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Abstract: For many computing systems, failure is rare enough that it can be ignored. In other systems, failure is so 
common that the recovery procedure can have a significant impact on the performance of the system. In this paper, 
assuming a computing system is unreliable, we discuss how heavy-tail or power-tail job completion time distributions 
can appear in an otherwise well-behaved  task stream. This is an important consideration since it is known that power-
tails can lead to unstable systems. We then demonstrate how to obtain performance and dependability measures for a 
class of computing systems comprised of P unreliable processors and a finite number of tasks, N, given different 
recovery policies. Finally, we discuss the effects of checkpointing on the  job completion time distribution. 
 
Keywords: Performance and Dependability Modeling, Parallel & Distributed Systems, Queueing Theory, Heavy-Tails 

 
 

1. INTRODUCTION 
This paper discusses an analytic approach that 

can be used to compute expected performance, 
dependability, and performability measures for 
unreliable parallel processing systems (PPS) given 
the following recovery policies: Resume (prs – 
preemptive resume same), Replace (prd – pre-
emptive repeat different), and Restart (pri pre-
emptive repeat identical), although other recovery 
policies could be considered. We also show how 
heavy-tail or power-tail job completion time 
distributions can appear in an otherwise well-
behaved task stream. This is significant since it is 
well known that power-tails can lead to unstable job 
completion times [5] [6]. The PPS can be comprised 
of any number of processing elements (PEs) and 
tasks. We assume that failure and repair rates are 
exponentially distributed, while task service times 
can be generally distributed.  

The model consists of a queueing system that 
characterizes the system’s performance,  
dependability, and recovery policy. The model is 
solved at task completion points from which 
performance, dependability, and performability 
measures can be ascertained. One well-known issue 
with these problems is the potentially large state-
space required to characterize these types of analytic 
models. The technique described in this paper 
addresses the state space problem in two ways: 1) 
we utilize an epoch approach; and, 2) take advantage 
of symmetry in the system structure and task stream 

by assuming the tasks in the job stream are 
homogenous enabling us to use a reduced Kronecker 
product space.  

With the epoch approach each task completion in 
the job is analyzed independently. We calculate the 
distribution and expected values of various metrics 
for each epoch, then sum over all epochs to obtain 
cumulative metrics for the entire job. This approach 
significantly reduces the state space since it requires 
that only state information of the current epoch be 
stored. Using this approach, performance measures 
such as the mean job completion time can be 
calculated as well as dependability measures such as 
the system availability, the mean time to failure 
(MTTF), the mean time between failures (MTBF), 
and the mean time to repair (MTTR) given a 
recovery policy. Furthermore, the Work done by the 
system, which is performability measure, can also be 
computed. Our base system can be thought of as a 
PPS with P identical processing elements. The base 
workload on the system is comprised of N 
independent and identically distributed (iid) tasks 
which are all present at time x = 0. The service time 
of each task has a matrix exponential (ME) 
representation given by an m-dimensional vector-
matrix pair, <p, B> (see [1]), such that its 
Cumulative distribution function, CDF, is given by: 

 
         еBp ′−−=≤= )exp(1)Pr()( xxXXF     
  
where ε' is an m-dimensional column-vector of ones.  
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2. PREVIOUS WORK 
The analysis of completion times when the policy 

was Resume or Replace was carried out by Kulkarni 
et. al. [2]. The analysis of mixed polices was also 
carried out by Kulkarni et. al. [3]; and, the task 
distribution for the Restart policy was examined by 
Kulkarni et. al. [2]. The work by Kulkarni et. al. [2] 
[3], and Bobbio and Trivedi [4] clearly suggested 
that the resulting service time for the Resume and 
Replace resumption policies could be represented by 
ME distributions; however, they found that the 
distribution of the Restart policy (whatever it was) 
could not.  

Regarding our analytic model, the work of Bobbio 
and Trivedi is among the most relevant [4]. It 
examines a system whose work requirement for jobs 
can be represented by a phase distribution (PH) and 
focuses on computing the distribution of the 
completion time of the job. Our approach, by 
contrast, is intended to investigate the expected 
behavior of a job running on a system at various 
points in the task stream from which performance 
and dependability measures can be generated.  

Of interest in this paper is the demonstration of 
how heavy-tail (hereafter referred to as power-tail) 
distributions can appear in a distribution that has an 
ME representation (i.e., any distribution with a 
rational LaPlace transform (LPT) ). This is 
important since it is well known that power-tails can 
lead to unstable systems and job completion times 
[5] [6]. Furthermore, assuming the computing 
system is unreliable and the recovery policy is 
Restart, we demonstrate how this behavior occurs 
and how it can be modeled.  

Additionally, a number of researchers have 
observed that much computer system related 
phenomena (e.g., CPU process lifetimes) exhibit 
properties consistent with power-tail distributions 
[7]. Some researchers have suggested the 
distribution of run times for jobs in parallel 
processing systems are power-tail distributed. 
Interestingly, one reason why most sites have not 
observed this behavior is because of limitations on 
the allowed length of a job [8]. Consequently, users 
that need to run very long jobs resort to making a 
checkpoint whenever they run out of time, and then 
restart the job later. This precludes observations of 
job runtimes that are in the tail of the distribution.  

Applications of our model include performance 
and dependability measures for unreliable 
distributed and parallel systems. For instance, in 
some distributed applications when jobs running on 
hosts fail they must "Restart" elsewhere, which 
causes job times to be power-tail distributed if 
certain conditions are satisfied. 

 

3. DISTRIBUTION OF NUMBER OF 
FAILURES FOR TASKS  

In the following sections we summarize various 
properties of the Resume, Replace, and Restart 
resumption policies for tasks in a job stream. First 
we supply some definitions.  

Let T be the random variable (rv) denoting the 
time for a task to execute without failures, with 
probability density function (pdf), f(t) and mean, 
E(T) = τ. Let X be the rv denoting the total time a 
task spends executing because of failures, but not 
including the time it spends waiting. The pdf for X is 
g(x). Let t be the time needed by a particular task, 
i.e., let T = t. We assume that failures occur 
randomly with exponential inter-occurrence times, 
with parameter, β. That is, 1/β is the mean time 
between failures (MTBF). Then 
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is the probability that a task will be fail at least once. 
It also happens to be the LaPlace LPT of f(x) 
evaluated at β. In our further discussions, we let 
 

γ = βτ, and λ = 1/τ. 
 

In Table 1, the distribution of the number of 
failures, first for a particular task of time t, then 
averaged over all task times is shown. We give the 
values with exponentially distributed inter-
occurrence times, which can be used to find the total 
time spent by a task in waiting for the failure to end. 

Table 1. Distribution of Number of Failures 
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If a task resumes where it left off, and times 
between failures are exponentially distributed (the 
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assumption in this paper), then the arrival of failures 
is a Poisson process. Since this is also a memoryless 
process, the time it takes for the task to continue 
does not affect the time until the next failure. 
Therefore, the number of failures in time t satisfies 
the Poisson distribution, as shown in the table. For 
Replace, if each task is replaced by one of the same 
length, then the number of failures is geometrically 
distributed, with probability (1 – e-βt) that a failure 
will occur before the task finishes. This is the same 
for Restart, since the task is always "replaced" by 
itself after a failure. 

 
4. DISTRIBUTION OF THE NUMBER OF 

FAILURES FOR TASKS GIVEN THE 
Restart POLICY 

 
Table 2 gives formulas for the time spent by a 

given task in actually using the resource. Recall that 
Replace involves several different tasks (one for 
each failure), whereas the other two involve the 
same task. In some cases, the best we can do is to 
find the LPT of the distribution, and this allows us to 
find the mean and variance. 

The Restart procedure requires additional 
explanation. Suppose that a task has a time t 
remaining. Then the probability density that the task 
will fail at time x, given a failure occurs is given by: 
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The density function gn(x|t) for the time the task 

would take to finish, given that it failed n times 
before it ran successfully, can by found by taking the 
convolution of h(x|t) with itself n times, and then 
with δ(x – t). This can be done since it is well known 
that the LPT of a convolution of functions is equal to 
the product of the transforms. Thus, we can find 
Gn

*(s|t), the LPT of gn(x|t), since we already know 
H*(s|t). We can then average over the number of 
failures, using P(n|t) from Table 1. This yields an 
explicit expression, as shown in Table 2. The LPT of 
the distribution of the time to finish a Restart task 
can be found by averaging over the task-time 
distribution. That is, 
 
 

Table 2. Distribution of Number of Failures for Restart 
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It is not possible to find g(t) itself, since f(t) is not 
specified, and in any case, we have not been able to 
take the inverse LPT of G*(s). However, as well 
known, the LPT is a Moment generator, so, 
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An explicit expression for G*'(s|t) can be found from 
Table 2: 
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For s = 0, this reduces to a simple expression, 
namely: 
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Observe the positive exponential function in the 
numerator. Thus, if follows for any function, 
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Clearly, E(X) must be infinite for all distributions 
that go to zero more slowly than exp(-βt). 

A similar situation occurs for E(X2), and thus for 
the variance of g(t). Without going through the 
details, it can be shown that 
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it is clear that the variance must be infinite for any 
function that goes to 0 more slowly than exp(-2βt). 

Since g(x) is the pdf of the time needed to 
complete a task with Restart, it is the inverse LPT of 
G*(s). Now let R(x) be the Reliability or 
Complementary distribution function for X. That is, 
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It can be seen that each successive derivation of 
G*(s) introduces another factor of exp(-βt), so 
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for some λ > 0, then g(x) has infinite moments. Now 
suppose that λmax > 0 has the property that for all λ > 
λmax, the above equation is true, but for λ < λmax, the 
limit is bounded. Next let 
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But this is just the property of power-tail 
distributions. Since we are not able to find g(x) from 
G*(s) at this time, we claim that 
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5. SIMULATIONS OF TASKS WITH THE 

Restart POLICY 
To test our results concerning the behavior of 

tasks that must Restart, Sheahan et. al. [9] carried 
out a set of simulation runs for three different 
functions, f(t), all with mean time τ = 1, but with 
different variances σ2. They are: the Erlangian-3 (E3) 
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the exponential (with σ2 = 1), and Hyperexponential-
2 (H2), given by: 
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where ,9082848.0)63( K=+=p λ1 = 2p = 1.816..., 
and λ1 = 2(1 – p) = 0.1835034... .  

The simulation of Restart operated as follows. 
First, the failure time distribution and the task time 
distribution are initialized. For the examples here, 
the failure time distribution is exponential and the 
failure rate, β, is 0.5. The task time distributions and 
parameters used here have all been chosen to have a 
mean time of 1.0 to illustrate that the shape not the 
average is the distinguishing feature. All simulation 
runs examined 107 tasks. 

The best way to illustrate power-tail behavior is 
to plot them on log-log scale. For instance, consider 
power tail functions of the form in Equation (6). 
Taking the logs of both sides we get: 
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That is, R(.) functions approach a straight line with 
slope –α when viewed on log-log scale. This is seen 
in Fig. 3, where only the Restart-time distributions, 
coming from the task time distributions E3, M, and 
H2 (i.e., the functions with exponential tails), have 
this behavior.  From the definition of λmax earlier, it 
follows that  
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λmax = 3.0, 1.0, 0.184..., 

 
for E3, M, and H2 respectively.   
 

 
Fig. 1 - Illustrating the power-tailed behavior of the 

Restart or pri recovery policy. 

 
When β = 0.5, then: 

 
α = 6.0, 2.0, 0.367001..., 

 
for E3, M, and H2 respectively. 

The three PT curves, together with their 
respective straight line asymptotes are plotted in Fig. 
1, which demonstrates the asymptotic behavior of 
these functions, which is clearly power-tail. 

One objective of this work was to employ a ME 
representation for the Restart recovery distribution 
so that performance, dependability, and 
performability measures could be generated using 
analytic queueing models for jobs that implemented 
this policy. By constructing the state transition 
diagram for the Restart recovery policy, it can be 
shown that there is no ME representation since the 
number of states required to characterize this process 
is infinite [11]. Given this, our approach was to 
utilize a suitable ME approximation that 
asymptotically emulates important statistical 
properties of PT distributions. To do this we used 
Truncated power-tail (TPT) distributions 
appropriately parameterized with α and τ, which do 
have ME representations [12]. Essentially, TPTs are 
Hyperexponential distributions that are "truncated" 
after a predetermined number of exponential phases. 
Their ME representation is given by <p(T), B(T)>, 
where T is the truncation parameter or the number 
of phases in the Hyperexponential distribution. The 
entrance vector, p(T), can be constructed by 
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The mean for <p(T),  B(T)>, 1/µ(T), can be fixed 
using 
 

,
1

)(1
1
1)(

θ
θγ

γθ
θ

T

T

T
−

−
⋅

−
−

=p  

 
Important parameters of the TPT distribution are α 
and γ, which can be set (and determined) by the 
relation 
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where µ (in practice) is usually fixed to 0.5. Observe 
that α can be determined by appropriate use of 
Equation (4). 

Another consideration we have addressed is that 
although the asymptotic properties of Restart case 
can be reasonably modeled using TPT distributions, 
its non-asymptotic behavior cannot. To handle this, 
we have investigated approaches that fit the non-
asymptotic properties of the Restart distribution to 
an ME distribution and combine this with a TPT 
distribution, which captures its asymptotic behavior . 

 
6. GENERATING PERFORMANCE, 

DEPENDABLITY AND PERFORMABILITY 
MEASURES 

Recall that our base system can be thought of a 
parallel system consisting of P identical processing 
elements executing a finite set N independent and iid 
tasks as shown in Fig. 2. We assume the service time 
distributions for tasks can be represented by some 
m-dimensional ME vector-matrix pair, <p, B> [1].  

To generate expected performance and 
dependability measures for unreliable computing 
systems, we use a G/C queueing system that 
incorporates the recovery policy of the system and 
task service times that can be generally distributed.  
The model is then solved at task completion points 
from which performance, dependability, and 
performability measures can be calculated.  

As mentioned earlier, one well-known issue is the 
potentially large state space required to characterize  
these types of problems. We address the state space 
problem in two ways: 1) we utilize an epoch 
approach; and, 2) take advantage of the symmetry in 
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system structure and task stream by assuming tasks 
in the job are homogenous, which enables us to use a 
reduced product space. 

 

 
Fig. 2 - This figure shows our base model, a parallel 
processing system with non-exponential task time 
distributions where failures and repairs can occur. 

 
We define an epoch as the period between the 

completion of one task and the completion of the 
next task (i.e., these are the embedding points - see 
Fig. 3). Except at the end of a job, there are usually 
P processors and tasks running during an epoch.  If 
one formulated this as a direct product (or 
Kronecker product) space, then one would need mr

P 
 

   
 

Fig. 3 - The job starts at time zero. Each "X" 
represents a task completion. When the final task 

completes, the job is completed. 
 

states to represent all possibilities during an epoch. 
However, in our model we assume that processors 
and tasks are statistically identical, thus one  does 
not need to keep track of which processor/task 
failed, but merely how many processors are running, 
and how many tasks are in each state of execution. 
In our method we treat each epoch separately 
(taking due account of the dependence of each epoch 
on the previous one). 

One could argue that the epoch approach 
provides less information than the approach that 
directly integrates the Chapman-Kolmogorov (CK) 
formula, which is one way to handle these types of  
problems; however, this is not true in principle. The 

two domains can be thought of duals of each  
other, analogous to a function and its LPT. For 
instance, if one specifies the time that a system has 
been running, then one gets from the CK solution 
the probability that the lth task has finished. If one 
specifies the epoch (l – 1) tasks have already been 
completed), then one gets the mean time it took to 
get there. 

By extendeing results from the G/C queue 
(namely, suitable modifications for the mean time 
for the queue to drain – see [1] and [9]), we define a 
vector-matrix pair <℘(l), B(l)>, that characterizes 
the distribution of the completion time for the lth 
epoch, where ℘(l) is the entrance vector and B(l) 
is the infinitesimal generator matrix of the 
completion process for the lth epoch. We 
construct B(l) from the underlying Markov chain 
and service time distribution. 

The epoch number, l, denotes the number of 
tasks remaining in the system. We combine this 
information with that garnered from the state space 
to represent the system. Hence, the state-space tells 
us how many processing elements (PEs) have and 
have not failed so that we can determine how many 
PEs are busy, how many PEs are idle, and how 
many PEs are down. 

The inverse of the B(l) matrix is the service time 
matrix, V(l). Elements of [V(l)]ij represent the 
amount of time during the l th epoch that the system 
spends in state j, given the system began the epoch 
in state i. The service time matrix is the inverse of 
B(l); that is, V(l) = [B(l)]-1. To calculate the 
entrance vector, ℘(l), we compute the conditional 
probability transition matrix, Y(l), by 

 
Y(l) = V(l)M(l)Q(l)R(l),  

 
where M(l) is the transition rate matrix. Q(l) 
represents the state transition on an epoch 
completion and R(l) represents state transitions due 
to a task arrival from the queue. Their construction 
depends upon the recovery policy, the task 
distribution, and the modeling situation. 

the entrance vector, ℘I = ℘(1), can be 
determined from the modeling situation and℘(l) is 
calculated by the following: 

 
℘(l) = ℘(l – 1)Y(l) 

 
Finally, we can compute T(l), the mean time to 
complete the lth epoch, 
 

T(l) = ℘(l) V(l)ε', 
 

and TN, the mean time to finish all N tasks, 
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Expected dependability (i.e., the system 
availability, the mean time to fail (MTTF), the mean 
time between failures (MTBF), the mean time to 
repair (MTTR) ), and performability measures (i.e., 
Work) can be calculated in a similar manner with 
suitable matrix operators. For more information, the 
reader is referred to Rowan [10]. 
 

7. AN EXAMPLE – A SINGLE 
PROCESSOR THAT CAN FAIL AND BE 

REPAIRED 
In this section, we derive an analytic formulation to 
compute the mean time to complete a job consisting 
of N tasks, with independent and identically 
distributed non-exponential completion times, 
running on 1 processor that can fail and be repaired. 
We consider the Resume, Replace, and Restart 
policies. 

In all cases, the non-exponential task times are 
represented by an m-phase ME distribution which is 
characterized by the vector-matrix pair <p, B>, 
where p is a row vector of dimension m and B is a 
square matrix of size m × m (see [1]). 

Processor failures occur at rate β, which have 
exponentially distributed inter-occurrence times. 
When the processor fails, it gets repaired at rate α, 
which is also exponentially distributed.  

The behavior of these systems is as follows. 
Suppose the processor has N tasks to complete and 
assume the processor is operational when the job 
begins. The system services tasks for some period of 
time until either the job (all the tasks) completes or a 
failure occurs (at rate β). When this happens, no 
more tasks can complete until the system is repaired 
and this occurs at rate α. Once this happens, the 
processor resumes servicing tasks. This cycle 
continues until all N tasks have finished. 

The differences between the Resume, Replace, 
and Restart policies are characterized by the matrix 
representations shown below. For example, the 
completion rate matrix, BResume, for the lth epoch for 
tasks executing on a single processor, which after a 
failure, continues later where it left off (i.e., the 
Resume policy) is  
 

.
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-
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⎦

⎤
⎢
⎣

⎡ +
=

II
IIB

αα
ββ

lB Resume  

 
Given a failure, the matrix representation of a 

task using the Replace policy after a failure (a new 
task time from the distribution) is given by 
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lB Replace  

The matrix representation of a single task given 
the Restart policy is  
 

[ ],)( BTPTRestart =lB  
 
where BTPT is an ME representation of a power-tail 
distribution. 

The service time matrices for the Resume and 
Replace policies can be computed as 
VResume/Replace/Restart(l) = [BResume/Replace/Restart(l)]-1. To 
calculate performance measures for both the Resume 
and Replace policies, the following matrices and 
matrix operators are required. 

Following Section 6, the conditional completion 
probability matrices need to be determined, and they 
can be defined for the Resume and Replace 
resumption policies by 

 
Y(l) = V(l)M(l)Q(l)R(l), 

 
where M is the state departure rate matrix defined by 
 

),,(diag)( IIB ββ+=lM Resume  
and 
 

),(diag)( ββIB +=lM Replace  
 
It is important to remark that with the Restart case, 
for all l, Y(l) is equivalent to the Q matrix as 
defined in [1] (i.e., ε'℘I,Restart – see below). 

Q  is a conditional probability matrix representing 
the state of the system upon a task (or epoch) 
completion for all policies. It is a column vector of 
dimension [(2m) × 1] in the Resume scenario and 
[(m + 1) × 1] in the case. Assuming task times in the 
job are Hyperexponentially distributed and with both 
recovery policies, the ith element of Q is equal to µi 
= (mµi + β), which is the probability of a task 
completion prior to failure given the system is in 
internal state i for all 1 ≤ i ≤ m and is 0 otherwise. 

Lastly, R represents the transition of the internal 
state of the system upon an arrival. R is a row vector 
of dimension [1 × (2m)] (Resume) and [1 × (m + 1)] 
(Replace) where the ith element is equal to [p]i (the 
probability of an entering task entering phase i).  

Observe that in the single-server case, both Q and 
R are one dimensional matrices. However, when 
more PEs are modeled in the system, these matrices 
become two dimensional.  

Before performance measurements can be 
calculated, the initial state vector, ℘I , representing 
the initial state of these systems must be determined. 
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Assuming the processor is operational when the job 
begins (other assumptions are valid as long as ℘I ε′ 
= 1), we have 
 

],[];[];[ ,,, popop III TPTstartReplaceResumeRe =℘=℘=℘
 
where o is an m dimensional row vector of 0’s. 

To compute performance measures (i.e., the mean 
time for N tasks in a job to complete), suitable 
modifications regarding the mean time for to drain a 
finite G/1 queue are utilized (see Section 6, [1], and 
[9]). 
 

8. NUMERICAL EXAMPLES 
In this section, we present some examples using our 
analytic model for two non-exponential task time 
distributions: 1) Hyperexponential distributions; and, 
2) m-phase TPT distributions. Fig. 4 shows various 
systems where the workload having task execution 
times sampled from an Hyperexponential-8 (H8) 
distribution and a Replace task resumption policy. 
The number of tasks in the workload equals the 
number of processing elements (PEs) in the system 
(i.e., N = P), and that value is varied and the job 
completion time is shown for three different failure 
rates. 
 

 
Fig. 4 – Performance measures using the Replace 
resumption policy where the workload has task 

execution times sampled from an H8 distribution  

Comparing the curve when the failure rate is 0 
(i.e., no failures) with the curves with failures shown 
in Fig. 4 demonstrates one property of the Replace 
resumption policy; performance can improve when 
failures are introduced into the system. This is 
because tasks from the longer phase are more likely 
to fail (simply because they take longer to execute), 
and when the failed task is restarted it has a good 
chance of restarting in a faster phase. Observing the 
two lines with failures, we see this property holds 
until performance degrades with increasing failure 
rate. 

 
Fig. 5 – Performance measures using the Replace 
resumption policy where the workload has task 

execution times sampled from an TPT distribution  

Fig. 5 shows various systems with a workload 
comprised of 100 tasks sampled from a 3-phase TPT 
distribution with a Resume task resumption policy. 
Again, the expected job completion time is shown as 
a function of the number of processing elements in 
the system for three different failure rates. 

 

 
Fig. 6 – The expected work done by the system as a 
function of PEs for various failure rates where the 

number of tasks in the workload is equal to the 
number of processors. The task execution times are 

sampled from a 4-phase TPT distribution. 

Fig. 6 shows expected work done by the system 
as a function of the PEs for various failure rates. We 
are again looking at a system where the number of 
tasks initially in the workload is equal to the number 
of processors. The task execution times are sampled 
from a 4-phase TPT distribution with a Replace 
resumption policy. 

We again see the result of a decrease in the 
amount of work done by the system when failures 
are introduced. This is again due to the fact that the 
tasks with long execution times are likely to fail and 
be replaced (when restarted) by a task with a shorter 
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execution time from another phase. Notice that we 
now have a strict decrease in the amount of work 
done by the system with increasing failure rate. 

 

 Fig. 7 – The expected work done by the system as a 
function of PEs for various failure rates where the 

number of tasks in the workload is equal to the 
number of processors. The task execution times are 

sampled from a 4-phase TPT distribution. 
 
Fig. 7 shows both expected work done by the 

system and expected job completion time as a 
function of PEs for various failure rates. We are 
again observing a system where the number of tasks 
initially in the workload is equal to the number of 
processing elements in the system. The task 
execution times are sampled from a H2 distribution 
with a Resume resumption policy. 

Interestingly, we observe that work is 
independent of the failure rate for the Resume task 
resumption policy, despite a strict increase in the 
expected job execution time with increasing failure 
rate. We attribute this to the Markovian property of 
each phase. Once each task starts, it executes with 
some exponentially distributed rate until completion. 
If the task fails, the Markovian property tells that, on 
average, the time remaining is equal to the expected 
time of a new sample. That is, when the task 
resumes the new completion time is equal to the 
time that had been remaining prior to failure, on 
average. The result is that expected work done by 
the system is independent of failures since work 
neglects time spent by tasks in the waiting queue. 
 
9. ON-GOING WORK – CHECKPOINTING 

AND TASK-TIME DISTRIBUTIONS  
The purpose of checkpointing is to prevent a task 

from having to start again from the beginning if it 
fails. This involves interrupting the task, recording 
its internal state, and then resuming where it left off. 
If, at any time before the next checkpoint operation, 
the task should fail, then it can restart later at the 

most recent checkpoint. This may turn out to be a 
costly procedure and aversely affect system 
performance. Thus, the question how often 
checkpointing should be done, or even if it should be 
implemented at all is a legitimate concern. Clearly, 
the results of this paper indicate that not 
checkpointing can be destabilizing for tasks (and 
jobs comprised of 1 or more tasks) that are required 
to finish.  

One possibility investigated by [13] [14] would 
be for a task to checkpoint a fixed number of times. 
This would make sense for a task or job which is 
itself made up of a fixed number of sub-tasks. Then 
the task could checkpoint immediately after the 
execution of each sub-task. But if the distribution of 
task times is ME then at least one of the sub-tasks 
will be as well. Thus, the power-tail behavior of X 
will not go away. Indeed, [13] showed that the mean 
time to complete the task (with k sub-tasks) would 
be 
 

.1)|(
β

β −
⋅= ekktT k

t

 

 
Thus, if we averaged over all task times, it can be 
shown that the effective α becomes larger. For 
instance, suppose that the tasks can be executed with 
k checkpoints per task. Then, α for the sub-task time 
distributions would be scaled accordingly; that is,  
 

α ≈ k × λmax. 
 
Observe that power-tail behavior is still present 
using this checkpointing strategy since the existence 
of α implies the task time distribution has infinite 
moments (see [13]). 

Another possibility would be for the task to be 
interrupted at fixed intervals of time ∆. It can be 
shown that the mean time to complete the task or job 
using this approach, averaged of all possible tasks 
times, is proportional to 
 

,1)|(
∆
−

∝∆
∆

β

βetT  

 
which clearly indicates this procedure does break up 
power-tail behavior [14]. 
 

10. CONCLUSIONS  
The performance of tasks in jobs that restart after 

having failed or been interrupted is an important 
topic of research. It is of particular importance in the 
execution of parallel programs on computers, where 
PEs may fail, or in distributed applications where 
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tasks can fail (or be interrupted) and must run at 
least as long as they did before they failed (i.e., the 
Restart policy). Tasks that can resume from the 
point where they were before the interruption have 
been described in the literature, but if a task must 
start over from the beginning, little is known 
regarding their analytic properties. We discussed 
that if the task time distribution has an exponential 
tail (which includes all ME, or RLT functions), then 
the completion time distribution is power-tailed. 
This can have serious consequences for the 
performance of the system if α is too small. In fact, 
when α ≤ 1, the time to completion has infinite 
mean, and when α ≤ 2 it has infinite variance. Thus, 
via our analytic and simulation results, we can say 
that the Restart recovery mechanism can be very 
unstable regarding the execution times of jobs. 

We also discussed an analytic approach that 
generates performance and dependability measures 
for parallel jobs running on unreliable systems 
whose tasks times are non-exponentially distributed 
using the Resume, Replace, and Restart recovery 
polices, although other recovery policies could be 
considered. One well-known problem with these 
types of analytic approaches is their (potentially) 
large state-space requirements. This was addressed 
in two ways: 1) analyzing the system via epochs 
since the only storage requirement is the current 
epoch to generate performance and dependability 
measures; and, 2) using a reduced product space.  

Finally, we discussed on-going work regarding 
power-tail behavior and tasks or jobs that checkpoint 
on unreliable systems. It was discussed that when a 
task or job checkpointing after a sub-tasks completes 
does not eliminate power-tail behavior when one of 
the sub-tasks is ME distributed. However, 
checkpointing at fixed intervals of time does 
eliminate power-tail behavior 
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