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Abstract: Characteristics of impulse bursts in satellite images are analyzed and methods for burst removal are consid-
ered. Artificial compact burst model is proposed and test images are created. An advanced multipass algorithm for the 
detection and removal of compact bursts in the presence of both additive and multiplicative noise is proposed. The 
efficiency of the algorithm is evaluated quantitatively using the artificial test images and visually using the artificial test 
images and real radar and optical satellite images. It is shown through experiments that the proposed method removes 
impulse bursts efficiently while preserving information. 
 
Keywords: compact impulse bursts, impulse noise removal, robust filtering, satellite image processing 
 
 

1. INTRODUCTION 
Impulsive noise is one of the factors that degrade 

the quality and interpretation accuracy (especially 
automatic interpretation) of remote sensing (RS) 
images. Usually impulse bursts do not corrupt RS 
images due to hardware malfunction when the im-
ages are formed onboard the RS system carrier. In-
stead, the corruption happens during the data trans-
mission phase when the impulse noise (that can be 
intensive enough in some cases) occurs [1]. In most 
cases a radio-frequency line is used for the informa-
tion transferring. If the communication line is poor 
(i.e., the interference signals have power that is 
about the power of the broadcasting signal), impulse 
bursts can be observed on the transmitted images 
even through a digital line that uses noise-stable 
coding. However, the probability of the occurrence 
of a burst is much higher if an analog transmission 
line is used because such lines usually do not have 
any special means for the protection against the in-
terference of the parasite signal.  

An example of such situation is the old satellite 
image transmission standard, the so-called “auto-
matic picture transmission” (APT) mode. The reason 
for its wide use nowadays is that freely distributed 
images from various satellites such as NOAA, 
GEOSat, Meteosat, “SICH,” “Kosmos,” “Okean” 
etc. are transmitted using this standard. The resolu-
tion of such freely distributed images is lower than 
the one of commercially distributed or military pur-

pose RS images. The low complexity and cost of the 
reception devices and the great value of the RS-
information contained in such APT-mode transmit-
ted RS images make, however, them very attractive 
for consumers. Thus, hundreds if not thousands peo-
ple worldwide receive images from satellites in 
APT-mode and face the distortion of these images 
by impulse bursts [2].  

The main reason for the occurrence of bursts is 
the interference of frequency modulated carrying 
signal with the signals from other sources of emis-
sion. The APT-mode frequency band lies in a widely 
used range of frequencies. The central frequency of 
the APT-mode is about 137 MHz. Besides, the in-
fluence of the interference becomes more essential 
when the useful signal power is decreased. Such 
situation is observed when the reception point drifts 
with respect to the satellite to the reception zone 
border (during the communication session). This 
results in an increased probability of impulse distor-
tion in the top and bottom rows of the image. The 
rowwise transmission of images also determines the 
typical horizontal orientation of the compact impulse 
bursts (CIB) (see Fig.1a). 

Reliable elimination of CIBs by means of stan-
dard robust filters can be achieved only by using 
sliding windows that are large enough. However, 
e.g., the 5x5 median filter leads to significant smear-
ing of useful information, as can be seen in Fig.1c. 
The center weighted median filter (CWMF) [3] pre-
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serves details better than the median but, unfortu-
nately, it can not remove impulse bursts as effi-
ciently. This can clearly be seen in Fig.1b, which 
shows the image that was obtained using the center 
weight 3.  

Some known techniques adapted for the removal 
of impulse bursts are based on the following basic 
approach: to replace only those pixels that are classi-
fied as bursts. That is, the filtering procedure can be 
split into two practically independent operations: the 
detection of the pixels distorted by bursts and the 
calculation of the restored values for the pixels clas-
sified as bursts. However, the known techniques for 
removing intensive impulsive noise are designed for 
noise models that are too simple for the considered 
case [4, 5]. For example, for the restoration of the 
distorted pixels, standard robust order statistic filters 
(mostly the median filter) are used. This leads to 
errors in the cases when more than half of the pixels 
inside the sliding window are corrupted by bursts.  

The noise model closest to CIBs can be found 
from the paper of Abreu and Mitra [6] concerning 
streak removal. The authors modify the method ear-
lier proposed in [4] and suppose that if more than 
30% of the pixels in a row are classified as impulses, 
then the entire row is considered to be a streak and 
the row is subject to replacement. However, al-
though a CIB can corrupt the entire row this is not 
typical. More often a CIB corrupts tens of consecu-
tive pixels in a row (see Fig. 1a). Thus, applying the 
method [6] for the CIB removal results in a consid-
erable distortion for a large number of pixels in sat-
ellite image rows that are in fact not corrupted by 
bursts. Another difficulty for the method in [6] is the 
restoration of distorted pixels when several consecu-
tive rows are corrupted by CIBs (see Fig.1d). In 
addition, besides CIBs, the satellite images also con-
tain multiplicative and/or additive noise, which 
causes problems for the techniques [4-6].     

  
(a) (b)

  
(c) (d)

Fig.1 – Visual results of CIB removal in optical satellite image (a) by: (b) the CWMF 3х3 with the central element
weight 3, (c) standard median filter 5х5, (d) the special method proposed by Abreu, Mitra et al.  

In our paper [2], the possibility of using training-
based soft morphological filters for the CIB removal 
was studied. Although practically full elimination of 
CIBs with simultaneous preservation of uncorrupted 
information was achieved, the method is computa-
tionally quite heavy to use. Especially, the search for 

suitable soft morphological filters may take some 
time. Hence, it is still desirable to study the com-
promise between the degree of information distor-
tion (especially for texture and small size objects 
with horizontal orientation) and the degree of CIB 
removal. 
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A multistage method for the CIB detection and 
removal in the presence of both additive and multi-
plicative noise was proposed in our paper [7]. This 
approach eliminates CIBs rather reliably and at the 
same time appropriately preserves information con-
tained in the images. Its drawback is slight misclas-
sification of small size objects as CIBs. To get rid of 
this drawback the modified version of the method 
[7] is proposed below. It consists of several stages 
and uses spatial features permitting to distinguish 
CIBs and horizontally oriented small size objects. 
 
2. COMPACT IMPULSE BURST MODEL  

To get an idea what the impulse bursts are, let us 
first analyze satellite images that were received by 
the Kalmykov Center of Radiophysical Sensing of 
Earth (Kharkov, Ukraine) via the APT telecommu-
nication channel from Ukrainian satellite “Sich-1.” 
A part of an optical image is presented in Fig.1a and 
a fragment of a radar image in Fig.2. As can be seen, 
several fragments in many rows are corrupted by 
impulse bursts, and the lengths of such fragments are 
rather different.  

Moreover, sometimes such fragments occur in 
two consecutive rows. It can also be observed that in 
some pixels of the considered fragments, the values 
are maximal (i.e., 255 in the 8-bit image representa-
tion used) while some pixel values differ from 255 
but still remain “impulsive” with respect to the val-
ues that can be predicted for the satellite images 
from their local analysis.  

 

Fig.2 –Real radar satellite image with CIBs  
A detailed study of the burst properties for many 

real images has brought us to the following main 
conclusions [2]. First, the percentage of pixels cor-
rupted by impulse bursts can reach up to 11%. By 
estimating the statistical characteristics of the bursts, 
we found that the mean of the burst fragments varied 

from 160 to 190 with cut-off effects observed for 
bright burst pixels. The bursts contained not only 
stochastic noise component but also some kind of 
quasi-sinusoidal component. These properties can 
clearly be seen in Fig.3 where one rowwise section 
of the optical satellite image in Fig.1a is given. 

Fig.3 – Neighboring rows of the optical image shown in
Fig.1,a:  row 169 (dashed) that is highly corrupted by

bursts; row 170 (solid) that is not corrupted.
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The fluctuative noise that corrupts the pixels not 
corrupted by CIBs leads to additional difficulty for 
the burst elimination. Instead of weak additive noise 
typical for optical images (Fig.1a), multiplicative 
noise is present in the real radar image (Fig.2). The 
probability density function for this noise is Gaus-
sian with unit mean and relative variance that can in 
our cases be as high as 0.05. 

All aforementioned properties of CIBs and fluc-
tuative noise have been taken into account when 
generating the noise model for the test images used 
for training soft morphological filters with the aim 
of CIB removal in [2]. The image/noise model given 
here is a slightly modified version of the one given 
in our earlier paper [2]. Below we use it for com-
parison purposes to evaluate the performance of the 
considered methods.  

The model is based on Markov stochastic process 
with two states. The states are used to determine 
which samples belong to impulse bursts. The transi-
tion probability from “no-burst-state” to “burst-
state” is impP 10→ , and the transition probability from 
“burst-state” to “no-burst-state” is outP 01→ . 

If a sample does not belong to an impulse burst 
(i.e., the process is in “no-burst-state”), then the 
sample is corrupted by the aforementioned fluc-
tuative noise as  

 
 n)j,i(fu)j,i(g +⋅= , (1) 
 

where )j,i(g  and )j,i(f  are the pixels of the cor-
rupted and the original image, respectively, u  is the 
multiplicative noise component with unit mean and 
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relative variance σµ
2, and n  is the additive noise 

component with zero mean and variance σn
2. 

On the other hand, if a sample belongs to a CIB 
(i.e., the process is in “burst-state”), then the cor-
rupted sample value is obtained using the following 
formula (the image is given as a 1-D array since in 
real situation the image is corrupted by bursts when 
it is transferred row by row) 
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where )(),( jfjg LL  are the values of the corrupted 
and original images (in the one-dimensional array), 
respectively, b

e
b
s k,k  are the one-dimensional array 

indices of the first and the last pixel of the CIB, re-
spectively, bb ,ϖβ  are the amplitude and the fre-
quency of the harmonic component of the CIB, bϕ  
denotes the phase of the harmonic component, jj ,ξζ  
are the Gaussian multiplicative and additive compo-
nents of the CIB (with unit and zero means and vari-
ances σµi

2, σni
2), respectively, and bγ  is the pedestal 

(constant value) added to the harmonic component. 
Rounding is to the nearest non-negative integer less 
than or equal to 255. 

As the aim is to provide a smooth change in the 
harmonic component values at the beginning and at 
the end of each separate CIB, the starting phase 
value is 2πϕ −=b . The values bb ,ϖβ  are constant 
during one separate CIB, and they are generated as 
uniformly distributed random values from the inter-
vals ];[ maxmin ββ  and ];[ maxmin ϖϖ , respectively, for 
different CIBs. The pedestal value bγ  is also con-
stant for all pixels within one CIB. Its value is 

)()( minmaxminbcb p ββββγ −−+=  where cp  is from 
0.4 to 1. Although bβ , bϖ , and bγ  are constant for 
all values in one CIB, new values for bβ , bϖ , and 

bγ  are generated if the burst is long enough, that is, 

if b
b
skj ϖπ2 +> . The values jj ,ξζ  vary from 

pixel to pixel. 
Fig.4 shows a noise free test image containing 

different classes of information: large size homoge-
neous objects and small size objects with different 
shapes and contrasts to background as well as tex-
tural regions. Fig.5 gives the image in Fig.4 cor-
rupted by the proposed noise model with CIBs and 
multiplicative fluctuative noise typical for satellite 
side-look aperture radar (SLAR) images. The pa-
rameter values used equal to those estimated from 
the real images. The multiplicative noise variance 
was σµ

2=0.02 and the transition probabilities were 

impP 10→ =0.0007 and outP 01→ =0.011 (σn
2=0). As the re-

sult, the probability that a pixel belongs to a burst 
was about 0.05. The parameters for the CIBs were 
σµi

2=0.37, σni
2=400, cp =0.5, minβ =1, maxβ =180, 

minϖ =0.02, and maxϖ =0.85. As can be seen, the arti-
ficial noise in the corrupted test image is very close 
to the noise in the real images given in Fig.1a and 
Fig.2.  

The artificial test image pair presented in Figures 
4 and 5 gives us an opportunity to evaluate quantita-
tively the performance of different filtering methods. 
As the error criterion between the filtered and the 
noise-free test image, it is possible to use any criteria 
that can be calculated using the filtered and noise-
free images as parameters. In this paper we have 
used the mean square error (MSE) and the peak sig-
nal-to-noise ratio  

 

 /MSE)(25510PSNR 2
10log= . (3) 

 

Fig.4 – The noise free test image  

Fig.5 – The test image presented in Fig.4 corrupted
accordingly to the proposed CIB noise model  
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The fact that our test image contains all informa-
tion classes that are typical for real remote sensing 
images ensures objectivity when estimating the fil-
tering quality. In addition, CIB-free real satellite 
remote sensing images were corrupted by artificial 
CIBs according to the proposed CIB model. The 
obtained test images also let us to estimate the prob-
ability of correct and false CIB detection for the 
considered algorithm 
 

3. PROPOSED APPROACH  
At the first stage of the proposed method, the or-

dered samples (for the given sliding window) are 
grouped so that the neighboring order statistics be-
long to the same group according to the 
2σ−criterion.  

More formally, the condition for any two 
neighboring order statistics belong to one group in 
the presence of a mixture of multiplicative and addi-
tive noise is the following. The (k+1)’th order statis-
tic x(k+1) (i.e., the element with the rank k+1) belongs 
to the group that includes the k’th order statistic x(k) 
(i.e., the element with the rank k) if the condition 

n)k()k()k( xxx σσ µ 221 +⋅≤−+  is satisfied, where σµ 

and σn are the standard deviations of the multiplica-
tive and additive noise, respectively.  

This condition is written in a general form and it 
assumes that for given image one knows a priori or 
pre-estimates the statistical characteristics of addi-
tive and/or multiplicative noise, i.e. the relative vari-
ance σµ

2 and the variance σn
2.  

Among the formed groups, two groups are espe-
cially important for the further analysis: the group 
which contains the central pixel (CP) of the window, 
and the dominant group (DG), that is, the group with 
the greatest number of elements among all formed 
groups. 

The necessity to minimize the false detection 
probability for the specified situations brought us to 
introduce additional parameters to the formula for 
the decision-making [7]. The new parameters con-
sider the estimation of the structural features of ob-
jects. The modified formula for the determination of 
a CIB in the central pixel is 
 

str
ij

D
ij

HT
ij

hmg
ij

MV
ij

map
ij

BS
ij

MMM

MMM

∧∧∧¬

∧¬∨∨=Ω
. (4) 

 
In the formula, MV

ijM  indicates whether the CP 
value exceeds the greatest possible value for a given 
image. The parameters HT

ijM  and D
ijM  indicate, re-

spectively, if the CP belongs to a semitone on the 
object border and if the size of the DG is sufficiently 

large when compared to the size of the group to 
which the CP belongs in order that the CP can be 
classified to belong to a CIB. The parameter hmg

ijM  is 
the indicator for the absence of heterogeneity inside 
the sliding window. It has the value “true” if all 
samples inside the window belong to one group after 
the 2σ-segmentation. The analytical expressions and 
more detailed description for the parameters MV

ijM , 
HT
ijM , hmg

ijM , and D
ijM  are given in [7].  

The introduced new parameters are the following. 
The parameter map

ijM  informs that in the “burst map” 
(if it is already generated) the CP already was classi-
fied as a CIB at earlier pass(es), but it could not be 
correctly replaced. Such map is initially obtained at 
the first pass and then, at consequent passes, it is 
corrected. Each next pass (iteration) gives additional 
information concerning whether or not the sliding 
window central pixel is corrupted by CIB and what 
other neighbor pixels correspond to CIB.  

The parameter str
ijM  indicates whether the struc-

tural features of the object to which the CP belongs 
are similar to the structural features of a CIB. The 
value of str

ijM  is determined by the expression 
 

( ) BO
ij

BN
ij

S
ij

HB
ij

vrt
ij

str
ij GGGGGM ¬∧∨∨∧¬= , (5) 
  

where vrt
ijG  is the indicator of the CP object covering 

the number of rows that exceeds the maximum pos-
sible number for present CIB,  HB

ijG  is the indicator 
of a one-row horizontal CIB,  S

ijG  is the indicator of 
mainly one-row horizontal CIB, BN

ijG  indicates if the 
CP has neighboring pixels that are corrupted by 
bursts, and BO

ijG  indicates whether the CP belongs to 
a bright (dark) point object or to some small size 
horizontal object.  

The formation of these low level structural indi-
cators is carried out (if necessary for the calculation 
of str

ijM ) using enough simple operations which, 
however, take into account a priori probability of 
burst in the CP that is determined with the help of 
“burst map”.  

Quantitative results obtained for the test image in 
Fig. 5 have shown that more than 80% corrupted by 
CIB have been correctly detected (the Abreu and 
Mitra's method produces only about 60% of correct 
detection but about 4 times larger amount of false 
detection). The advantage of the proposed method is 
that for pixels corrupted by CIBs that have not been 
correctly detected the noisy values usually only 
slightly differ from the corresponding pixel true 
values.   
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If the CP is corrupted by a CIB (i.e., when ΩBS is 
true), the value of the CP is replaced by the weighted 
average of the DG elements. The weights are formed 
so that the elements located spatially inside the 3x3 
neighborhood of the CP (and not classified as CIBs) 
have weight 2 and all other elements have weight 1.  

Table 1 shows some quantitative results of using 
well known robust rank order statistic (ROS) filters 
for processing the artificial test image (Fig.5). The 
performance of some of the studied filters is also 
illustrated visually in Fig.1. 

The best compromise between the detail preser-
vation and the removal of CIBs and multiplicative 
noise was obtained by the CWM-filter with the slid-
ing window size 3x5 (columns x rows) and the cen-
tral element weight 5. The sliding window 3x5 was 

preferable for the CIB removal also when soft mor-
phological filters were used [2]. 

Table 2, on the other hand, gives the quantitative 
results of processing the same artificial test image 
(Fig.5) by some specialized methods [2, 6]. Most of 
these methods assume a two-phase procedure for 
noise removal: the main stage (i.e., CIB removal 
only) and the post-processing stage intended for the 
suppression of residual fluctuative noise. The only 
exception is the soft morphological filter that was 
trained to remove both the CIBs and the fluctuative 
noise simultaneously. The other soft morphological 
filter used here was trained to remove only the CIBs. 
The rather intensive residual multiplicative noise 
was suppressed at the post-processing stage [2]. 

 

Table 1.  Quantitative results of filtering the test image by well known robust rank order statistic (ROS) filters. 
The test image was corrupted by artificial CIBs and multiplicative noise with σµ

2=0.02 (Fig.5). 

3 х 3  3 х 5  5 х 5 Filtering type 
MSE PSNR  MSE PSNR  MSE PSNR 

No filtering 745.5 19.4  745.5 19.4  745.5 19.4 
Median filter 242.9 24.3  283.9 23.6  331.1 22.9 

CWMF-3 216.9 24.7  237.5 24.4  283.0 23.6 
CWMF-5 431.0 21.8  202.4 25.1  255.0 24.1 

O
rd

in
ar

y 
R

O
S-

fil
te

rs
 

Wilcoxon filter 357.8 22.6  336.5 22.9  324.1 22.8 
 

Table 2.  Quantitative results of the CIB removal by known methods and by the proposed algorithm with post-
processing stage. The test image was corrupted by artificial CIBs and multiplicative noise with σµ

2=0.02 (Fig.5). 

Post-processing 
No processing Lee filter (5x5) DCT-filter (8x8) CIB removing process 
MSE PSNR MSE PSNR MSE PSNR 

Abreu et al. [6] streak removing method with the 
thresholds  T1=15; T2=30; T3=50; T4=80  392.0 22.2 228.7 24.5 202.2 25.1 

Trained to remove both CIBs and  
Multiplicative noise 190.0 25.4 Not used 

So
ft 

m
or

ph
. 

fil
te

rin
g 

Trained to remove CIBs only 
 272.8 23.8 164.1 26.0 140.3 26.7 

CIB removal by the proposed method 325.1 23.0 135.7 26.8 114.3 27.6 
 

One of the most suitable specialized methods for 
the CIB removal proposed by Abreu et al. [6] also 
does not suppress fluctuative noise and needs to be 
followed by post-processing at the multiplicative 
noise suppressing stage. 

For multiplicative noise suppression we chose 
two detail preserving filters: the Lee filter [8] suit-
able for speckle removal and a modification of the 
DCT-filter designed to remove multiplicative noise 
[9]. As can be seen from Table 2, the 8x8 DCT-filter 
suppresses multiplicative noise better than the Lee 
filter (with the most preferable 5x5 window size) in 
all cases.  

Quantitative results for the artificial test image 
show that the Abreu method [6] (even supplied by 
the DCT-filter post-processing stage) does not pro-

duce better results than the CWMF-5 with the 3x5 
window. Visual results for the real satellite image 
shows that after the Abreu filter some CIBs are re-
maining (see Fig.1d).  

The training-based soft morphological filtering 
[2] for the CIB removal produces the best results 
among the known methods (Table 2). The soft mor-
phological filter trained to remove CIBs only, sup-
plied by a post-processing stage had more than 1dB 
better PSNR results when compared to the soft mor-
phological filter trained to remove both the CIBs and 
the multiplicative noise simultaneously. However, 
visually there was not much difference in the results. 
The method introduced in this article for the CIB 
detection/removal together with the DCT-filter post-
processing stage provides additional 1 dB increase in 
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the PSNR.  
The quantitative results obtained for the artificial 

test image are in coherence with the visual inspec-
tion of the CIB removal for the real optical and radar 

satellite images in Fig.1a and Fig.2. Fig.6 shows the 
result of the CIB removal by the proposed method. 
As can be seen, practically all CIBs are removed 
while important information remains undistorted. 

   
a) b)

Fig.6 –CIB removal by means of the proposed method from optical (a) and radar (b) satellite images
presented in Fig.1,a and Fig.2, respectively.  

 
4. CONCLUSION 

Reasons for the CIB presence and the characteris-
tics of the CIBs in real APT-mode transmitted satel-
lite images were studied. An advanced model of 
satellite images corrupted by CIBs and fluctuative 
noise was developed, and the corresponding test 
image pairs needed in the quantitative evaluation of 
the filters were created. 

A new approach for the CIB removal based on 
the multistage procedure of the CIB detection and on 
detail preserving CIB removal was given. The detec-
tion method utilizes estimates of the structural char-
acteristics of the CIBs. It was shown through ex-
periments that the proposed method produces better 
PSNR than the other existing methods. The advan-
tages of the proposed method are also demonstrated 
visually for the real satellite images.  
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