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Abstract: In this paper continuous-time model to discrete-time symbolic model transformation for an algorithmization 
of the DC-DC buck converter dynamics investigation process is derived. The proposed concept of symbolic index allows 
evaluate quantitatively the symbolic model change and makes possible the “nonsmooth” bifurcations revealing. The 
numerical simulation that had been carried out verifies utilizing efficiency of symbolic modeling both as for possible 
bifurcation pattern forecasting, as for bifurcation type identification. 
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1. INTRODUCTION 
Application and further development of the pulse 

energy conversion systems (PECS) is one of the 
main trends of energy generation, conversion and 
distribution process efficiency increasing. Switching 
controller is “the heart” of any PECS. In most 
practical cases the required stable operating regime 
of switching controller is an operation at the 
fundamental frequency (period-1 operation) [1, 2]. 
The fundamental operation refers to an operating 
regime, when the output voltage and current 
waveforms repeat at the same rate as the driving 
clock. 

In this paper the DC-DC buck converter model 
based on symbolic dynamics (symbolic models) is 
considered. This converter refers to the class of 
dynamical systems with discontinuous nonlinearities 
[3]. Strong nonlinearity, as a result of the switching 
action [4], and a wide range of operating parameter 
values (for instance, the controller feedback gain 
and/or load impedance) changing are the basic 
properties of the PECS. These properties make 
possible an appearance of undesirable dynamic 
modes during switching controller operation, 
resulting in essential degradation of the output 
energy quality. Any of subharmonic, quasi-periodic 

and chaotic modes is regarded as undesirable [2, 5] 
and should be avoided at the design stage. An 
importance of undesirable modes elimination, in 
turn, gives rise to a problem of the buck converter 
dynamics simulation for the purpose of emergency 
situations forecasting, detection and insulation [6]. 

Since dynamics investigation process is rich in 
awkwardness of the required mathematical 
operations, a desire to simplify this research is 
inherent (especially for practitioners). One can 
realize it with the help of dynamic mode symbolic 
description [3, 7, 8]. Symbolic dynamics is a 
powerful mathematical tool that describes system 
evolution by means of symbol set and lets to 
formalize for further algorithmization and simplify 
significantly for understanding dynamics 
investigation process [3, 9]. 

Generally speaking, there are two bifurcation 
types in the system dynamics: “smooth” (for 
instance, period doubling bifurcation, saddle-node 
and Hopf bifurcation, etc.) [4, 10, 11] and 
“nonsmooth” (for instance, transition of period-1 to 
chaos, transition of period-2 to period-3, etc.) [4, 10, 
12, 13]. 

In this paper continuous-time model to discrete-
time symbolic model transformation had been 
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realized for an algorithmization of the dynamics 
investigation process. The introduced concept of the 
symbolic index (based on symbolic dynamics) is 
proposed to apply for quantitative estimation of the 
symbolic model change and for the efficient 
identification of “nonsmooth” bifurcations. 

 
2. MATHEMATICAL MODEL 

Equivalent scheme of the buck converter is 
shown in Fig. 1. 

Mathematical model of the power unit of the 
buck converter, corresponding to the equivalent 
scheme (Fig. 1), has the form 
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is the inductor current; u(γ) is the capacitor voltage; 
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the pulse-width modulation (PWM) clock instant; 
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square matrices and column vector, determined by 
element values of the equivalent scheme in Fig.1. 

 

 
Fig. 1 - Equivalent circuit of the buck converter. 

Controller realizes trailing edge pulse-width 
modulation and proportional control of the output 
voltage. The pulse function KF0 in model (1) is 
calculated according to the algorithm 
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where γ0 is the switch moment, corresponding to 
transition of К0 switch to non-conducting state and 
diode VD to conducting state. 

Value ]1,0[0 ∈γ  is evaluated as the least root of 
the equation, which determines a surface where the 
right-hand part of (1) has discontinuities 

 

,0
))(()),((

0

0

=⋅−

−⋅⋅−⋅=

γ

γβαγγζ

U
Uref XCX 0  (3) 

 
where α  is the proportional feedback gain; β  is the 
gain of the output voltage sensor; refU  is the 
reference voltage; U0 is the sawtooth voltage 
amplitude; С0 is the row vector which sets up a 
correspondence between X(γ) and the voltage value 
of the controller input (uout). 

The pulse function KF1 in model (1) is calculated 
according to the algorithm 
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where γ1 is the switch moment, corresponding to 
transition of diode VD to non-conducting state. 

Value ]1,[ 01 γγ ∈  is evaluated as the least root of 
the equation 
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3. ALGORITHMIZATION OF THE BUCK 

CONVERTER DYNAMICS 
INVESTIGATION PROCESS 

For the further development of the 
algorithmization procedure of the buck converter 
dynamics investigation process it is necessary to 
introduce some definitions for the clarity of 
discussion. 

Let G to be considered a state space of the buck 
converter mathematical model (1-5). There are three 
G1, G2, G3 domains in G space that can be 
determined according to the values of pulse 
functions KF0, KF1. S1, S2, S3 surfaces are the 
boundaries of the G1, G2, G3 domains. S2 surface is 
divided into two components S2(1) and S2(2) 
additionally (for the detailed research of the state 
space geometrical structure see [7]). 

Definition: A section of the trajectory that is 
placed between two surfaces, on which system 
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structure does not change, is called the simplest 
section [7, 8]. 

Definition: The simplest trajectory is a 
sequential combination of a few simplest sections, 
the start and end points of which belong to neighbor 
S2 surfaces [7, 8]. 

The possible eleven types of simplest trajectories 
correspond to the buck converter model with PWM 
(1-5). These trajectories are summarized in Table 1. 

The sequential notation of the indices of simplest 
sections, that compose the simplest trajectory, is 
applied for notation of the simplest trajectory 
symbolic model [3, 7, 8]. These indices are 
separated by dot. 

Definition: The notation (a1, a2, … ak), where a1, 
a2, … ak — the numbers of trajectories (see Table 1) 
that are evaluated with usage of the simplest 
trajectory identification algorithm [8], k — the 
dynamic mode periodicity, is considered to be the 
symbolic model of the buck converter dynamic 
mode. 

 
Table 1 - Simplest trajectories of the buck converter 

model 

Number Trajectory γ0 γ1 
1 2(1)2(1) 1 0 
2 2(1)1.12(1) z1 1- z1 
3 2(1)1.12(2) z1 1- z1 
4 2(1)1.13.32(1) z1 z2 
5 2(1)1.13.33 z1 z2 
6 2(2)2(2) 0 1 
7 2(2)2(1) 0 1 
8 2(2)3.32(1) 0 z2 
9 2(2)3.33 0 z2 

10 32(1) 0 0 
11 33 0 0 

Here z1, z2 — arbitrary real values within the 
interval [0;1]. 

Now it is possible to discuss the algorithmization 
procedure directly.  

The buck converter mathematical model (1) 
represents by itself a system of ordinary differential 
equations of second order with the discontinuous 
right-hand part. The time in this model is considered 
to be the continuous value, and that is why such 
models are called the flows in nonlinear dynamics. 

The investigation of these systems, as mentioned 
above, is accompanied with significant 
computational difficulties because of the essential 
nonlinearity presence. Therefore the discrete-time 
models, so called the mappings, are utilized for this 
class of systems investigation. In most practical 
cases the Poincaré stroboscopic mapping is applied 
and considered to be an exact investigation method 
of highly nonlinear systems 

 
)( 1nn XFX −= ,  (6) 

 
where Xn-1 and Xn are the state variable vectors at 
time moments tn-1=(n-1)@T and tn=n@T, respectively; 
Т is the PWM clock instant; n∈ù is the number of 
PWM clock instant. 

The results of discrete-time modeling are utilized 
as the input data of simplest trajectory identification 
algorithm [8] for dynamic mode symbolic models 
composition. 

The noted previously algorithmization procedure 
of the buck converter dynamics investigation is 
shown in Fig. 2. 

 

 
Fig. 2 - The general scheme of the flow to symbolic model transformation algorithm.
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4. SYMBOLIC INDEX UTILIZING FOR 
THE BIFURCATION DETECTION AND 

THEIR TYPE IDENTIFICATION 
The specific symbolic model (a1, a2, … an) (see 

Section 3) corresponds to mapping point motion in 
the phase space and maps the simplest trajectory 
sequence that passed by mapping point. Border 
collision bifurcations occur, when the number of 
simplest sections (from which the simplest trajectory 
consists) that mapping point passes, changes [3]. 
Therefore, symbolic model changes and this change 
can be estimated quantitatively, when border 
collision bifurcation occurs. The quantitative 
estimation of this change can be calculated with the 
help of symbolic index. 

Definition: Symbolic index is an average 
simplest trajectory number in the considered 
parameter space interval (or at the point of the 
parameter space), which gives a quantitative 
estimation of simplest trajectory contribution to 
system dynamics and is evaluated as 
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where Ni is the trajectory number at the each clock 
instant (Table 1); number of clock instants K is 
calculated according to the algorithm 
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where 1α , 2α  are the lower and upper borders of 
considered parameter space interval [ 1α ; 2α ]∈Р; P 
is the model (1) parameter space; α∆  is the step of 
parameter α changing; 1K  = const is the clock 
instant number, calculated for each parameter α 
value. 

The theorem below may be stated according to 
previously mentioned facts. 

Theorem: Let α ∈ Р (P is the parameter space), 
N-, N+, T-, T+ are symbolic indices and output 
waveform periods for εαα −= bif  and for 

εαα += bif  ( 0>∀ε ) respectively. Thus, if N-

≠ N+, then “nonsmooth” bifurcation had occurred 
at the point bifαα = , else, if N-=N+ and T-≠ T+, 
then “smooth” bifurcation had occurred. 

Topological structure of the phase space changes, 
when system undergoes border collision, and results 
in symbolic model, and, correspondingly, symbolic 

index change. Thus, symbolic index change implies 
border collision bifurcation. 

 
5. NUMERICAL SIMULATION 

The purpose of numerical simulation is an 
efficiency confirmation of the proposed algorithm 
and symbolic index concept application for the 
PECS dynamics investigation, in general, and for 
bifurcation type identification, in particular. 

The numerical simulations were carried out on 
the PWM voltage-controlled DC-DC buck converter 
with the proportional feedback gain. 

The values of the buck converter elements during 
simulation process were the following: R1 = 0,27 Ω; 
R2 = 0,18 Ω; R3 = 16,9 Ω; L = 8,9⋅10 -4 H; 
C = 1,7⋅10 -4 F; E = 24 V; β = 1/4; U0 = 6 V; 
Uref = 3 V; f = 8,63⋅10 3 Hz. The proportional 
feedback gain α was varied within the interval 
[0; 165]. 

The bifurcation diagram (Fig. 3) is divided into 3 
domains: А, В and С. The time diagrams in each 
domain are depicted in Figures 4, 5 and 6 
respectively. At the each point of the A domain the 
value of symbolic index is N = 2, the value of the 
output waveform period is T = 1; in the B domain 
the value of symbolic index is N = 2, the value of the 
output waveform period is T = 2; in the C domain 
the value of symbolic index is N = 3, the value of the 
output waveform period is T = 2. Thus, according to 
the theorem (see, for details, Section 4), at the point 

1bifαα =  the standard “smooth” period doubling 

bifurcation had occurred, and at the point 2bifαα =  
the “nonsmooth” border collision bifurcation had 
occurred. Changes of the output waveforms are 
demonstrated in the time diagrams (Figures 4, 5, 6): 
for instance, one can clearly see period doubling in 
Fig. 5 and appearance of the zero-current section (so 
called discontinuous conduction mode, DCM) in 
Fig. 6. 

There are the following quantities in the Fig. 3: γ0 
is the relative duration of К0 switch conducting state; 
α is the proportional feedback gain of the switching 
controller. 

 
Fig. 3 - Numerically simulated bifurcation diagram. 
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Fig. 4 - Numerically simulated time diagram in the A 
domain (period-1). 

 

 
 

Fig. 5 — Numerically simulated time diagram in the B 
domain (period-2). 

 

 
 

Fig. 6 - Numerically simulated time diagram in the C 
domain (period-2, DCM). 

 
 
 

6. CONCLUSION 
A significant interest rising to perspective 

methodology of the symbolic model composition 
and its utilizing for the essential nonlinear systems 
dynamics investigation has been observed over the 
past decade. 

Symbolic modeling looks to be the most 
promising as it offers the formalization and, thus, the 
automation of dynamics investigation process. 
Forecasting of undesirable phenomena appearance, 
which can lead to the emergency situations, and 
these phenomena elimination already at the design 
stage becomes possible. Moreover, symbolic 
modeling simplifies understanding of possible 
bifurcations general pattern and, in particular, the 
mechanism of bifurcation appearance. 

In this paper symbolic index concept that was 
introduced in the framework of above-mentioned 
methodology, is calculated on base of the developed 
flow to symbolic model transformation algorithm 
and lets to reveal efficiently the specific nonlinear 
phenomena, which are generic for “nonsmooth” 
systems only (so called “nonsmooth” bifurcations), 
with help of the quantitative estimation. 
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