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Abstract: We propose to use pattern matching on data streams from sensors in order to monitor and detect events of 
interest. We study a privacy preserving pattern matching problem where patterns are specified as sequences of 
constraints on input elements. We propose a new privacy preserving pattern matching algorithm over an infinite 
alphabet A  where a pattern P  is given as a sequence { }

miii ppp ,...,,
21

 of predicates
jip  defined on A . The algorithm 

addresses the following problem: given a pattern P and an input sequence t, find privately all positions i in t where P  
matches t. The privacy preserving in the context of this paper means that sensor measurements will be evaluated as 
predicates ( )ji ep  privately, that is, sensors will not need to disclose the measurements ( ) ( ) ( )j

n
jj

i xxx ,...,, 2   to the evaluator. 
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1. INTRODUCTION 
Generally, sensor networks are designed to 

support distributed interaction with the physical 
environment through measuring and aggregation of 
data in order to create dynamic global view. These 
tasks create various streams of measurement data 
within such networks. However, the data streams 
from sensors, further referred as sequences of 
events, are only useful if they can be used to monitor 
and detect events of interest [6], [11]. 

In context of this paper we abstract from 
inessential physical structure of sensor networks and 
consider a simplified model representing a set of 
sensors connected to the base station they send 
measurements to.  

We assume that there are n sensors, 
denoted nsss ,...,, 21 , and connected to the base 

station B. If ( )t
ix  denotes a measurement value 

received at a time slot t from sensor is  then n-tuple 
( ) ( ) ( )t

n
tt xxx ,...,, 21  is an event te  that represents 

states of monitored sensors at a time slot t.  
In this paper we analyze sequences of events 

,...,...,, 21 neee  with the main goal to detect 
subsequences of events that may indicate some 
predefine activities of interest, for example, fire 
development in some areas of the monitored 

building. 
Detecting occurrences of a subsequence pattern 

in sequence of events is an example of more general 
pattern matching problem. It is an important 
component of many applications, including real time 
monitoring and events detection in manufacturing 
processes by examining noisy sensor data [8]. 

Formally, the pattern matching means finding 
one, or more generally, all occurrences of a pattern 
inside sequential raw data. Raw data can be seen as a 
sequence over some finite or even infinite alphabet. 
However in many cases measurements are 
continuous by their nature.  For example, in the case 
of sensor networks used for environmental, health 
and security monitoring of buildings, where 
measurements are temperature, humidity, sound 
level etc. They need to be discretized in some way to 
be presented in computers due to the finite 
presentation restrictions of computer representations. 
Discretizing is one-to-many process, that is, the 
same continuous measurement from real world may 
correspond to many discretized presentations due to, 
for example, limited equipment resolution, noises or 
precise measurement problems. 

Since digitized presentations are approximate 
presentations of continuous objects, the traditional 
string matching algorithms developed for discrete 
applications areas, for example texts, are either 
unusable or inefficient [2], [7]. Therefore, it is 
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important to develop new algorithms that are fast, 
require little memory and limited buffering, and can 
operate in real-time on digitized presentations of 
continuous measurements.  

Another important aspect of monitoring 
sequences of events as described above is their 
sensitivity with respect to privacy and security. 
Some measurements are very sensitive by their 
nature since they represent private information about 
monitored objects. However, we still need to access 
measurements data in order to perform monitoring 
and events detection.  

In this paper we study privacy preserving aspects 
of pattern matching of in sequences of events. The 
paper is organized as follows. In Section 2 we 
provide necessary definitions and notation. The 
general pattern matching algorithm is presented in 
Section 3. The privacy preserving protocol algorithm 
and its complexity analysis is given in Section 4.  
Finally, concluding remarks are made in the last 
section. 

 
2. PATTERN MATCHING ON 

SEQUENCES 
When row data are texts over finite alphabets the 

pattern matching problem is known as a string-
matching problem. Many different variations of 
string-matching problems have been studied.  
Efficient solutions proposed in the literature [1]-[3]    
are based either on the use of automata or on 
combinatorial properties of strings over finite 
alphabets. These problems and proposed solutions 
are heavily depend on finiteness property of 
underlying alphabets, and these ideas cannot be 
applied  without essential modifications to solve the 
similar problems in continuous setting where 
alphabets are infinite or very large and precise 
matching, as in digitized presentations, often 
unnecessarily or even impossible. 

In this paper we deal with pattern matching 
problems applied to sequences of events 
representing n-tuples of unconventional data as, for 
example, digitized measurement data [9], [10]. Since 
under digitization both patterns and row data can be 
mapped into many digitized patterns and many 
digitized row sequences (as explained previously) it 
is unlikely that an exact match can always be 
achieved. Therefore we consider an on-line 
algorithm that solves the problem in general, and 
then modify it to develop a more efficient privacy-
preserving version for some classes of patterns. 

We consider events ,...2,1, =iei  as elements of 

an infinite set E, that is, { },..., 21 eeE = . Let ∗E  
denote the set of all finite-length sequences of 
elements from E. The length of a finite sequence 

nn eees ...21= is denoted as ns , that is, nsn = . 

We assume that ε=0s  where ε  denotes the empty 

sequence. Let mE  denote the set of all sequences of 
length m formed using elements from E. We say that 
a sequence w is a prefix of a sequence t if wyt =  for 
some sequence ∗∈Ev . Similarly, we say that a 
sequence w is a suffix of a sequence t if uwt =  for 
some sequence ∗∈Eu . A sequence w is a 
subsequence of a sequence t if uwvt =  for some 

∗∈Evu, . Let { },..., 21 ppE =Ω  be a set of 
predicates defined on E, that is, 

{ }falsetrueEpi ,: →  for any Eip Ω∈ . A pattern 

P of length m is a sequence miii ppp ,...,,
21

 of 

predicates from EΩ . The pattern 

miii pppP ,...,,
21

=  represents a subset PQ  of 

sequences from mA  defined as  

( )
⎭
⎬
⎫

⎩
⎨
⎧ ==

=
trueepeeeQ

jjm ii

m

jiiiP 1
&|...

21
 

where Ee
ji ∈ . 

We say that a pattern miii pppP ,...,,
21

=  

from EΩ  matches a sequence nn eees ...21=  from 
∗E , if a sequence myyy ...21  from PQ  occurs as a 

subsequence of s, that is, if vyyuys m...21=  for 

some ∗∈Evu, . The pattern P occurs at position 
1+k  in sequence nn eees ...21=  or matches s in 

position 1+k  if  
 

( ) trueep ji

mk

kj j
=

+

+= 1
&  

 
where mnk −≤≤0 .  
    The pattern matching problem we deal with in this 
paper is as following:   
Given a pattern P from EΩ  and a sequence of 
events s from ∗E , find all positions in s where P 
matches s. 

The efficient algorithm that solves the problem 
has been proposed in [9]. In the following section 
for the sake of clarity we give a short presentation of 
the algorithm. Readers can find the correctness proof 
and efficiency evaluation of the algorithm in [9]. 
 

3. PATTERN MATCHING ALGORITHM 
In this section we present the main idea of the on-

line algorithm for constraint-based pattern matching 
(more details can be found in [9]). 
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Let kt  be a string kaaa ...21  from ∗A , and P be a 

pattern miii ppp ,...,,
21

 from AΩ . Let P
kS  denote 

a set of lengths of all prefixes of P matching some 
suffix of kt , that is, P

kSj∈  if and only if  
 

( ) ( ) ( ) trueapapap kijkijki j
=+−+− &&& 21 21

L

 
 

Therefore, P matches kt  if and only if P
jSm∈  

for some kj ≤ . Thus, if we want to perform pattern 
matching based on this idea, we have to construct a 
sequence of sets KK ,,,, 10

P
k

PP SSS  for a given 

pattern miii pppP ,,,
21
K=  and input sequence 

......21 kaaat = . In the course of construction sets 

KK ,,,, 10
P
k

PP SSS  we check whether m is in P
kS  

for some 0>k . Then, for any P
kS  such that 

P
kSm∈ we report that P matches t  in position 

( )1+−mk . 
The algorithm MATCH, based on the above idea, 

is presented in Fig. 1. The output of the algorithm 
MATCH(t,P) is the set of all positions of occurrences 
of P in t. The algorithm uses the procedure 
UPDATE( PxS P ,, ) to construct P

iS  based on P
iS 1−  

and x, where x is a new input element of sequence t. 
 
Input: a sequence of data t and a pattern 

mkkk pppP ,...,,
21

=  

Output: beginning positions of all matching 
patterns. 
  
Algorithm  MATCH(t, P)  
1. { }0←S ; 
2. 0←pos ;  
3. while input is not empty  do  

←x  read next element from t;   
1+← pospos ; 
( )PxSUPDATES ,,← ;   

if  Sm∈ then  
pattern matching at )1( +−mpos   
{ }mSS \←    

4. end 
 

Fig. 1. Algorithm MATCH 
 
 

Let us consider in details the algorithm UPDATE 
presented in Fig.2. The main purpose of UPDATE is 

to construct KK ,,,, 10
P
k

PP SSS  for a given pattern 

miii pppP ,,,
21
K=  and input sequence 

LL kaaat 21= . The algorithm UPDATE is 
presented in Fig. 2. According to Fig. 2, UPDATE 
calculates P

iS 1+  based on P
iS , the next input element 

x and the length of prefix of P that has been already 
matched. 

The difference between the algorithm UPDATE 
and a naive brute-force algorithm is that UPDATE 
uses    results of previous matching steps to optimize 
future matching steps and in this way remove 
redundancy in computations.  
 
Input: Set PS such that { }1,,1,0 −⊆ mS P K , 

pattern { }
miii pppP ,,,

21
K=  from AΩ , and x from A. 

Output: Set PS  such that  { }mS P ,,1,0 K⊆  
 
Algorithm UPDATE ),,( PxS P  
1. ∅←'S   
2. for each j from PS  do  

{ }jSS PP \←  
if truep

ji =
+1

 then { }1'' +∪← jSS  

3. { }0' ∪← SS P    
4. return PS  
 

Fig.  2. Algorithm UPDATE 
 

For each element x of input t, algorithm UPDATE 
considers only those predicates of the pattern 

miii pppP ,,,
21
K=   that still may be a part of 

some occurrences of P in t. When an input of length 
i has been analyzed, UPDATE contains in P

iS  
references on all predicates that need to be evaluated 
on the next input x, that is, P

iSj∈  represents 
jip  

from P.  
However, the time complexity of UPDATE 

depends on properties of the pattern P, that is, both 
on complexity of evaluation of predicates from P 
and their interdependency. The interdependency 
presents the knowledge of how truth values for some 
predicates of P can be found without their explicit 
evaluation but inferred from truth values of some 
already evaluated predicates of P.  

The time complexity of algorithm MATCH is 
linear of the length of input plus the time complexity 
of all UPDATE's calls. (Detailed proof can be found 
in [9].) 
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4. PRIVACY PRESERVING MATCHING 
In this section we show how algorithm from 

previous section can be modified to perform 
privacy-preserving detection of activities in sensor 
networks based on pattern matching over infinite 
alphabets.  

As we can see from the pattern matching 
algorithm MATCH (Fig. 1), evaluation of predicates 

( ) ( ) ( ) ( )( )j
n

jj
iji xxxpep ,,, 21 K=  is an essential part 

of the algorithm.  
Privacy-preserving in the context of this paper 

means that the base station B conducts evaluation of 
predicates  ( )ji ep  on private inputs from sensors, 
that is, sensors will not need to disclose the 
measurements  ( ) ( ) ( )( )j

n
jj xxx ,,, 21 K  to the base 

station. In addition, we want to protect the base 
station B from revealing to the sensors both the 
results of evaluations and the descriptions of 
predicates. The solution we propose in this paper is 
based on secure multi-party computation approach 
similar to approach described in [4], [5].  

Our solution can be seen as a solution of well 
known Yao's Millionaire problem [15] that is 
formulated as a comparison of two private numbers 
in order to decide which is larger. However, in 
context of this work it is more convenient to see this 
problem as a simplified version of point inclusion 
problem, namely, point inclusion in an interval. We 
want to evaluate privately whether a number x is 
within a given interval [ ]ba,  or not.  

In the case when only a finite number of elements 
can occur in the interval, the solution of Yao's 
Millionaire problem given in [15] can be used. 
However, in the case when the number of elements 
from [ ]ba,  is large that solution is not efficient in 
terms of communication complexity. Therefore we 
need to find a new more efficient solution that match 
better our problem settings. 

We need to find a way to compute [ ]bax ,∈  
without discloser sensor's value x  to base station 
and without discloser base station interval [ ]ba,  to 
the sensor. It can be seen as a problem of private 
evaluation of function ( ) ( )( )bxaxxf −−=  since it 
is easy to see that [ ]bax ,∈ if and only if ( ) 0≤xf . 

In our further considerations we assume that 
Alice represents a sensor and Bob represents a base 
station. 

We shall use a public-key cryptosystem with 
homomorphic property where encryption and 
decryption are denoted as ( )•E  and ( )•D  
respectively. The homomorphic property means that  
there is an operation on encrypted data, denoted ⊕ , 

that defines an addition on encrypted data (without 
intermediate decryption). That is, we assume that 
( ) ( ) ( )yxEyExE +=⊕ . Many such systems have 

been proposed in the literature [12]-[14].  
Further, since ( ) ( ) ( )yxEyExE +=⊕ , then  

 
( ) ( ) ( ) ( )xExExxExE ⊕=+=2  

 
and  

 

( ) =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++= 4434421 L

y

xxxEyxE  

( ) ( ) ( )
4444 34444 21 L

y

xExExE ⊕⊕⊕=  

 
Thus we can multiply encrypted data if one of the 

multipliers is known (available in unencrypted 
form). This property we will use in the protocol 
described later in this section.  

To simplify further notation and make our 
protocol independent of particular selected 
homomorphic public-key cryptosystem we assume 
that there are operations ⊕  and ⊗  on encrypted 
data are defined as following: 

 
)()()( yxEyExE +=⊕  

( ) ( ) ( ) ( ) ( ) ( )
4444 34444 21 L

y

xExExExyEyExE +++==⊗

 
The following protocol describes privacy 

preserving evaluation of predicates  presented in the 
form [ ]bax ,∈  where bax ,,  are integers. 

 
Input: Alice has a homomorphic public key 

cryptosystem where E is an encryption function and 
D is a corresponding decryption function; Alice (a 
sensor) has a measurement value x; Bob (a base 
station) has an interval [ ]ba, . 

Output: Bob learns whether [ ]bax ,∈  is true or 
false without learning x, and without revealing 
[ ]ba,   to Alice. 

 
Protocol: Privacy preserving predicate 

evaluation. 
 

• Step 1: Alice (sensor) generates a key pair for a 
homomorphic public key system and sends the 
public key to Bob (base station). (The 
corresponding encryption and decryption 
functions are denoted as ( )•E  and ( )•D ). 

• Step 2: Alice encrypts x  and 2x  using her 
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public key, and sends ( )xE  and ( )2xE  to Bob. 
• Step 3: Bob generates pairs ( ) ,,...2,1,, kiba ii =  

and assumes that aa =0  and bb =0 . 

• Step 4:  Bob computes ( )2xbaEz iii += , 
( )( )xbaEt iii +=  for all ki ,...,2,1,0=  

(without learning x  in) as following: 
1. Using the homomorphic property of Alice's 

public key cryptosystem Bob can see that 
( ) ( ) ( )22 xEbaExbaE iiii ⊕=+  

2. Since all ia  and ib  are known to Bob, he 
can compute 

( )( ) ( ) ( )xEbaExbaE iiii ⊗+=+   as 
( ) =+++

+
44 344 21 L

ii ba

xxxE  

( ) ( ) ( )
4444 34444 21 L

ii ba

xExExE
+

⊕⊕⊕  

• Step 5: Bob generates 
( ) ( )1100 ,,, ztzt ,…, ( )kk zt ,   using the random 
permutation function  π ,  getting 

( ) ( ) ( )( )kk ztztzt ,,...,,,, 1100π =
( ) ( ) ( )( )

kk iiiiii ztztzt ,,...,,,,
1100

, and sends it to 
Alice.  

• Step 6: Alice evaluates 
( ) ( )xbaxba

jjjj iiii +≥+ 2  for kj ,...,1,0=  by 

using her private key,  since 
( ) ( )

jjj iii tDxba =+ 2  and ( ) ( )
jjj iii zDxba =+ ;  

Alice sends Boolean vector ( )
kiii bbb ,...,,

10
 

representing evaluation results to Bob, where  

jib denotes evaluation result of 

( ) ( )xbaxba
jjjj iiii +≥+ 2 . 

• Step 7: Based on received from Alice evaluation 
vector and since Bob knows position j in the 
permutation π  such that 

jiaa =0 and
jibb =0 , 

Bob is able to decide based on 
jib  without 

knowing )(xf   whether 0)( ≥xf  or not.  
 
Presented above protocol shows how we can 

evaluate privately predicate defined as point 
inclusion in an interval. Combining the protocol  
with the pattern matching algorithm presented in 
Section 3 gives a privacy preserving pattern 
matching algorithm.  

The privacy of Bob’s data is achieved by 
applying random permutation  π . The permutation 
prevents Alice from learning a  and b . According 
to the protocol, the Alice’s data x  never appears as 

a part of unencrypted data available to Bob. 
Therefore the privacy of Alice data is protected by 
strength of applied homomorphic public-key 
cryptosystem. 
 

5. CONCLUSION 
We have proposed a solution of privacy 

preserving event detection problem based on privacy 
preserving pattern matching algorithm. The 
algorithm can be used to implement monitoring 
events in sensor networks without violating privacy 
of objects under observation. 
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