
Vladimir A. Oleshchuk / Computing, 2005, Vol. 4, Issue 3, 85-90

85

PRIVACY PRESERVING PATTERN MATCHING
ON SEQUENCES OF EVENTS

Vladimir A. Oleshchuk

Communication and System Security Group, Agder University College

Grooseveien 36, N-4876 Grimstad, Norway
email:vladimir.oleshchuk@hia.no

Abstract: We propose to use pattern matching on data streams from sensors in order to monitor and detect events of
interest. We study a privacy preserving pattern matching problem where patterns are specified as sequences of
constraints on input elements. We propose a new privacy preserving pattern matching algorithm over an infinite
alphabet A where a pattern P is given as a sequence { }

miii ppp ,...,,
21

 of predicates
jip defined on A . The algorithm

addresses the following problem: given a pattern P and an input sequence t, find privately all positions i in t where P
matches t. The privacy preserving in the context of this paper means that sensor measurements will be evaluated as
predicates ()ji ep privately, that is, sensors will not need to disclose the measurements () () ()j

n
jj

i xxx ,...,, 2 to the evaluator.

Keywords: Pattern matching, string matching, privacy preserving, sensor networks.

1. INTRODUCTION
Generally, sensor networks are designed to

support distributed interaction with the physical
environment through measuring and aggregation of
data in order to create dynamic global view. These
tasks create various streams of measurement data
within such networks. However, the data streams
from sensors, further referred as sequences of
events, are only useful if they can be used to monitor
and detect events of interest [6], [11].

In context of this paper we abstract from
inessential physical structure of sensor networks and
consider a simplified model representing a set of
sensors connected to the base station they send
measurements to.

We assume that there are n sensors,
denoted nsss ,...,, 21 , and connected to the base

station B. If ()t
ix denotes a measurement value

received at a time slot t from sensor is then n-tuple
() () ()t

n
tt xxx ,...,, 21 is an event te that represents

states of monitored sensors at a time slot t.
In this paper we analyze sequences of events

,...,...,, 21 neee with the main goal to detect
subsequences of events that may indicate some
predefine activities of interest, for example, fire
development in some areas of the monitored

building.
Detecting occurrences of a subsequence pattern

in sequence of events is an example of more general
pattern matching problem. It is an important
component of many applications, including real time
monitoring and events detection in manufacturing
processes by examining noisy sensor data [8].

Formally, the pattern matching means finding
one, or more generally, all occurrences of a pattern
inside sequential raw data. Raw data can be seen as a
sequence over some finite or even infinite alphabet.
However in many cases measurements are
continuous by their nature. For example, in the case
of sensor networks used for environmental, health
and security monitoring of buildings, where
measurements are temperature, humidity, sound
level etc. They need to be discretized in some way to
be presented in computers due to the finite
presentation restrictions of computer representations.
Discretizing is one-to-many process, that is, the
same continuous measurement from real world may
correspond to many discretized presentations due to,
for example, limited equipment resolution, noises or
precise measurement problems.

Since digitized presentations are approximate
presentations of continuous objects, the traditional
string matching algorithms developed for discrete
applications areas, for example texts, are either
unusable or inefficient [2], [7]. Therefore, it is

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Vladimir A. Oleshchuk / Computing, 2005, Vol. 4, Issue 3, 85-90

86

important to develop new algorithms that are fast,
require little memory and limited buffering, and can
operate in real-time on digitized presentations of
continuous measurements.

Another important aspect of monitoring
sequences of events as described above is their
sensitivity with respect to privacy and security.
Some measurements are very sensitive by their
nature since they represent private information about
monitored objects. However, we still need to access
measurements data in order to perform monitoring
and events detection.

In this paper we study privacy preserving aspects
of pattern matching of in sequences of events. The
paper is organized as follows. In Section 2 we
provide necessary definitions and notation. The
general pattern matching algorithm is presented in
Section 3. The privacy preserving protocol algorithm
and its complexity analysis is given in Section 4.
Finally, concluding remarks are made in the last
section.

2. PATTERN MATCHING ON

SEQUENCES
When row data are texts over finite alphabets the

pattern matching problem is known as a string-
matching problem. Many different variations of
string-matching problems have been studied.
Efficient solutions proposed in the literature [1]-[3]
are based either on the use of automata or on
combinatorial properties of strings over finite
alphabets. These problems and proposed solutions
are heavily depend on finiteness property of
underlying alphabets, and these ideas cannot be
applied without essential modifications to solve the
similar problems in continuous setting where
alphabets are infinite or very large and precise
matching, as in digitized presentations, often
unnecessarily or even impossible.

In this paper we deal with pattern matching
problems applied to sequences of events
representing n-tuples of unconventional data as, for
example, digitized measurement data [9], [10]. Since
under digitization both patterns and row data can be
mapped into many digitized patterns and many
digitized row sequences (as explained previously) it
is unlikely that an exact match can always be
achieved. Therefore we consider an on-line
algorithm that solves the problem in general, and
then modify it to develop a more efficient privacy-
preserving version for some classes of patterns.

We consider events ,...2,1, =iei as elements of

an infinite set E, that is, { },..., 21 eeE = . Let ∗E
denote the set of all finite-length sequences of
elements from E. The length of a finite sequence

nn eees ...21= is denoted as ns , that is, nsn = .

We assume that ε=0s where ε denotes the empty

sequence. Let mE denote the set of all sequences of
length m formed using elements from E. We say that
a sequence w is a prefix of a sequence t if wyt = for
some sequence ∗∈Ev . Similarly, we say that a
sequence w is a suffix of a sequence t if uwt = for
some sequence ∗∈Eu . A sequence w is a
subsequence of a sequence t if uwvt = for some

∗∈Evu, . Let { },..., 21 ppE =Ω be a set of
predicates defined on E, that is,

{ }falsetrueEpi ,: → for any Eip Ω∈ . A pattern

P of length m is a sequence miii ppp ,...,,
21

 of

predicates from EΩ . The pattern

miii pppP ,...,,
21

= represents a subset PQ of

sequences from mA defined as

()
⎭
⎬
⎫

⎩
⎨
⎧ ==

=
trueepeeeQ

jjm ii

m

jiiiP 1
&|...

21

where Ee
ji ∈ .

We say that a pattern miii pppP ,...,,
21

=

from EΩ matches a sequence nn eees ...21= from
∗E , if a sequence myyy ...21 from PQ occurs as a

subsequence of s, that is, if vyyuys m...21= for

some ∗∈Evu, . The pattern P occurs at position
1+k in sequence nn eees ...21= or matches s in

position 1+k if

() trueep ji

mk

kj j
=

+

+= 1
&

where mnk −≤≤0 .
 The pattern matching problem we deal with in this
paper is as following:
Given a pattern P from EΩ and a sequence of
events s from ∗E , find all positions in s where P
matches s.

The efficient algorithm that solves the problem
has been proposed in [9]. In the following section
for the sake of clarity we give a short presentation of
the algorithm. Readers can find the correctness proof
and efficiency evaluation of the algorithm in [9].

3. PATTERN MATCHING ALGORITHM
In this section we present the main idea of the on-

line algorithm for constraint-based pattern matching
(more details can be found in [9]).

Vladimir A. Oleshchuk / Computing, 2005, Vol. 4, Issue 3, 85-90

87

Let kt be a string kaaa ...21 from ∗A , and P be a

pattern miii ppp ,...,,
21

 from AΩ . Let P
kS denote

a set of lengths of all prefixes of P matching some
suffix of kt , that is, P

kSj∈ if and only if

() () () trueapapap kijkijki j
=+−+− &&& 21 21

L

Therefore, P matches kt if and only if P
jSm∈

for some kj ≤ . Thus, if we want to perform pattern
matching based on this idea, we have to construct a
sequence of sets KK ,,,, 10

P
k

PP SSS for a given

pattern miii pppP ,,,
21
K= and input sequence

......21 kaaat = . In the course of construction sets

KK ,,,, 10
P
k

PP SSS we check whether m is in P
kS

for some 0>k . Then, for any P
kS such that

P
kSm∈ we report that P matches t in position

()1+−mk .
The algorithm MATCH, based on the above idea,

is presented in Fig. 1. The output of the algorithm
MATCH(t,P) is the set of all positions of occurrences
of P in t. The algorithm uses the procedure
UPDATE(PxS P ,,) to construct P

iS based on P
iS 1−

and x, where x is a new input element of sequence t.

Input: a sequence of data t and a pattern

mkkk pppP ,...,,
21

=

Output: beginning positions of all matching
patterns.

Algorithm MATCH(t, P)
1. { }0←S ;
2. 0←pos ;
3. while input is not empty do

←x read next element from t;
1+← pospos ;
()PxSUPDATES ,,← ;

if Sm∈ then
pattern matching at)1(+−mpos
{ }mSS \←

4. end

Fig. 1. Algorithm MATCH

Let us consider in details the algorithm UPDATE
presented in Fig.2. The main purpose of UPDATE is

to construct KK ,,,, 10
P
k

PP SSS for a given pattern

miii pppP ,,,
21
K= and input sequence

LL kaaat 21= . The algorithm UPDATE is
presented in Fig. 2. According to Fig. 2, UPDATE
calculates P

iS 1+ based on P
iS , the next input element

x and the length of prefix of P that has been already
matched.

The difference between the algorithm UPDATE
and a naive brute-force algorithm is that UPDATE
uses results of previous matching steps to optimize
future matching steps and in this way remove
redundancy in computations.

Input: Set PS such that { }1,,1,0 −⊆ mS P K ,

pattern { }
miii pppP ,,,

21
K= from AΩ , and x from A.

Output: Set PS such that { }mS P ,,1,0 K⊆

Algorithm UPDATE),,(PxS P
1. ∅←'S
2. for each j from PS do

{ }jSS PP \←
if truep

ji =
+1

 then { }1'' +∪← jSS

3. { }0' ∪← SS P
4. return PS

Fig. 2. Algorithm UPDATE

For each element x of input t, algorithm UPDATE
considers only those predicates of the pattern

miii pppP ,,,
21
K= that still may be a part of

some occurrences of P in t. When an input of length
i has been analyzed, UPDATE contains in P

iS
references on all predicates that need to be evaluated
on the next input x, that is, P

iSj∈ represents
jip

from P.
However, the time complexity of UPDATE

depends on properties of the pattern P, that is, both
on complexity of evaluation of predicates from P
and their interdependency. The interdependency
presents the knowledge of how truth values for some
predicates of P can be found without their explicit
evaluation but inferred from truth values of some
already evaluated predicates of P.

The time complexity of algorithm MATCH is
linear of the length of input plus the time complexity
of all UPDATE's calls. (Detailed proof can be found
in [9].)

Vladimir A. Oleshchuk / Computing, 2005, Vol. 4, Issue 3, 85-90

88

4. PRIVACY PRESERVING MATCHING
In this section we show how algorithm from

previous section can be modified to perform
privacy-preserving detection of activities in sensor
networks based on pattern matching over infinite
alphabets.

As we can see from the pattern matching
algorithm MATCH (Fig. 1), evaluation of predicates

() () () ()()j
n

jj
iji xxxpep ,,, 21 K= is an essential part

of the algorithm.
Privacy-preserving in the context of this paper

means that the base station B conducts evaluation of
predicates ()ji ep on private inputs from sensors,
that is, sensors will not need to disclose the
measurements () () ()()j

n
jj xxx ,,, 21 K to the base

station. In addition, we want to protect the base
station B from revealing to the sensors both the
results of evaluations and the descriptions of
predicates. The solution we propose in this paper is
based on secure multi-party computation approach
similar to approach described in [4], [5].

Our solution can be seen as a solution of well
known Yao's Millionaire problem [15] that is
formulated as a comparison of two private numbers
in order to decide which is larger. However, in
context of this work it is more convenient to see this
problem as a simplified version of point inclusion
problem, namely, point inclusion in an interval. We
want to evaluate privately whether a number x is
within a given interval []ba, or not.

In the case when only a finite number of elements
can occur in the interval, the solution of Yao's
Millionaire problem given in [15] can be used.
However, in the case when the number of elements
from []ba, is large that solution is not efficient in
terms of communication complexity. Therefore we
need to find a new more efficient solution that match
better our problem settings.

We need to find a way to compute []bax ,∈
without discloser sensor's value x to base station
and without discloser base station interval []ba, to
the sensor. It can be seen as a problem of private
evaluation of function () ()()bxaxxf −−= since it
is easy to see that []bax ,∈ if and only if () 0≤xf .

In our further considerations we assume that
Alice represents a sensor and Bob represents a base
station.

We shall use a public-key cryptosystem with
homomorphic property where encryption and
decryption are denoted as ()•E and ()•D
respectively. The homomorphic property means that
there is an operation on encrypted data, denoted ⊕ ,

that defines an addition on encrypted data (without
intermediate decryption). That is, we assume that
() () ()yxEyExE +=⊕ . Many such systems have

been proposed in the literature [12]-[14].
Further, since () () ()yxEyExE +=⊕ , then

() () () ()xExExxExE ⊕=+=2

and

() =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++= 4434421 L

y

xxxEyxE

() () ()
4444 34444 21 L

y

xExExE ⊕⊕⊕=

Thus we can multiply encrypted data if one of the

multipliers is known (available in unencrypted
form). This property we will use in the protocol
described later in this section.

To simplify further notation and make our
protocol independent of particular selected
homomorphic public-key cryptosystem we assume
that there are operations ⊕ and ⊗ on encrypted
data are defined as following:

)()()(yxEyExE +=⊕

() () () () () ()
4444 34444 21 L

y

xExExExyEyExE +++==⊗

The following protocol describes privacy

preserving evaluation of predicates presented in the
form []bax ,∈ where bax ,, are integers.

Input: Alice has a homomorphic public key

cryptosystem where E is an encryption function and
D is a corresponding decryption function; Alice (a
sensor) has a measurement value x; Bob (a base
station) has an interval []ba, .

Output: Bob learns whether []bax ,∈ is true or
false without learning x, and without revealing
[]ba, to Alice.

Protocol: Privacy preserving predicate

evaluation.

• Step 1: Alice (sensor) generates a key pair for a
homomorphic public key system and sends the
public key to Bob (base station). (The
corresponding encryption and decryption
functions are denoted as ()•E and ()•D).

• Step 2: Alice encrypts x and 2x using her

Vladimir A. Oleshchuk / Computing, 2005, Vol. 4, Issue 3, 85-90

89

public key, and sends ()xE and ()2xE to Bob.
• Step 3: Bob generates pairs () ,,...2,1,, kiba ii =

and assumes that aa =0 and bb =0 .

• Step 4: Bob computes ()2xbaEz iii += ,
()()xbaEt iii += for all ki ,...,2,1,0=

(without learning x in) as following:
1. Using the homomorphic property of Alice's

public key cryptosystem Bob can see that
() () ()22 xEbaExbaE iiii ⊕=+

2. Since all ia and ib are known to Bob, he
can compute

()() () ()xEbaExbaE iiii ⊗+=+ as
() =+++

+
44 344 21 L

ii ba

xxxE

() () ()
4444 34444 21 L

ii ba

xExExE
+

⊕⊕⊕

• Step 5: Bob generates
() ()1100 ,,, ztzt ,…, ()kk zt , using the random
permutation function π , getting

() () ()()kk ztztzt ,,...,,,, 1100π =
() () ()()

kk iiiiii ztztzt ,,...,,,,
1100

, and sends it to
Alice.

• Step 6: Alice evaluates
() ()xbaxba

jjjj iiii +≥+ 2 for kj ,...,1,0= by

using her private key, since
() ()

jjj iii tDxba =+ 2 and () ()
jjj iii zDxba =+ ;

Alice sends Boolean vector ()
kiii bbb ,...,,

10

representing evaluation results to Bob, where

jib denotes evaluation result of

() ()xbaxba
jjjj iiii +≥+ 2 .

• Step 7: Based on received from Alice evaluation
vector and since Bob knows position j in the
permutation π such that

jiaa =0 and
jibb =0 ,

Bob is able to decide based on
jib without

knowing)(xf whether 0)(≥xf or not.

Presented above protocol shows how we can

evaluate privately predicate defined as point
inclusion in an interval. Combining the protocol
with the pattern matching algorithm presented in
Section 3 gives a privacy preserving pattern
matching algorithm.

The privacy of Bob’s data is achieved by
applying random permutation π . The permutation
prevents Alice from learning a and b . According
to the protocol, the Alice’s data x never appears as

a part of unencrypted data available to Bob.
Therefore the privacy of Alice data is protected by
strength of applied homomorphic public-key
cryptosystem.

5. CONCLUSION
We have proposed a solution of privacy

preserving event detection problem based on privacy
preserving pattern matching algorithm. The
algorithm can be used to implement monitoring
events in sensor networks without violating privacy
of objects under observation.

6. REFERENCES
[1] M. Crochemore and W. Rytter, Text Algorithms,

Oxford, University Press, 1994.
[2] M. Crochemore and C. Hancart, Pattern

Matching in Strings. In Handbook of Algorithms
and Theory of Computation, M. Atallah, ed.,
CRC Press, Boca Raton, 1996.

[3] M. Crochemore and T. Lecroq, “Pattern
Matching and Text Compression Algorithms,”
In The Computer Science and Engineering
Handbook, A. B. Tucker, ed., CRC Press, 1997.

[4] W. Du and M. J. Atallah, “Secure Multi-Party
Computation Problems and Their Applications:
A review and Open Problems,” Proc. of New
Security Paradigms Workshop, 2001, pp. 13-22.

[5] W. Du and Z. Zhan, “A practical Approach to
Solve Secure Multi-Party Computation
Problems,” Proc. of New security paradigms,
2002, pp. 127-135.

[6] R. Gwadera, M. Atallah and W. Szpankowski,
“Reliable Detection of Episodes in Events
Sequences,” Proc. of the Third IEEE Intern.
Conf. on Data Mining (ICDM'03), 2003.

[7] D. E. Knuth, J. Morris, and V. Pratt, “Fast
Pattern Matching in Strings,” SIAM Journ. on
Comp., vol. 6, 1977, pp. 323-350.

[8] J.P. Morrill, “Distributed Recognition of
Patterns in Time Series Data,” Comm. of the
ACM, vol. 41, 1998, pp. 45-51.

[9] V. A. Oleshchuk, “On-line Constraint-based
Pattern Matching on Sequences,” In Sequences
and Their Applications – Proc. of SETA '98. C.
Ding, T. Helleseth, H. Niederreiter, Eds.,
Springer-Verlag, 1999, pp. 330-342.

[10] V. A. Oleshchuk, “On-line Fuzzy Pattern
Matching on Sequences.,” In Advances in Fuzzy
Systems and Evolutionary Computation. N.E.
Mastorakis, Ed., 2001, pp. 144-149.

[11] D. Wagner, “Resilient aggregation in sensor
networks,” SASN '04: Proc. of the 2nd ACM
workshop on Security of ad hoc and sensor
networks, 2004, pp. 78-87.

[12] D. Naccache and J. Stern, “A New

Vladimir A. Oleshchuk / Computing, 2005, Vol. 4, Issue 3, 85-90

90

Cryptosystem Based on Higher Residues,” In
Proceedings of the 5th ACM Conf. on Computer
and Communication Security, 1998, pp.59-66.

[13] T. Okamoto and S. Uchiyama, “An Efficient
Public-Key Cryptosystem as Secure as
Factoring,” In Advanced in Cryptography -
EUROCRYPT'98, LNCS 1403, pp. 308-318,
1998.

[14] P. Paillier. “Public-Key Cryptosystems
Based on Composite Degree Residuosity
Classes,” In EUROCRYPT'99, LNCS 1592,
1999, pp. 223-238.

[15] A.C. Yao, “Protocols for Secure
Computations,” In Proc. of the 23th IEEE
Symp. on Foundations of Computer Science,
1982.

Vladimir A. Oleshchuk,
received his MS degree in
Applied Mathematics in 1981
and the PhD degree in
Computer Science in 1988,
both from the National Taras
Shevchenko University, Kiev,
Ukraine. From 1987 to 1992
he worked as assistant
professor and then as
associate professor at

National Taras Shevchenko University. He is
currently a Professor in the Department of
Information and Communication Technology and the
leader of Commutation and System Security group
at Agder University College, Norway. His current
research interests formal methods and information
security with special attention to telecommunication
systems.

