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Abstract: In this article we present a self-organizing hybrid modular approach that is aimed at reduction of processing 
task complexity by decomposition of an initially complex problem into a set of simpler sub-problems. This approach 
hybridizes Artificial Neural Networks based artificial intelligence and complexity estimation loops in order to reach a 
higher level intelligent processing capabilities. In consequence, our approach mixtures learning, complexity estimation 
and specialized data processing modules in order to achieve a higher level self-organizing modular intelligent 
information processing system. Experimental results validating the presented approach are reported and discussed. 
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1. INTRODUCTION 
In a very large number of cases dealing with real 

world dilemmas and applications (system 
identification, industrial processes, manufacturing 
regulation, optimization, decision, pattern 
recognition, systems, plants safety, etc), information 
is available as data stored in files (databases etc.). 
So, the efficient data processing becomes a chief 
condition to solve problems related to above-
mentioned areas. In the most of those cases, 
processing efficiency is closely related to several 
issues among which are: 

• Data nature: including data complexity, data 
quality and data representative features. 

• Processing technique related issues: 
including model choice, processing 
complexity and intrinsic processing delay. 

Data complexity (frequently related to 
nonlinearity or subjective nature of data) may affect 
the processing efficiency. Quality (noisy data, etc.) 
may influence processing success and expected 
results quality. Representative features concerning 
scarcity of pertinent data could affect processing 
achievement or resulted precision. On the other 
hand, choice or availability of appropriated model 
describing the behaviour related to data to process is 
of major importance. Processing technique or 
algorithms’ complexity (designing, precision, etc.) 
shapes the processing effectiveness. Intrinsic 
processing delay or processing time, related to the 

implementation issues (software or hardware related 
issues) or processing models parameterization could 
affect not only processing quality (results quality) 
but also the technique’s viability to offer an 
adequate solution for a complex problem. Of course, 
unfortunately real world and industrial problems are 
never as comfortable as could be “toy problems”. 
They are often complex problems with a large 
number of parameters (which should be considered). 
That’s why conventional solutions (based on 
mathematical and analytical models) reach serious 
limitation for solving this category of dilemmas. 

One of the key points on which one can act is the 
complexity reduction. Complexity reduction could 
act not only at problem’s solution level but also at 
processing procedure’s level. An issue could be 
model complexity reduction by splitting a complex 
problem into a set of simpler problems: this leads to 
“multi-modelling" where a set of simple models is 
used to sculpt a complex behaviour [1]. Another 
promising approach to reduce complexity takes 
advantage from hybridization [2]. Several Artificial 
Neural Networks (ANN) based approaches were 
suggested allowing complexity and computing time 
reduction. Among proposed approaches, one can 
note the Intelligent Hybrids Systems [2], Neural 
Network Ensemble concept [3], Models or experts 
mixture ([4], [5]), Dynamic Cell Structure 
architecture [6] and active learning approaches [7]. 

In this paper, we present an ANN based data 
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driven treelike Multiple Model generator, that we 
called T-DTS (Treelike Divide To Simplify), able to 
reduce complexity on both data and processing chain 
levels. The main idea of T-DTS is based on the 
notion “Divide et impera”1 (Julius Caesar), 
transformed here as “Divide To Simplify” (DTS) 
[8]. The purpose is based on the use of a set of small 
and specialized mapping neural networks, called 
Neural Network based Models (NNM), supervised 
by a Scheduling Unit (SU). Scheduling Unit could 
be a prototype based neural network, Markovian 
decision process, etc.. Leafs of the obtained tree are 
Artificial Neural Networks (models). At the node’s 
level, the input space is decomposed, using 
complexity estimation based decomposer, into a set 
of sub-spaces of smaller sizes. While, at the leaf’s 
level the aim is to learn the relations between inputs 
and outputs in sub-spaces, obtained from splitting. 
Combination of complexity estimation, splitting and 
learning capabilities confers to the issued intelligent 
system self-organizing ability. 

The paper is organized in following way. Section 
2 will present the Tree-like multiple neural network 
models generator. Different parameters related to 
this structure will be presented and discussed. 
Scheduling function, related dilemmas and proposed 
techniques will be introduced and discussed. Section 
3 will be dedicated to the splitting dilemma and 
complexity estimation. Splitting strategies and 
associated complexity estimation techniques are 
exposed in section 4. Section 5 will be dedicated to 
implementation and validation issues. Experimental 
results, validating the presented concept will be 
presented and discussed. The same section will 
analyze the efficiency of such approach on the basis 
of a classification benchmark including a set of 
databases representative of a set of classification 
problems with gradually increasing difficulty. In the 
same section, T-DTS is also applied to real industrial 
problem: a drilling rubber process used in 
manufacturing industry. Finally, the last section will 
conclude the present paper. 

 
2. TREE-LIKE MULTIPLE NEURAL 
NETWORK MODELS GENERATOR 

Tree-like multiple neural network models 
generator, that we called “Treelike Divide To 
Simplify” (T-DTS) is a data driven neural networks 
based Multiple Processing (multiple model) 
structure designed to reduce complexity on both data 
and processing chain levels. T-DTS and associated 
algorithm construct a tree-like evolutionary neural 
architecture automatically where nodes, called also 
“Splitting Units” (SU), are decision units, and leafs, 

                                                 
1 “divide and rule”. 

called also “Neural Network based Models” (NNM), 
correspond to neural based processing units. 

The T-DTS includes two main operation modes. 
The first is the learning phase, when T-DTS system 
decomposes the input data and provides processing 
sub-structures and tools for decomposed sets of data. 
The second phase is the operation phase. There 
could be also a pre-processing phase at the 
beginning, which arranges (prepare) data to be 
processed. Pre-processing phase could include 
several steps (conventional or neural stages). Figures 
1 gives the general bloc diagram of T-DTS 
operational steps. As shows this figure, T-DTS could 
be characterized by three main operations: “data pre-
processing”, “learning process” and “generalization 
process” (called also “operation phase”). 

The first one performs data pre-processing in 
order to ease the processing of data. This step could 
operate with each of two other T-DTS’s operational 
modes. During pre-processing several operations 
such as data normalizing, data scaling, data 
dimensionality reduction could be performed. Pre-
processing could also include other kind of 
operations, as removing outliers or Principal 
Component Analysis ([9]) to enhance input data 
quality or eliminate redundancy in data. 

The learning phase is an important phase during 
which T-DTS performs several key operations: 
splitting the learning database into several sub-
databases, constructing (dynamically) a treelike 
Supervision/Scheduling Unit (SU) and building a set 
of sub-models (NNM) corresponding to each sub-
database. Figure 2 represents the division and NNM 
construction process bloc diagrams.  As this figure 
shows, after the learning phase, a set of neural 
network based models (trained from sub-databases) 
are available and cover (model) the behaviour 
region-by-region in the problem’s feature space. In 
this way, a complex problem is decomposed 
recursively into a set of simpler sub-problems: the 
initial feature space is divided into M sub-spaces. 
For each subspace k, T-DTS constructs a neural 
based model describing the relations between inputs 
and outputs. If a neural based model cannot be built 
for an obtained sub-database, then, a new 
decomposition will be performed on the concerned 
sub-space, dividing it into several other sub-spaces. 

The second operation mode corresponds to the 
use of the constructed neural based Multi-model 
system for processing unlearned (work) data. The 
Operation Phase is depicted by figure 3. In fact, the 
learning phase could be considered as a self-
organizing model generation process, which leads to 
a set of ANN based models (or processing units) 
managed by a tree-like Supervisor/Scheduler Unit 
(SU). 
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Fig. 1. General bloc diagram of T-DTS, presenting 

main operation levels. 
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Fig. 2. General bloc diagram of T-DTS learning 

phase and its tree-like splitting process. 
 
The SU, constructed during the learning phase, 

receives data (unlearned input vector) and classifies 
that data (pattern) as corresponding to one of the 
processing subset. Then, the most appropriated 
neural processing unit (NNM) is authorized 
(activated) to process that pattern. 
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Fig.3 – General bloc diagram of T-DTS 

generalization phase. 
 

Let Ψ(t) be the input ( ( ) Ψℜ∈Ψ nt ), a nΨ-

Dimensional vector and ( ) Yn
k tY ℜ∈  be the k-th 

( { }Mk ,,1L∈ ) model’s output vector of dimension 

ny. Let ( ) Ynn
kF ℜ→ℜ Ψ:. be the k-th NNM’s 

transfer function. Let ( )( ) MBptS ∈Ψ ξ,, , 
where { }1,0=B , be the Supervisor/Scheduler Unit’s 
(SSU) output, called also Scheduling Function, 
which depends on Ψ(t), but which may also depend 
on some parameters p and/or conditions ξ. pk 
represents some particular values of parameter p and 
ξk denotes some particular value of condition ξ, 
respectively, obtained from learning phase process 
for the k-th sub-dataset. Taking into account the 
above-defined notation, the Supervisor/Scheduler 
Unit’s (SU) output could be formalized as relation 
(1). 
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The scheduling vector S( Ψ, pk, Ck) will activate 

(select) the k-th NNM, and so the processing of an 
unlearned input data conform to parameter pk and 
condition Ck will be given by the output of the 
selected NNM (relation (2)). 
 

( ) ( ))(),( tFtYtY kk Ψ==Ψ              (2) 
 
It is important to emphasize that the SU uses a 

complexity indicator in order to handle the splitting 
process. So, complexity estimation is among the 
most important operations performed by TDTS. The 
next section introduces and describes this major 
point in the T-DTS paradigm. 

 
3. SPLITTING AND COMPLEXITY 

ESTIMATION 
The goal is to estimate the processing task’s 

difficulty and modify the splitting (initial complex 
problem’s division into a set of sub-problems with 
reduced complexity) and processing algorithms 
(models) in order to handle the whole task more 
efficiently. The modification may include among 
others:  

• task decomposition up to some degree 
dependant on task or data complexity,  

• choice of appropriate processing structure 
(i.e. appropriated model) for each subset of 
decomposed data,  

• choice of processing architecture (i.e. 
models parameters).  

These concepts are quite different and 
complicated so we focus only on the first aspect: 
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measurements supporting task decomposition. 
Complexity estimation is not a very popular 

subject. These methods are used to evaluate a 
problem’s processing complexity level. We will 
present the methods that compute indirectly Bayes 
error, non-parametric Bayes error estimation 
methods and other methods. 

 
CHERNOFF BOUND 

The Bayes error for the two class case can be 
expressed by relation (3) where ck represent the class 
k and x is the feature vector. 

 
( )[ ]∫= dxcxpcP kkk

|)(minε
                          (3) 

 
Through modifications, we can obtain a Chernoff 

bound [10] εu, which is an upper bound on ε for the 
two class case. The tightness of bound varies with 
the parameters. 

 

∫ −−= dxcxpcxpcPcP ssss
u )|()|()()( 2

1
1

1
21ε    (4)  

 
BHATTACHARYYA BOUND 

The Bhattacharyya bound [11] is a special case of 
Chernoff bound for s = 1/2. Empirical evidence 
indicates that optimal value for Chernoff bound is 
close to 1/2 when the majority of separation comes 
from the difference in class means. Under a 
Gaussian assumption, the expression of the 
Bhattacharyya bound is expressed by (5). 
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µi and Σi are respectively the means and 

covariance of classes k in {1,2}. 
 

DIVERGENCE 
Measure of divergence [12] (separability) is 

related to verisimilitude ratio. Verisimilitude ratio 
L12 between two classes’ c1 and c2 is defined as: 
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Computing the divergence is significantly 
simplified when distributions of variables are 
normal. In that case divergence equals: 
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where tr signifies trace of a matrix, µ1 and µ2 

class means, ∑1and ∑2 class covariance matrices. 
Divergence measures the degree of separability 

between two classes. Therefore in order to evaluate 
multi class case one should count an average of all 
two-element combination of classes. Computational 
cost of divergence is significant. 

 
JEFFRIES-MATUSITA DISTANCE 

Jeffries-Matusita [13] distance between classes c1 
and c2 is defined by relation (9). 
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If c1 and c2 distributions are normal Jeffries-
Matusita distance reduces to: 
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Matusita distance is bounded within range [0, 2] 
where high values signify high separation between 
classes’ c1 and c2. 

 
PARZEN ESTIMATION 

Parzen [14] techniques relay on the same concept 
as k-NN: setting a local region Γ(x) around each 
sample x and examining the ratio of the samples 
enclosed k, to the total number of samples N, 
normalized with respect to region volume v: 

vN
kxp =)()

                                                    (11) 
The density estimation Equation becomes: 

vN
xkxp )()( =)

                                                  (12) 
where p(x) represents density and k(x) represents 

number of samples enclosed in volume.  
 

BOUNDARY METHODS 
The boundary methods are described in the work 

of Pierson [15]. Data from each class is enclosed 
within a boundary of specified shape according to 
some criteria. The boundaries can be generated 
using general shapes like: ellipses, convex hulls, 
splines and others. The boundary method often uses 
ellipsoidal boundaries for Gaussian data, since it is a 
natural representation of those. Since most decision 
boundaries pass through overlap regions, a count of 
these samples may give a measure related to 
misclassification rate. Pierson has demonstrated that 
the measure of “Separability” called the Overlap 
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Sum is directly related to Bayes error with a much 
more simple computational complexity. It does not 
require any exact knowledge of the a posteriori 
distributions. Overlap Sum is the arithmetical mean 
of overlapped points with respect to progressive 
collapsing iterations: 

∑
=

∆=
m

k
S ktskt

N
mtO

1
000 )()(1)(   (13) 

where to is the step size, m is the maximum 
number of iteration (collapsing boundaries), N is the 
number of data points in whole dataset and ∆s(kt0) is 
the number of points in the differential overlap. 
Boundary methods provide a measure of class 
separability, the overlap sum (OS), which is strongly 
correlated with Bayes error and easily computed. 
These properties suggest that BMs can be used as an 
alternative to traditional Bayes error estimation 
techniques. 

 
INTER-INTRA CLUSTER DISTANCE 

The average inter-cluster [16] distance is 
computed by considering all data in both clusters 
(classes): 

 

21

21
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where l1 and l2 are the numbers of samples in the 

two clusters and Swi , Swj represent consequently 
inter-cluster distance of cluster i and inter-cluster 
distance of cluster j. 

 
4. COMPLEXITY ESTIMATION AND 

SPLITTING STRATEGIES 
The complexity estimation based splitting could 

be performed according to two general strategies: 
“static” splitting strategy and “adaptive” (dynamic) 
one. In both cases, the issued could be binary or 
multiple branches tree-like structure. The main 
difference between two strategies remains in nature 
of the complexity estimation indicator and the 
splitting decision operator used in splitting process. 

 
STATIC COMPLEXITY ESTIMATION 

STRATEGY 
By “Static” we mean “not flexible” regarding 

different features influencing the processing task 
complexity. The static nature of splitting strategy 
could appear on complexity estimation method’s 
level and on splitting decision’s level. 

For example, empirically determined maximum 
standard deviation (MaxStd: representing global data 
similarity) could be an interesting candidate. In this 
case, if the data of a given sub-database is 

homogenous enough then the associated complexity 
will be considered as “low” (no necessary to divide 
the database). The splitting process starts by 
evaluating the average and standard deviation of the 
learning database. If the obtained standard deviation 
is greater that the MaxStd, then, a two-clusters 
Kohonen SOM (or a distance based competitive NN) 
divides the learning database into two sub-databases. 
These operations are repeated until the standard 
deviation relative to each created sub-database 
doesn’t exceed the MaxStd value. 

If 
k
jΨ  represents the j-th learning prototype of 

the k-th learning sub-database, if kΨ denotes 
average representative prototype of this sub-database 
and �k it’s standard deviation (obtained from 
relations (15)), then, a threshold based decision will 
determine if the concerned database should be 
divided (or not) into two (or more) sub-databases. 
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The principle is based on the following 
assumption: more dissimilar the problem’s 
representative data (learning database) is, more 
complex will be the needed processing effort. So, 
after a global data similarity estimation (giving a 
rough estimation of the treated problem’s 
complexity), a threshold based decision will 
determine if the concerned database should be 
divided (or not) into two (or more) sub-databases. 

⎢
⎣

⎡ >
modelbasedANNan
databasecurrenttheSplit""
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ThenIf MAXSTDkσ

       (17) 

 
ADAPTIVE COMPLEXITY ESTIMATION 

STRATEGY 
By “Adaptive” we mean “flexible” regarding 

different features influencing the processing task 
complexity. Concerning data complexity, it could be 
seen from Bayes error estimation angle, which 
basically reflects the “data classification” task’s 
difficulty. However, direct estimation of the Bayes 
error is a difficult task in practice. That’s why in 
practice, indirect approaches or approximation 
techniques are used to approach the Bayes error. 
There are two general ways to estimate Bayes error: 
the first, belonging to indirect way, consists to 
measure lower or higher bound of this error, which 
are easier to compute than direct estimation of the 
Bayes error, the second is to estimate this error by 
non-parametric method. Some other methods could 
be used based on space partitioning or other 
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heuristically obtained hypothesis (rules). Figure 4 
gives taxonomy of “Classification Complexity 
Estimation” methods. 

 
 

 Complexity estimation 
methods 

Bayes error 
estimation 

Space 
partitioning 

Class Discriminability Measures [18] 
Purity measure [19] 
Neighborhood Separability [19] 
Collective entropy [19] 

Indirect 

Chernoff bound [12 
Bhattacharyya bound [13] 
Divergence [14] 
Mahalanobis distance [15] 
Jeffries-Matusita dist. [16] 
Entropy measures [17] 

Non-
parametric 

Error of the classifier itself  
k-Nearest Neighbours, (k-NN) [20]  
Parzen Estimation [21] 
Boundary methods [22] 

Other 

Correlation-based approach [23] 
Fisher discriminator ratio [24] 
Interclass distance measures [25] 
Volume of the overlap region [26] 
Feature efficiency [27] 
Minimum Spanning Tree [28] 
Inter-intra cluster distance [29] 
Space covered by epsilon neighbourhoods
Ensemble of estimators 

 
Fig.4. Taxonomy of Classification Complexity 

Estimation methods. 

Indirect Bayes error estimation methods are well 
established theoretically but they have some 
drawbacks: they assume data normality, construction 
of models could be time consuming, model 
verification could be difficult, they are susceptible to 
data dimensionality and finally a large number of 
samples may be needed to estimate accurately class 
conditional probabilities. Non-parametric Bayes 
error estimation methods make no assumptions 
about the specific distributions involved. They use 
some intuitive methods. Their drawback is due to 
computing cost. Measures related to space 
partitioning are connected to space partitioning 
algorithms: specific space partitioning algorithms 
that divide the feature space into sub-spaces. They 
also suffer from high computing cost.   

 
CHOICE OF THE ADAPTIVE 

COMPLEXITY ESTIMATION STRATEGY 
Taking into account the above-discussion, we 

have designed a specific benchmark to investigate 
adaptive complexity estimation strategy choice. The 
benchmark is based on classification problem and 
has been defined in following way: two databases of 
1000 vectors each, represent three different 
problems with gradually increasing classification 
difficulties (see Figure 5). In the first database, data 
is distributed according to“circle” geometry 
(symmetrical). In the second database, data 
distribution acts conformably to a two spirals-like 
geometry. Each database contains data from two 
classes. Three databases of 1000 vectors each, each 
database contains data from two classes. Each 
database is divided into two equal parts (learning 
and generalization databases) of 500 vectors each. 
Databases are normalized (to obtain mean equal to 0 
and variance equal to 1). 

  
Fig.5 – Benchmark problems with gradually 

increasing classification complexity. 

Decomposition is performed by competitive network 
of 2 neurons. The maximum number of epochs has 
been set up to 100 epochs and learning rate to 0.1. 
The splitting criterion is the following: “If (threshold 
is >= measure) then the database is divided”. Issued 
databases (with reduced complexity) are then used to 
train a set of linear networks to minimize the sum of 
squared error for learning database. The output of 
each linear network is rounded to nearest integer 
number in order to obtain categorized values 
(classes). The observed values are number of 
generated models and number of correctly classified 
prototypes in generalization phases. Figures 6 and 7 
give the above mentioned characteristics for each 
benchmark database. 

 

 

 
Fig.6 – Observed values versus threshold for the 

circular distribution data: number of generated 
models (upper) and correct classification rate in 

generalization phase (lower). 
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One can remark that for both cases the best 
classification rate is obtained when the 
decomposition (splitting) is decided using “purity” 
measurement [17] based complexity indicator. 
However, in the same time, “Fisher’s” discriminator 
based complexity estimation [18] achieves 
performances close to the previous one. Regarding 
the number of generated models, the first complexity 
estimation indicator (purity) leads to much greater 
number of models. Finally, “low computational 
cost” criteria should also be taken into account. In 
this context we have chosen Fisher discriminator 
ratio as complexity estimation indicator. 

 

 

 
Fig.7 – Observed values versus threshold for the 

two-spiral-like distribution data: number of generated 
models (upper) and correct classification rate in 

generalization phase (lower). 

The measure is calculated in each dimension 
separately and afterwards the maximum of the 
values is taken. To use it for more than two class 
problem it is necessary to compute Fisher 
discriminator for each two-element combination of 
classes and later average it. Important features of 
this measure are: its strong relation with the 
structure of data and low computational 
requirements. Thus it can be efficiently used as 
decomposition criterion (complexity estimation 

criteria). In fact, as the Fisher’s discriminator based 
complexity estimation indicator measures distance 
between two classes (versus the averages and 
dispersions of data representative of each class), it 
could be used to adjust the splitting decision 
proportionally to processing’s difficulty: a short 
distance between two classes (of data) reflects 
higher difficulty, while, well separated classes (high 
distance) could be interpreted as needing a lower 
processing complexity. 

 
5. IMPLEMENTATION AND VALIDATION 

RESULTS 
A software implementation of T-DTS including 

different splitting strategies, different complexity 
estimation methods and different ANN models has 
been achieved. The implementation has been 
performed under MathLab environment. A specific 
validation benchmark database including a set of 
databases with gradually increasing complexity has 
been designed. The problems difficulty starts from 
linearly separable classification (qualified as easy) 
and ends with two spirals problem (qualified as the 
hardest): the easiest problem is labelled as problem 1 
and the most complex one is labelled as problem 12. 

Based on the above-presented set of benchmark 
problems, two self-organizing modular systems have 
been generated in order to solve the issued 
classification problem. The first one using the 
“static” complexity estimation method with a 
threshold based decomposition decision rule, and the 
second one, using “adaptive” complexity estimation 
criterion based on Fisher’s decimator (figure 8). 

(1)   (6)        (12) 

Fig.8 – Benchmark: databases examples with 
gradually increasing complexity. 

Figures 9 gives classification results obtained for 
each both static and dynamic cases. One can note 
from the figure 9 that in the case of the static 
strategy based splitting, the classification rate drops 
significantly for more complicated datasets. That 
proves: when databases complexity is increasing 
such modular system cannot maintain the processing 
quality. 

When the splitting is performed on the basis of 
Fisher’s complexity estimation based indicator, there 
is only a small dropping tendency of the 
classification rate when the classification’s difficulty 
increases. However, in this case, processing time 
(essentially the learning phase) increases 
significantly for more complex datasets. 
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Fig.9 – Results for modular structure with static 

and Fisher’s discriminator adaptive complexity 
estimation strategy. 

In fact, in this case adaptive structure adapts 
decomposition (and so, the modularity) in order to 
reduce processing complexity, by creating the 
number of models proportionally to the processed 
data’s complexity. 

 
APPLICATION TO INDUSTRIAL NON 
LINEAR PROCESS IDENTIFICATION 
The validation has been performed using Self 

Organization Map (SOM) [19] as SU. In this case, 
splitting process dividing the initial complex 
problem into M reduced sub-problems takes 
advantage from Kohonen SOM properties 
(Similarity Matching). The activation of an 
appropriate NNM will be issued from similarity 
measure between an unlearned input vector Ψ(t) and 
the k-th SOM cluster (Wk). If the initial feature 
space has been decomposed into M clusters by a 
Kohonen like SOM process, then, the Scheduling 
vector (SU output) will be conform to relation (18). 

( ) ( ) ( )( )
0

Ш=Ш1
=,Ш

Else
WtMinWtif

Ws kMk
kk

 (18) 

In case when Kohonen maps have a grid 2x1 
topology, T-DTS builds a binary decision tree. The 
implemented splitting optimization criterion (loop) 
is quite simple. The parameter is MaxStd, which 
defines the standard deviation maximum value (in 
each dimension) in a given subset. Concerning 
Neural Networks based models (processing units) 
they are MLP-like (Multi-Layers Perceptron) units.  

We have applied T-DTS based Identifier to a real 
world industrial process control problem. The 
process is a drilling rubber process used in plastic 
manufacturing industry. Several non-linear 
parameters influence the manufacturing process. To 
perform an efficient control of the manufacturing 
quality (process quality), one should identify the 
global process.  

 

 

Controller Process 

T-DTS based 
Identifier 

Multi-Model 

Control Plant  
Output 

+ 

- 

- + 

Plant
Internal 

parameters

Conventional Feedback Loop 
 

Fig. 10. Implemented industrial processing loop 
using a Kohonen DU based T-DTS identifier. 

Kohonen SOM based Scheduling Unit (SU) uses 
a 4x3 grid leading to 12 feature sub-spaces. So, 12 
Neural Network based Models (NNM) have been 
generated and trained (from learning database). 
Figure 11 shows the learning phase validation 
presenting the identified output . Figure 12 shows 
system output in the generalization phase. One can 
conclude that estimated output is in accord with the 
measured one. 

Fig. 11. Real plant’s and T-DTS based identification 
issued outputs after the learning process. 

Fig. 12. Prediction of an unlearned plant’s output 
sequence (generalization phase). 

On the one hand, by dividing the initial problem 
into several sub-problems with reduced sizes, the 
proposed Tree-like multiple neural network models 
generator (T-DTS) simplifies the learning 
complexity and so, the duration time. On the other 
hand, by embedding “complexity estimation” 
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capabilities (as regulation loops) at the splitting 
decision level, T-DTS obtains smart self-
organization capabilities, acquiring some processing 
universality potential. Finally, it decreases globally 
implementation, parameterization and models 
parameters optimization constraints. Moreover, the 
neural character of the proposed structure makes it 
adaptable for different kinds of applications, offering 
solution to a wide range of complex processing 
problems.  

 
6. CONCLUSION 

Very promising results, obtained for the 
presented benchmark set of classification problems, 
show efficiency of such multiple model structure to 
enhance processing capability by reducing 
complexity on both processing and data levels.  
Moreover, the neural nature of generated models and 
complexity estimation based self-organization 
ability of our approach lead to additional attractive 
features which are adaptability, modularity and 
universality, opening new dimensions in bio-
inspired artificial intelligence. T-DTS concept has 
successfully been applied for real world industrial 
plant identification (a chief step in adaptive control 
of complex systems). We are currently working on 
the splitting criterion based on advanced complexity 
measurement techniques. 

 
7. REFERENCES 

[1]. Multiple Model Approaches to Modeling and 
Control, edited by R. Murray-Smith and T.A. 
Johansen, Taylor & Francis Publishers, 1997, 
ISBN 0-7484-0595-X. 

[2]. S. Goonatilake and S. Khebbal, “Intelligent 
Hybrid Systems: Issues, Classification and 
Future Directions”, in Intelligent Hybrid 
Systems, John Wiley & Sons, pp 1-20, ISBN 0 
471 94242 1. 

[3]. Krogh A., Vedelsby J.: Neural Network 
Ensembles, Cross Validation, and Active 
Learning, in Adv in Neural Inf Processing Syst. 
7, The MIT Press, Ed by G. Tesauro, pp 231-
238, 1995. 

[4]. Sridhar D.V.,Bartlett E.B., Seagrave R.C., "An 
information theoretic approach for combining 
neural network process models", Neural 
Networks, Vol. 12, pp 915-926, Pergamon, 
Elsevier, 1999. 

[5]. Jordan M. I. and Xu L., "Convergence Results 
for the EM Approach to Mixture of Experts 
Architectures", Neural Networks, Vol. 8, N° 9, 
pp 1409-1431, Pergamon, Elsevier, 1995. 

[6]. Bruske J., Sommer G., Dynamic Cell Structure, 
Adv in Neural Inf Processing Systems 7, The 
MIT Press, Ed by G. Tesauro, pp 497-504, 1995. 

[7]. Sang K. K. and Niyogi P., Active learning for 
function approximation, in Neural Information 
Processing Systems 7, The MIT Press, Ed by G. 
Tesauro, pp 497-504. 

[8]. Madani K., Chebira A., "A Data Analysis 
Approach Based on a Neural Networks Data 
Sets Decomposition and it’s Hardware 
Implementation", PKDD 2000, Lyon, France, 
2000. 

[9]. Jollifee I.T., "Principle Component Analysis", 
New York, Springer Verlag 1986. 

[10]. Chernoff, “Estimation of a multivariate 
density”, Annals of the Institute of Statistical 
Mathematics, vol. 18, pp. 179-189, 1966. 

[11]. Bhattacharya, “On a measure of divergence 
between two statistical populations defined by 
their probability distributions”, Bulletin of 
Calcutta Maths Society, vol. 35, pp. 99-110, 
1943. 

[12]. J. Lin, “Divergence measures based on the 
Shannon entropy”, IEEE Transactions on 
Information Theory, 37(1):145-151, 1991. 

[13]. K. Matusita, “On the notion of affinity of 
several distributions and some of its 
applications”, Annals Inst. Statistical 
Mathematics, 19:181-192, 1967. 

[14]. E. Parzen, “On estimation of a probability 
density function and mode”, Annals of Math. 
Statistics, vol. 33, pp. 1065-1076, 1962. 

[15]. W.E. Pierson, “Using boundary methods for 
estimating class separability”, PhD Thesis, Dept 
of Elec. Eng., Ohio State Univ., 1998. 

[16]. Kohn, L. G. Nakano, and V. Mani, “A class 
discriminability measure based on feature space 
partitioning”, Pattern Recognition, 29(5):873-
887, 1996. 

[17]. Singh S., “Pattern Recognition Using 
Information Slicing model”, 16th Internat. Conf. 
on Pattern Recog. (ICPR 2002), 11-15 August 
2002, Quebec, Canada, IEEE Computer Society, 
ISBN 0-7695-1695-X, 2002. 

[18]. Fisher, “The mathematical theory of 
probabilities”, John Wiley, 2000. 

[19]. T. Kohonen, “Self-Organization and 
Associative Memory”, 2-nd Ed., Springer-
Verlag, New York, 1988. 

 
 

 

El Khier Bouyoucef  
Received his Master of 
Telecommunication Science 
degree from UVHC  University, 
Valenciennes, France, in 2003. 
Since octobre 2003 he works as  
Ph.D student in Images, Signals 
and Intelligent Systems 

Laboratory (LISSI / EA 3956) of PARIS XII – Val 
de Marne University. His research works deals 



El-Khier Bouyoucef, Abdennasser Chebira, Mariusz Rybnik, Kurosh Madani / Computing, 2005, Vol. 4, Issue 3, 20-29 
 

 29

with data processing, artificial learning, complexity 
estimation methods, classification techniques and 
hybrid neural based information processing 
systems. 

 
Dr. Abdennasser Chebira 
Received his Ph.D. degree in 
Electrical Engineering and 
Computer Sciences from 
PARIS XI University, Orsay, 
France, in 1994. Since 
September 1994 he works as 
Professor Assistant at Senart  
Institute of Technology of PARIS XII – Val de 
Marne University. He is a staff researcher at 
Images, Signal and Intelligent Systems Laboratory 
(LISSI / EA 3956) of this University. His current 
research works concern self-organizing neural 
network based multi-modeling, hybrid neural based 
information processing systems; Neural based data 
fusion and complexity estimation. 

 

 

Dr. Mariusz Rybnik 
Received his Master of Computer 
Science degree from Bialystok 
Technical University, Bialystok, 
Poland, in 2001. Received his 
Ph.D. degree in December 2004 
from PARIS 

XII – Val de Marne University, Créteil, France. He 
worked as Assistant at Images, Signal and 
Intelligent Systems Laboratory (LISSI / EA 3956) of 
this University until October 2005. His research 
work deals with self-organizing neural network 
based multi-modeling and hybrid neural based 
information processing systems. 

 
Prof. Kurosh Madani: 
Received his Ph.D. degree in 
Electrical Engineering and 
Computer Sciences from 
University PARIS XI (PARIS-
SUD), Orsay, France, in 1990. 
From 1989 to 1990, he worked  
as assistant professor at Institute of Fundamental 
Electronics of PARIS XI University. In 1990, he 
joined Creteil-Senart Institute of Technology of 
University PARIS XII – Val de Marne, Lieusaint, 
France, where he worked from 1990 to 1998 as 
assistant professor. In 1995, he received the DHDR 
Doctor Habilitate degree (senior research Dr. Hab. 
degree) from University PARIS XII – Val de Marne. 
Since 1998 he works as Chair Professor in 
Electrical Engineering of Senart Institute of 
Technology of University PARIS XII – Val de 
Marne. From 1992 to 2004 he has been head of 
Intelligence in Instrumentation and Systems 
Laboratory of PARIS XII – Val de Marne University 
located at Senart Institute of Technology. Since 
2005, he is head of one of the three research 
teams of Image, Signal and Intelligent Systems 
Laboratory (LISSI / EA 3956) of PARIS XII 

University. He has worked on both digital and 
analog implementation of processors arrays for 
image processing by stochastic relaxation, electro-
optical random number generation, and both 
analog and digital Artificial Neural Networks (ANN) 
implementation. His current research interests 
include large ANN structures behavior modeling 
and implementation, hybrid neural based 
information processing systems and their software 
and hardware implementations, design and 
implementation of real-time neuro-control and 
neural based fault detection and diagnosis 
systems. Since 1996 he is a permanent member 
(elected Academician) of International 
Informatization Academy. In 1997, he was also 
elected as Academician of International Academy 
of Technological Cybernetics. 
 




