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Abstract: An approach to detect sharp changes in economical systems was developed in this paper. We will give brief 
introduction in current methods of prediction of nonlinear and chaotic time-series and give definition of local Lyapunov 
exponents (LLE). Then author’s approach will be described. Also some numerical results and discussions will be given. 
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1. INTRODUCTION 
The problem of forecasting in economics has 

wide range of sources in literature, which proposes 
variety of methods. But there are many difficulties 
arise, when one want to apply any method to real-
data analysis.  

There are some issues, which would be taken in 
account, when one wants to apply any method to 
real economical data: 

1. Any economical process driving by many of 
deterministic and stochastic forces and strictly 
deterministic so as strictly probabilistic approach 
is irrelevant. 
2. Underlying dynamics is completely unknown 
in most cases. 
3. Receiving the good data for forecasting is a 
big problem – sometimes only short noisy time-
series of a few aggregate variables. 
4. Economical processes are intrinsically non-
stationary, and therefore we must be very careful 
with interpretation of our results.  
Last point is especially important and if we don’t 

take it in account then mistake can occurs. Changes 
in economical environment occur every day – some 
of them is very sharp and unpredictable. All 
forecasts of future based on past history, but if 
dramatic change occurs in dynamics – our forecast 
would be incorrect at least. What we can do with 
this? 

Remainder of this paper organized as follows. In 
Section 2 we give some introduction in prediction 

based on nonlinear dynamics, definition of local 
Lyapunov exponents, describe implications of 
Takens’ theorem. In Section 3 author describe his 
approach, give parameters for identification of sharp 
changes and some points for their prediction. In 
Section 4 some numerical results and discussion are 
given. 
 

2. PRELIMINARIES 
A phenomenon of chaotic behavior occurs in 

many fields of experimental science. Chaotic 
dynamics has nonlinear components and 
characterized by sensitivity to initial conditions that 
lead to random-like behavior of time-series [1]. 
Issue about nature of economical cycles is not clear 
today yet. It is open problem whether is chaos in 
economics or all fluctuations can be described by 
random-walk model (see, for example [2], [3])?  

One of the widely used tests for chaos is 
determination of largest Lyapunov exponents [1].   

Lyapunov exponents referred as mean effective 
rate of divergence (convergence) of nearby 
trajectories along different directions. Consider 
discrete (continuous) n-dimensional system: 

 
)(1 kk F xx =+       ))(( xx F=&                        (1) 

 
Sphere in the phase space evolving in n-

dimensional ellipsoid.  Lyapunov exponents could 
be expressed: 
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where  0

iε - projection of initial perturbation on 
the i-th principal axis of ellipsoid,  t

i
∆ε - projection of 

perturbation on the i-th principal axis of ellipsoid 
after time t∆ (which could be discrete or continuous) 
[4]. 

Also Lyapunov exponents might be considered as 
singular values of linear propagator )( k

t x∆J : 
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where J  - Jacobian matrix of (1) [5], [6]. First 

(largest) Lyapunov exponent most important of them 
because it determinate dynamical properties of 
system. In particular, positive largest Lyapunov 
exponent imply chaotic behavior.  

There are many algorithms for determination of 
Lyapunov exponents, but if we deal with real-life 
data then we must reconstruct unknown dynamics 
from observations. One of the points to decide this 
problem is Takens’ theorem.  

Consider discrete system (1) and time-series of 
observation: 

 
nnn wgy += )(x                            (4) 

 
where )(⋅g - scalar-valued measurement function, 

nw - additive noise.  
Consider time-delayed reconstruction of  (4): 
 

[ ]TDnnn
R
k yyy ττ )1(,...,, −−−=y                     (5) 

 
where τ - time lag, D - embedding dimension. 
It was proved that in condition that time-series of  

(4) noise-free and has infinite length than with 
12 +≥ dD , where d is fractal dimension of original 

attractor, reconstruction (5) of system has the same 
geometrical structure that of original system with 
any τ [7].  

But real data has finite length and precision, and 
therefore value of lag is very important too. 

There are many methods for choosing τ and D . 
We will be use for determination τ  the first 
minimum of mutual information, which is: 
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where ),( τ+kk yyP - conditional probability of 
value τ+ky at time τ+k  in condition of value ky at 
time k , )(),( τ+kk yPyP - corresponding marginal 
probabilities [8]. 

For determination of embedding dimension we 
will be use false nearest neighbours method, which 
are consist of following steps [9]. 

1.) For every embedding dimension from 2 to 
some upper limit one build reconstructed 
time-series. 

2.) For every point of reconstructed series one 
find nearest another point, which are called 
nearest neighbour. 

3.) It is necessary to find 
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where R

jy - the nearest neighbour for R
iy . 

4.) If  ci RR > than this pair of points is false 
nearest neighbours, where cR - some 
constant. 

5.) We may choose embedding dimension for 
which rate of false nearest neighbours less 
than some ε . 

Author consider 5.1=cR and 02.0=ε .    
Nowadays, there two main approaches for 

estimating Lyapunov exponents from observed data. 
First approach based on estimation divergence rate 
through principal axis of expansion [10] by formula 
(2), and second – on approximation of tangent map 
[5] and estimation singular values of (3). One could 
apply each of them after approximating of 
underlying dynamics by any model and neural nets – 
one of most popular methods, and it was applied by 
many authors for estimating of Lyapunov exponents 
within either first approach [11] or second [12]. 

Also, it is necessary to stress, that Lyapunov 
exponents in (2) and (3) has an infinite limits. These 
exponents are the same for every point and invariant, 
but it is impossible to calculate infinite limit indeed. 
Therefore, notion of local Lyapunov exponents 
appear. The n-step ahead local Lyapunov exponent 
is 
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That is, we have finite number t∆  instead of 

infinite limit. Local Lyapunov exponents are not 
invariant, but they can be applied as a measure of 
heterogeneity of system [5], [6], [12]. 
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In this paper, author attempt to apply local 
Lyapunov exponents for identification of sharp 
changes. 

 
3. IDENTIFICATION OF SHARP 

CHANGES 
Sharp sudden changes used to occur in 

economics sufficiently frequently. Saying by words 
of dynamics, F  in system (1) change in some way, 
and dynamical properties of  (1) change too. On the 
other hand, from practical point of view, these 
changes are notable, if we can observe sufficient 
increasing or decreasing of some rate. So we can 
outline some points about sharp changes: 

1.) They caused by some switch in underlying 
dynamics, which, in turn, caused by some 
fluctuations in the environment. 

2.) They manifest themselves in observed data 
by variations of means, variance, mean 
Fourier frequency etc. 

3.) Sharpness implies unpredictability. 
Third point is very important for forecasting. All 

forecasts imply delivering of information about 
future from past data. And if underlying dynamics 
change drastically, then our forecast fate on failure. 
Therefore, it is very important detect point of these 
changes, in order to avoid the fault in forecasts.  

For identification such changes author propose 

using of neural networks to detect periods of 
unpredictability in time-series. For solution of this 
problem following algorithm was applied: 

1.) Width of moving window b fixed. 
2.) Reconstructed vectors (5) created for every 

piece of time-series of length b  in 
accordance with above-mentioned 
procedures for finding of τ and D . 

3.) Multi-layer network with D  input neurons, 
sufficient number of hidden neurons and 
single output trained for prediction of next 
value of series for every piece. 

4.) Network simulated by one step-prediction n  
times and mean absolute error )(iE of 
prediction estimated, where i - number of 
piece.   

5.) Looking to sufficiently big value of )(iE , 
one could identify point of unpredictability 

bi + . (See Fig. 1). 
The natural way to predict manifestation of sharp 

changes such as jumps, sudden up-and-downs is the 
early detection of system changes. The objective of 
this paper  
 

Fig. 1 – Method of moving window for  identification of sharp changes. 
 

is to investigate possibility of such detection by 
tracking of first local Lyapunov exponent.  

The following algorithm used for the estimation 
of local Lyapunov exponent[11]. 

1.) Reconstructed vectors (5) created for time-
series of length b  in accordance with above-
mentioned procedures for finding of τ and 
D . 

t

x(t)

b b
1-st window i-th window

b+i-th point

actual value predicted value



Dmitry Malyuk, Georgy Boyarintsev / Computing, 2004, Vol. 3, Issue 3, 147-152 
 

 150 

2.) Multi-layer network with D  input neurons, 
sufficient number of hidden neurons and 
single output trained for prediction of next 
value of series for every piece. 

3.) At k - th point small perturbation ( 810−≈ ) 
created. 

4.) Perturbed and unperturbed series simulated 
by one-step prediction t∆  times and 
Euclidean distance between both of them 

tiid ∆= ,...,1),( estimated. 
5.) Plot ))(log( id  vs. i created and slope of least-

square fitted line for it would be estimator of 
t

k
∆λ . 

Two approaches for our investigation would be 
used. First, we would create network and train it for 
the whole time-series (refer it WS – whole series). 
Second, we would create separate network for each 
window (refer it MW – moving window). 

 
4. RESULTS AND DISCUSSIONS. 

Author investigate three time-series from US 
industrial volumes of shipment 
(www.economagic.com): 

1.) aircraft industry; 
2.) information technologies; 
3.) motor vehicles (Fig. 2).    
Multi-layer neural network was trained in 

accordance to above-mentioned algorithm to 
estimate )(iE 100 times and mean value of 
prediction error was estimated (Fig. 3). 

Then, multi-layer network was trained to estimate 
local Lyapunov exponents in accordance to above-
mentioned algorithm 100 times.  Mean value in each 
case was about 0.043 and fluctuate with time very 
weak. But standard deviation changed noticeably 
(Fig. 4).  

 
 

Fig. 2 – Original time-series (I – aircraft industry; 
II – information technologies; III – motor vehicles). 

 

 
 

Fig. 3 – Mean absolute error for time-series. 

For estimation relation between these values, we 
would use cross-correlation function, which is: 

 
Fig. 4 – Fluctuation of standard deviation upon 100 

realizations of LLE for first series.  

 
Fig. 5 – Cross-correlation functions between standard 
deviation of LLE and mean value of prediction error. 
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where )(⋅σ -standard deviation, ),cov( ⋅⋅ - 
covariation between two realizations, which is 
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where yx,  - mean values. 
Correlation between standard deviation of local 

Lyapunov exponents and mean prediction error with 
shift from –35 to +35 was estimated (Fig 5). 

As we can see, largest values of correlation occur 
in left half of plot, i.e. changes in local Lyapunov 
exponents anticipate changes in observations. 

Analogously, cross-correlation functions were 
estimated for moving window approach. Neural 
network for each window trained and local 
Lyapunov exponents was estimated. In a first case, 
we estimate mean value for each window (Fig. 6). 
Then, mean Fourier frequency was estimated (Fig. 
7).  

Fig.6 - Cross-correlation functions between mean 
value of LLE (moving window) and mean prediction 

error. 

Fig. 7 - Cross-correlation functions between mean 
Fourier frequency of LLE (moving window) and mean 

prediction error. 

As we can see, in first case sufficient value 
occurs for prediction 20-30 dots before, i. e. 1.5-2.5 
years. It is out of reality for economical systems, and 
rather can be explained by another version than lag 
between systems changes and changes in 
observations. 

Conversely, in case of mean Fourier frequency, 
we have sufficient large (0.8-0.9) mean of 
correlation for short-time prediction.  

Thus, estimation of mean Fourier frequency of 
local Lyapunov exponents can help us in prediction 
and early detection of sharp changes. 

There is some prospective of further research in 
this area. At first, early detection of changes in 
economics gives us insight in grounds of these 
changes. Then, exact detection of points of changes 
let us to establish cause effect relations between 
different indicators. And finally, notion of stability 
in relation to sharp changes can be established.  

We would refer as stability in relation to sharp 
changes the property of system to keep its 
characteristics after sharp changes in environment. If 
we would have appropriate measures for estimation 
of intensity of this changes, then we could estimate 
rate of stability. 

 
5. CONCLUSIONS 

An approach to detect sharp changes was 
developed in this paper. At first, some specialties of 
prediction of economical time-series were pointed. 
Then, some introduction in method of nonlinear 
dynamics was given, with explanation of local 
Lyapunov exponents, Takens’ theorem and 
describing of algorithms, which we need for further 
researches. Then, author’s approach was developed 
and some numerical results were given. 
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