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1. INTRODUCTION 
Solution of complex systems of differential 

equations using numerical methods is connected 
with some computation problems. In order to solve 
this problem the most suitable methods should be 
based on decomposition of complex system to more 
simple parts. It makes possible to share 
computational resources for more simple tasks. We 
will not discuss the question of formation of such a 
system. We consider that it is possible to obtain a 
system in which each group of state variables is 
concentrated in some subsystem of differential 
equations using additional constrain variables. 

Unlike to well-known multirate method [1] (the 
peculiarity of it difference scheme lies in fact that 
separate subsystems have their time scale) we 
propose combined  multirate relaxation method 
where each subcircuit can have different physical 
nature and therefore should be described by different 
mathematical models [2, 3]. On the basis of this new 
method it is possible to create an algorithm with 
structure which will make it possible to use 
advantages of parallel computing systems [4]. 
 
2. BASES OF MULTIRATE RELAXATION 

METHOD 
Integration of subsystems with separate step can 

be considered as a basis of multirate integration 
method of subcircuits. It is possible to take into 
account dynamic features of each subcircuit. In other 
words in analyzed circuit some subsystems with 
time latency can exist, so values of their internal and 
external variables can be practically constant on 
some time intervals. Besides, some nonlinear 
subsystems can demand smaller division of 

integration step then other subsystems in order to 
ensure the convergence of iterations. In such a case 
the program for simulation can be run faster. 

Let us consider mathematical model of some 
physical object (previously decomposed into 
separate parts) in the basis of state variables: 
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where iF  are nonlinear vector-functions (subsystem 

state equations); Ni ,1= , N  is number of 
subsystems; G  is nonlinear function of subsystems 

coupling; ,
r

ri
i

dx x
dt

 are vectors of state variables and 

their derivatives of i-th subcircuit; ur  is a vector of 
external variables. 

The essence of multirate integration algorithm 
lies in independent integration of separate parts of 
the whole system on some time interval. The each 
iteration contains two consecutive steps: integration 
of equations of separate subsystems (1) and 
coordination of solutions obtained on previous stage 
using solving of coupling equations (2). 

Step of integration for each splitted subsystems 
can be chosen automatically with consideration of 
changes of it internal parameters. After integration 
of all subsystems on one step forward the maximum 
step can be estimated for k-th time interval 

,maxk i kHK h= . All other subcircuits are 
integrated until time interval will be equal to 
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1k k kT T HK−= + . 
Algorithm of integration of system of nonlinear 

differential equations using multirate integration 
method consists of the following steps: 

1. Using given initial conditions of state variables 
,0ixr  a value of external variables vector 0ur  can be 

calculated and each subsystem should be solved 
“backward” into negative time domain using explicit 
Euler’s method. Largest integration step of 
subsystem ,0ih  is considered as a step of correction 

0HK . In the moment of time 1 0 0T T HK− = −  a 
value of vector 1u−

r
 is estimated again. Let us 

consider that number k of next integration point is 
equal to 1. 

2. We integrate all subsystems on one step 
forward by approximation of external variables 
vector values (0)

kur  on two values in previous time 
intervals. 

3. Largest integration step of subsystem ,i kh  is 

considered as step of subcircuits correction kHK . 
4. We integrate again all subsystems where 

,i k kh HK<  until time will be equal to 

1k k kT T HK−= + . 
5. In the moment of time kT  values of external 

variables vector are estimated (1)
kur , in other words 

they are corrected using formulas (2). We consider 
that at this point first simple iteration by external 
variables is finished. Let us sign its number as 

1J = . 
6. If obtained values of parameters of subsystem 

external variables vector differ from approximated 
values on more then given value we carry out 
repeated calculation of all sybsystems on time 
interval [ ]1 1,k k kT T HK− − + , taking into 

consideration new values of vector ( )J
kur . When 

number of iterations exceeds the maximum given 
value we reduce a step of correction compulsorily to 
value *

kHK . 
7. We carry out transition to execution of point 2 

and calculate system on the following time interval 
*

1 1,k k kT T HK− −⎡ ⎤+⎣ ⎦ . 

In the figure 1 correlation between steps of 
integration of separate subcircuits and steps of 
correction during the process of calculation.  

Subcircuit 1

Subcircuit 2

Subcircuit N

. . . . . . . . .

T0 T1 T2T−1

HK 0 HK 1 HK 2

hN,0

h1,0

h2,0
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h1,2

h2,2

hN,2

 
Fig. 1.  Algorithm to choice the step of correction of 

external variables 

During implementation of multirate method due 
to operations carried out with matrices of lower 
dimensions on common series computation systems 
a considerable decreasing of computation time can 
be seen. But this method of integration can loose 
convergence during analysis of transient processes 
in subsystems when influence of external variables 
prevails on state variables of subsystems. Week 
convergence of multirate method can be explained 
by presence of component of iteration algorithm of 
implicit type. It can be explained by fact that 
calculation of interconnections between subsystems 
in correction points can be done using explicit 
scheme using simple iteration method. 

 
3. PARALLELIZATION OF MULTIRATE 

METHOD 
In multirate method it is possible to solve each 

subsystem without dependence on another 
subsystem by replacement of their influence with the 
help of additional external variables. In other words 
a parallelism of calculation of such subcircuits takes 
place. 

Let us consider a system of linear differential 
equations presented in the following form:  

 
dx x v
dt

= +A B
r

r r
   (3) 

 
where xr  is n – dimensional vector of input 
variables; vr  is m – dimensional vector of 
disturbances; А is a square matrix with dimension 
n n× ; В is a rectangular matrix with dimension 
n m× . 

After the vector of additional variables ur  is 
introduced into equation (3) it can be rewritten in the 
following form 

 



Petro Stakhiv, Serhiy Rendzinyak / Computing, 2005, Vol. 4, Issue 1, 34-41 
 

 36 

[ ]
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dt

x
b

u
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C

r
r r r

r

r

  (4) 

 
A peculiarity of a set of equations (4) is a fact 

that matrix P has a block-diagonal structure 
( )1 2, , ldiag=P P P PK . Pі, С and D are matrices of 

corresponding sizes. 
Let us mark that during the mentioned transform 

a dimension of vector ur  can't be less than n and 
number of blocks l is less than n evidently. 

Taking into account a structure of matrix P the 
first equation from the set (4) can be decomposed to 
l separate matrix equations in the following way: 

 

1,2, ,

i
i i i i

dx x v u
dt

i l

= + +

=

P B D
r

r r r

K

  (5) 

 
where ixr  are corresponding subvectors of vector of 

variables 1 2, ,T T T T
lx x x x⎡ ⎤= ⎣ ⎦

r r r r
K ; ,i iB D  are 

submatrices of matrices B and D composed from 
their some rows. 

The following difference scheme for solving of a 
set of algebraic and differential equations (4) is 
proposed: 

 
, 1 1 , 1 1 , 1

1 1 ,

i k i i k i i k

i k i k

x hb x hb v

hb u F
+ − + − +

− +

= + +

+ +

P B

D
, 

  
 

where 1,2,i l= K ; 0,1,2k = K  is number of step 
of integration, b–1 is a coefficient which defines 
implicit method of integration, ,i kF  is a vector 
which contains information about state variables in 
previous integration points. If step h is the same for 
all values of i then let us add to the set of state 
equations the following constraint equations 

 

, 1

1
0+

+

⎡ ⎤
=⎢ ⎥

⎣ ⎦
C i k

k

x
u

,    

 
we will obtain a system of algebraic equations with 
block-diagonal form using a frame of direct 
diakoptic approach. Algorithm to solve such a 
system is created on the basis of block Gauss 
method. During forward trace values of state 
variables 1+ku  should be calculated, and during 

reverse trace – values of state variables , 1+i kx . 
Numerical effectiveness and acceleration of this 
method are investigated rather in details in different 
works, for example in [5]. 

Using iteration method to solve a set of algebraic 
equations with block-diagonal form with frame it is 
possible to improve a numerical effectiveness of 
some tasks and to increase acceleration of parallel 
algorithm. Taking into considering inevitable 
restrictions of convergence and stability of analyzed 
circuit, adequacy of obtained results greatly depends 
on decomposition of vector x on subvectors. 

Let us use the iteration method of Jacobi 
 

( ) ( 1) ( 1)
1 1, 1 , 1

( )
1 , 1, 1

j j
i ii k i k

j
i i ki k

hb x hb v

hb u F

+ +
− −+ +

− ++

− = +

+ +

1 P B

D
, (6) 

1, 2, ,= Ki l ; 0,1, 2,= Kk .    
 

In general a set of constrain equations can be 
presented in explicit form: 

 
�( ) ( )

1 , 1
j j

k i ku x+ += C .   (7) 

 
As it can be seen, due to selected approach of 

discretization obtained system of equations (6–7) is 
decomposed into 1l +  separated subsystems of 
linear equations which can be solved independently 
one from another. During this process subsystems of 
equations (6) are solved first, and subsystems (7) – 
after them. 

Inherently proposed difference system is a 
combined (explicit-implicit) method of numerical 
integration of system of differential equations where 
variables xr  are integrated by implicit method and 
variables ur  by explicit method. 

Known drawbacks of such numerical methods 
are caused by their potential instability. Because of 
this allowed value of step of integration is rather 
small. But at the same time these methods have 
essential advantages connected with possibilities to 
integrate with variable step different groups of 
variables and to create on their basis parallel 
algorithms of numerical integration intended for 
large systems of differential equations. And, of 
course, it is important that combined methods are 
more accurate potentially. 

It is not difficult to spread proposed method on 
systems of nonlinear differential equations which 
can be written down in the following form: 

 

( ),dx F x v
dt

=
r r r r

,   (8) 
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where ( )F ⋅
r

 is some nonlinear vector-function of 
many variables. 

Similarly, to linear case we introduce additional 
variables which in general are linear combination of 
variables xr : 

 

1

1,2, ,

n

k ki i
i

u x

k n
=

= α

=

∑
K

,   (9) 

 
where αki are some constant coefficients. 

When vector of additional variables is chosen 
correctly a system of equations can be reduced to the 
form 

 

( )1
i

i i
dx F x v u
dt

=
r

r r r
, 1,2, ,i l= K ,   

 

[ ] ( )0 , ,
x

u G x
u
⎡ ⎤
⋅ = =⎢ ⎥
⎣ ⎦

C
r

r r
r ,   

 
which will have the following difference scheme: 

 
( ) ( ) ( ) ( ) ( )( )1 1 1k k k k k
i i ix F x v u+ + +=

rr r r r
, 1,2, ,i l= K , (10) 

 
( )

( ) [ ] ( ) ( )( )
1

1 1

1
0 ,

k
k k

k

x
u G x

u

+
+ +

+

⎡ ⎤
⋅ = =⎢ ⎥
⎢ ⎥⎣ ⎦

C
r

r r
r ,  (11) 

 
here ( ) ( ) ( ) ( )1 1 . 2 . .; ; ;T T T T

lF F F F⎡ ⎤= ⎣ ⎦
r r

K . 

Generally in nonlinear case in order to solve 
nonlinear equations (10) respectively to variables ixr  
it is necessary to use some iteration procedures at 
each step. That fact makes a process of equations 
integration more complicated, but possibilities to 
parallelize computing process are the same as in 
linear case. Therefore, realization of the parallel 
algorithm can be carried out for nonlinear system of 
differential equations [4]. 

A block scheme of algorithm is shown in the 
Fig. 2. 

 
4. EFFIICIENCY OF PARALLEL 

ALGORITHM 
Numerical effectiveness 

 
0

1
=num

TE
T

    

 
and acceleration 

 
1=
S

TR
T

    

 
depend on TS (run time of parallel algorithm by 
computer with S processors), T1 (run time of parallel 
algorithm by system with one processor) and T0 (run 
time of series algorithm without considering of 
parallelism). Evidently that it is enough to define 
these time characteristics for one step of integration. 
In general they depend on number of steps of 
integration, and, hence, on dynamic properties of the 
whole scheme and separate subsystems. 

Let us consider run time of series algorithm 
during one step of integration as complexity of 
factorization of a matrix with dimension n×n 

 

( )2 3
0 0 1 2 3( )T O n C a a n a n a n= = + + + .  

 
If subsystems will have approximately the same 

size equal to rounded integer nl = n/l then run time 
of the parallel algorithm with one processor is  

 
[ ]1 ( ) ( 1)j l m aT N lO n mnt m n t= + + − , 

  
 

where Nj is number of iterations relatively to 
variables of coupling, m is number of coupling 
variables ur , tm and ta are execution times of 
multiplication and addition. Conducted calculations 
have shown that it is enough to carry out the one 
iteration if the iteration process is convergent. 
Taking into account a complexity of factorization of 
the matrix that depends on its size in some program 
environment a numerical effectiveness of parallel 
algorithm was evaluated: 

 
( )

( ) ( 1)num
l m a

O nE
lO n mnt m n t

=
+ + −

.   

 
During running this task on given computer, the 

following coefficients were obtained: C=0.178 ms, 
a0=–1, a1=1.44, a2=–0.182, a3=0.00842. Time 
intervals needed to perform addition and subtraction 
operations are approximately the same and are equal 
ta=tm=86.8 ns. Dependence of numerical 
effectiveness on number of subsystems and task 
dimension is shown in the fig. 3. 
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Fig. 3. Dependence of numerical effectiveness Enum on 

number of subsystems l for one step 

 

 
 

5. EXAMPLES 
Example 1. 
A set of equations of the fourth order is 

decomposed to two subsystems of the second order 
[1]. 

Simulation of transient process of the whole 
system 

begin

( )1
dx x v
dt

= F
r r r

( ), ,i
i i

dx x v u
dt

= F
r r r r r

0K =

.  .  .( ) ( )1
1 1

Kx + = ⋅Fr ( ) ( )1
2 2

Kx + = ⋅Fr ( ) ( )1 1K K
l lF x+ +=
r

( ) ( )1K Ku x+ = Φ
r r

 . . .

1K K= + maxK K=

end

yes

no

 
Fig. 2. Block-scheme of computing algorithm
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is shown in fig. 4. 
 

 
Fig. 4. Time chart of variables of the whole system 

The same circuit decomposed on two subcircuits, 
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with additional variables of coupling 
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calculated according to presented algorithm (fig. 5). 
 

 
Fig. 5. Time chart of variables of two subsystems 

Example 2. 
A set of equations of the fourth order is 

decomposed to two subsystems of the second order. 
Simulation of transient process of the whole 

system 
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is shown in fig. 6. 
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Fig. 6. Time chart of variables of the whole system 

The same circuit decomposed on two subcircuits, 
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with additional variables of coupling 
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calculated according to presented algorithm (fig. 7). 
 

 
Fig. 7. Time chart of variables of two subsystems 

Presented example confirms conclusion that 
transient process in decomposed system is simulated 

with lower number of steps of integration, and 
therefore more effectively. 

 
6. CONCLUSIONS 

As a result of presented research it is possible to 
say that the methods of analysis which makes 
possible to consider dynamic features of subsystems 
are most important for scientists and engineers. 
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