pursuit of his Ph.D. degree in
reconfigurable computing at the
same university. His current

research interests include reconfigurable computing,
computer architecture and hardware/architecture
description languages.

N. Vassiliadis, A. Chormoviti, N. Kavvadias, S. Nikolaidis / Computing, 2005, Vol. 4, Issue 3, 102-109

 109

Alexandra Chormoviti
received the B.Sc. degree in
Physics and the M.Sc. in
electronics engineering from
the Aristotle University of
Thessaloniki, Greece in 2001
and 2004, respectively.

Nikolaos Kavvadias received
the B.Sc. degree in physics
and M.Sc. in electronics
engineering from the Aristotle
University of Thessaloniki,
Greece in 1999 and 2002,
respectively. Currently he is in
pursuit of his Ph.D. degree in
computer engineering at the
same university. His current

research interests include hardware and architecture
description languages, application-specific
processor design methodologies, and energy
consumption modeling for embedded processors.

Spiridon Nikolaidis received
the Diploma and PhD degrees
in electrical engineering from
Patras University, Greece, in
1988 and 1994, respectively.
He is now an assistant
professor in the Department of
Physics of the Aristotle
University of Thessaloniki,
Greece. His research interests

include CMOS gate propagation delay and power
consumption modelling, power consumption
modelling of processors and design of application
specific and reconfigurable processors.

