
Xianhong Xu, Simon Jones / Computing, 2004, Vol. 3, Issue 2, 7-12

 7

CODE COMPRESSION FOR THE EMBEDDED ARM/THUMB
PROCESSOR

Xianhong Xu, Simon Jones

Faculty of Engineering and Design, University of Bath, BA2 7AY, UK,

{x.xu, s.r.jones}@bath.ac.uk, http://www.bath.ac.uk/engineering

Abstract: Previous code compression research on embedded systems was based on typical RISC instruction code.
THUMB from ARM Ltd is a compacted 16-bits instruction set showing a great code density than its original 32-bits
ARM instruction. Our research shows that THUMB code is compressible and a further 10-15% code size reduction on
THUMB code can be expected using our proposed new architecture – Code Compressed THUMB Processor. In our
proposal, Level 2 cache or additional RAM space is introduced to serve as the temporary storage for decompressed
program blocks. A software implementation of the architecture is proposed and we have implemented a software
prototype based on ARM922T processor, which runs on the ARMulator.

Keywords: ARM, THUMB, Memory, Code, Compression

1. INTRODUCTION
Memory is usually the main part of the system

cost of an Embedded System. Applying lossless data
compression to the program code [1-5] is an
efficient way to reduce the main memory size,
therefore, to reduce the system cost. The existing
research was based on contemporary RISC
architectures, which use 32- or 64-bit instruction
sets. ARM and MIPS have introduced 16-bits ISAs,
namely THUMB[6] in 1995 and MIP16 [7] in 1997,
to improve the code density of their original 32-bit
ISAs. Our research started with ARM’s THUMB
instruction set. We analysed the compressibility of
THUMB program code, and exposed that further
code compression over THUMB code is achievable
within an appropriate architecture. We have
implemented a software demonstrator in C proving
that the architecture is practicable.

In the rest of this paper, Section 2 outlines the
previous research works in the code compression
area. Section 3 briefs our study result on the
compressibility of THUMB code. Section 4 details
our architecture approach. Section 5 describes
experimental details of the software implementation
of the architecture. Section 6 summarizes our current
research and identifies the future work.

2. RELATED WORK
RISC processors are widely used in embedded

systems. In recent years, the code density problem

linked with RSIC architecture has worsened. Several
methods have been proposed to improve the code
density of the typical RISC instruction sets. One of
them is the code compression approach, that is,
storing the program code in compressed format and
decompressing the instructions before the processor
executes them.

To clarify, the Compression Ratio (CR) in this
paper will be calculated using the following
equation:

(1)
Size Original

Size Compressed
=CR

Mainly there are two types of code compression

approaches, namely
Block Compression: Wolfe and Chanin [1]

applied compression techniques to instruction code
by introducing Compressed Code RSIC Processor
(CCRP) architecture. Within this architecture,
original program blocks with the same size as the
cache line length (32 bytes) are compressed at
compile time and stored in the instruction memory.
The compressed instruction blocks will be
decompressed and fetched into L1 cache lines when
cache misses occur. In their proposal, static Huffman
algorithm was used to compress the program blocks.
Their experiment showed an overall compression
ratio of 0.73. Lekatsas and Wolf [2] investigated
new compression algorithms to replace the classical

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Xianhong Xu, Simon Jones / Computing, 2004, Vol. 3, Issue 2, 7-12

 8

Fig.1 - Compression Ratios of THUMB Code

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

Block Size

C
om

pr
es

si
on

 R
at

io

PPMZ LZS ENC
XMatchRLI XMatchVW LZAri
Huffm an

 Fig.1 – Compression Ratios of THUMB Code.

Huffman algorithm in CCRP. IBM CodePack [3] is
another block compression approach based on the
32-bit IBM PowerPC processor.

Reuse of Common Sequences of Instructions:
This type of approaches [4-5] is also called
dictionary code compression architectures. The main
idea is based on the fact that certain sequences of
instructions were repeatedly found in the program
image. A dictionary is used to hold all the common
instruction sequences, and then replacing the
common sequences in the program with short codes,
which refer to the dictionary entries. Liao et al. [5]
proposed to use a sub-routine call and Lefurgy et al.
[4] proposed to use a codeword to replace each
dictionary entry. The codeword method respectively
achieved 0.61 and 0.66 compression ratios on
PowerPC and ARM.

Different from these compression approaches,
some chip companies introduced compacted ISAs to
improve the code density of their original RSIC
ISAs. ARM announced a 16-bit ISA, THUMB, to
replace the typical 32-bits ARM instruction set [6]
which results an average program size saving of
30%. Also, MIPS launched its 16-bits ISA: MIP16
[7]. A disadvantage related to these compacted ISAs
is that they increase the instruction number of the
user program, which resulted in slower timing
performance. It was reported in [6] that THUMB
programs run 15%-20% slower than ARM
programs. However, the reported poorer
performance was on the basis of the non-cache
presence architecture. Contemporary high
performance system cores are usually integrated
with L1 cache memories. As a THUMB instruction
is half the size of the ARM instruction, a cache line
holds a double number of THUMB instructions
against ARM instructions. A consequence of this is a
higher cache-hit rate, which results a higher
performance. It has been demonstrated that THUMB
programs with L1 caches run faster than ARM
programs in most cases.

3. COMPRESSIBILITY OF THUMB CODE

Our research started with studying the
compressibility of ARM/THUMB code. We initially
took the concept of CCRP, as it does not restrict one
to any specific compression algorithm or instruction
length.

We developed a test bench program to compress
the ARM/THUMB program with a selection of
block sizes using a number of compression
algorithms:

PPMZ [8], a state-of-art compression algorithm
yields best compression on different data set

LZS, a dictionary-based compression algorithm
from Stac Electronics, USA

ENC, a dictionary-based compression algorithm
from provide by IBM

XMatchRLI/XmatchVW [9], a fast dictionary-
based compression algorithm

LZAri [8], an algorithm based on LZ77 [8] and
combined with the arithmetic compression

Huffman, a typical adaptive Huffman
compression algorithm [8]

ARM Ltd provided the benchmark programs
which were compiled into ARM/THUMB images in
ARM Developer Suit (ADS) 1.1. We attempted
different block sizes to explore the best compression
ratio. To simplify, the block sizes were set as integer
powers of 2.

Figure 1 illustrates the compression result of
THUMB benchmarking programs. Surprisingly, the
result shows that the THUMB code can be
efficiently compressed with some algorithms at
certain block sizes. Although the compression ration
is not as good as the ones in the other code
compression approaches, it should be noticed that
our compression is based on the compacted THUMB
code.

Also, we compared the compression ratios of
ARM and THUMB code. It is revealed that
compressing THUMB code was always more
efficient than compressing ARM code in terms of
the overall compression ratio (Compressed THUMB
program size/ARM program size). Taking
XMatchRLI as an example, Figure 2 clearly
demonstrates this fact. This motivated us to
investigate into the THUMB code compression
architecture.

4. ARCHITECTURE APPROACH

Our approach is to investigate into an architecture
similar to CCRP, to support the compressed
THUMB code. CCRP requires the block size same

Xianhong Xu, Simon Jones / Computing, 2004, Vol. 3, Issue 2, 7-12

 9

Fig.2 - ARM/THUMB Code Compression
Ratios with XMatchRLI

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

32 64 128 256 512 1K 2K 4K 8K 16K

Block Size

C
om

pr
es

si
on

 R
at

io

Compressed THUMB/THUMB
Compressed ARM/ARM
THUMB/ARM
Compressed THUMB/ARM

Fig.2 - ARM/THUMB Code Compression
Ratios with XMatchRLI.

as the L1 cache line size (32 bytes in most ARM

cores), which is no longer applicable to the THUMB
code compression, as we have seen in Figure 1 that
THUMB code is hardly compressed when the block
size is 32 bytes. A larger block size must be
employed in the new architecture. Seeking an
appropriate block size is an important task:

using small block sizes (e.g. 32 bytes), the little
space saving is not worthwhile; a large block size
will certainly cause significant latency on fetching
an instruction where the block decompression is
required. The trade-off would be between space
saving and timing performance.

In this paper, we do not intend to address
choosing what block size and which algorithm, we
are going to study the practicability of the
architecture. We set the block size as 256 bytes and
select the LZAri compression algorithm. In this
configuration, the compression ratio on THUMB
code is around 0.84.

Initially, we revised the CCRP architecture [1] to
achieve THUMB code compression. We call the
new architecture Code Compressed THUMB
Processor (CCTP).

As mentioned earlier, a larger block size must be
employed in order to achieve a good memory
saving. Consequently, managing a larger block size
is the main feature of the CCTP architecture. We set
the block size as a number equal to n (n is an integer,
usually the integer power of 2) times the cache line
length. A Compressed Block Address Table
(CBAT) with the same function as the LAT [1] is
used to translate the compressed block address space
to the uncompressed one.

The decompression of the compressed block is
invoked when an instruction cache miss occurs. As a
decompressed block consists of a number of cache
lines, there are 3 options for the cache line refilling:

Refill multiple cache lines with the decompressed
block

Refill the requested cache line and discard the
rest part of decompressed block

Refill the requested cache line and hold the rest
part of the decompressed block in a temporary
memory for reuse

Option 1 is equivalent to increasing the cache
line size. As the cache line size of a processor core is
the optimum value, increasing it increases the cache
miss penalty [10]. Option 2 wastes the cycles spent
on block decompression. Ignoring the complexity
that may be increased in the system architecture,
Option 3 appears a preferable option. Then, the
question is: Where to store the decompressed
blocks?

One choice is to introduce the L2 cache memory
in the architecture as shown in Figure 2. As the L2
cache line is m times larger than the L1 cache line,
we can use L2 cache to store the recently
decompressed blocks. To simplify the management,
we set the block size equal to the L2 cache line size.

Figure 3 depicts the initial CCTP architecture.
Compared with CCRP, using L2 cache also brings
another benefit: CLB [1] is no longer needed as the
recently used blocks are in the L2 cache.

The behaviour of CCTP will be:
The CPU normally operates out of the L1 cache;
When the L1 cache miss occurs, the L2 cache

management unit is to find the requested cache line
in the L2 cache;

If found, move on to 5;
The decompression engine is activated to

decompress the corresponding compressed block in
the main memory and load the decompressed block
to the L2 cache;

Fetch requested cache line from L2 to L1 cache;
Go to 1.

Data Memory

(RAM)

Decompressed
Block Buffer

Fig. 4 - Revised CCTP Architecture

CPU
L1 Instruction

Cache

Decompress
Engine

Instruction
Memory

(Compressed
Program
Blocks)

CBAT

L1 Data Cache

Fig. 4 - Revised CCTP Architecture.

Xianhong Xu, Simon Jones / Computing, 2004, Vol. 3, Issue 2, 7-12

 10

CPU

L1 Instruction
Cache

Decompress
Engine

Instruction
Memory

(Compressed
Program Blocks)

CBAT

L2 Cache

Fig. 3 - Initial CCTP Architecture. Fig. 3 - Initial CCTP Architecture.

The main overhead of the initial CCTP
architecture will be the L2 cache. Firstly, the L2
cache needs to be large enough to reduce the L2
cache miss rate, whereas the memory space saving
requirements of CCTP demands the L2 cache as
small as possible. Another trade-off between the
compression and timing performances need to be
pursued in the architecture. Secondly, use of L2
cache increases the complexity of the system.

One alternative solution is to use additional piece
of RAM memory instead of the L2 cache in CCTP.
We call this memory space as the Decompressed
Block Buffer (DBB). The DBB will play the same
role as the L2 cache. Although use of the DBB
decreases the timing performance, it greatly reduces
the system design complexity. Figure 4 illustrates
the revised CCTP architecture.

In our study, another issue raised is the
requirement of decompression of the data inside the
instruction memory. After analysing the real ARM
and THUMB program image, we found that not only
instructions but also constant data reside in the
instruction memory. These data is classified into two
types:

The global variables of the program, presenting
as constant addresses.

The literal data
Consequently, the data cache miss sometimes

demands a block decompression operation. That is
why we see that there is a connection line between
the L1 Data Cache and the Decompression Engine in
Figure 4.

The revised CCTP brings the chance of
implementing the CCTP architecture in software,
namely, block decompression, L1 cache refill and
DBB management will be all in software. We call
this Software CCTP. Pure software implementation
is desirable, but not achievable.

Software CCTP requires some hardware supports
in the following two ways [11]:

Raise Cache Miss Exception: Cache miss
exception needs to be raised by hardware. This is the
key to connect the hardware (the L1 cache miss) and
software (the cache miss exception handler)
together.

Provide Instruction(s) for Cache Line
Replacement: Software CCTP needs new
instructions for loading the decompressed
instructions from the DBB into the L1 cache.

To prove the practicability of the CCTP
architecture, in the next section, our experiment is to
implement a demonstrator of the Software CCTP.

5. EXPERIMENT

Our software is developed under the ADS version
1.1 and simulated on ARMulator. ARMulator is a
software simulator for ARM architecture. It provides
cycle accurate simulation on ARM/THUMB
instruction set and supports the whole range of ARM
processors. It also provides a platform for simulation
of the L1 cache, memory and other peripheries. The
ADS has a number of debug tools which working
with ARMulator.

Firstly, we need to seek the hardware support
mentioned in Section 4. Within the ADS
environment, the ARMulator stands for the
hardware. The ADS provides means for configuring
the memory, L1 cache and other peripherals. Also,
the source code of some ARMulator models is
available; we can modify these models to customise
the ARMulator functions.

The ARMulator provides a mechanism for
broadcasting events, which includes cache miss
events (MMUEvent_ILineFetch and
MMUEvent_DLineFetch). The ARMulator also
allows users to create a handler to process the event.
The event handler can be easily programmed in C
language, and runs on the host machine as part of the
ARMulator. We utilise this feature to raise the
cache miss exception: when the event handler
catches cache miss events from the ARMulator core
models, it invokes a cache miss interrupt (normal
interrupt); the interrupt will be seized by the
interrupt handler where the cache miss is to be
processed.

Employing a normal interrupt to serve as a cache
miss exception caused a significant problem with the
data decompression. As discussed in Section 4, the
data cache miss exception needs to be handled on
the execution of the data access instruction.
However, the interrupt mechanism is much slower
than the pipeline operation, therefore the data
decompression is always behind the data access.
Consequently, the data access instructions

Xianhong Xu, Simon Jones / Computing, 2004, Vol. 3, Issue 2, 7-12

 11

sometimes operate on the compressed data, which
causes wrong results.

We do not have any other better solution to
replace the interrupt one with current ARMulator
version. We tried to find other solutions in ARM
code software side, that is, to avoid causing the data
decompression request. It is possible to manage the
global variable, as we can simply move the global
variables to the uncompressed program section (e.g.
the system initialisation section). However, it is not
easy to do with the literal data. It is not natural to ask
the software programmers to put all the literal
information to the uncompressed section. We hope
that the new version of ARMulator can help with
this.

Besides, unfortunately, ADS 1.1 does not provide
the facility for modifying the ARMulator L1 cache
model. It means that the demands for the L1 cache
replacement hardware support cannot be met. In our
experiment, we sought the software emulation
instead. We noticed that the cache operations of the
ARM processor take virtual addresses (VA) rather
than physical addresses when fetching the
instructions to the L1 cache. With the memory page
table supports provided by ARM922T, we can map
the instruction VA space of the compressed memory
to the decompressed block in the DBB, then the
decompressed instructions can be fetched into the L1
cache during the normal cache fetching.

Under this solution, the DBB consists of one or
more memory page(s). As the DBB is much smaller
than the program VA space, the page tables need to
be frequently modified to map correctly. The
performance overhead is the cycles spent on page
table access and the memory walks [12] for page
mapping. Another issue is that decompressed blocks
must be placed at the fixed position in one DBB
page for the reason of exactly mapping. This forces
the DBB to be managed on a schedule that is similar
to the cache direct mapping. As a result, a slower
performance is expected.

The software algorithm is outlined as follows:
When a L1 cache miss occurs, the system raises a

cache miss exception;
The cache miss exception interrupts the CPU

from executing the current instruction;
The CPU turns to execute the exception handler;
The exception handler tests if the requested cache

line is in the DBB, if yes, move on to (6);
The exception handler invokes the

decompression procedure to decompress the
corresponding block and the decompressed block is
placed in the DBB;

The exception handler fetches the requested
cache line from the DBB to the L1 cache;

The CPU returns to the normal execution from
the exception handler.

At the running time, the layout of the instruction
memory of the Software CCTP will look like Figure
5.

The Initialization Code initializes the system,
which includes loading the address of the CBAT
to the register, loading the Interrupt Catcher and
Decompressor to the on-chip-memory or L1
cache, etc. Finally, it leads to the user program
entry.

The Interrupt Catcher catches all the interrupt
exceptions and only decompression exception will
be processed locally. All other exceptions will be
passed to user-defined exception handler. The
decompression exception handler will manage the
L1 cache uploading and the block decompression.

The Decompressor can be based on any efficient
compression algorithm. In our experiment, we chose
LZAri. The decompression part of LZAri program
was revised and compiled it into THUMB code as
the Decompressor.

During execution, the Interrupt Catcher and the
Decompressor are used to upload the requested
instructions to the L1 cache when the cache miss
occurs. This requires that they do not affect the L1
instruction cache status during execution. The
solution would be that they are either locked down
in the L1 cache or resided in the on-chip-memory,
which is accessed by the CPU directly rather than
through the L1 cache. We choose the on-chip-
memory solution to leave more L1 cache space for
the user program.

The user program can be developed in the normal
way except that the interrupt exception handler
entries must be defined in the Interrupt Catcher
model. After compiling and linking, the whole
system code image for the embedded system is
created in the ELF format. We have a compression
program (developed based on the compression part
of LZAri program), which is to compress the user
program code on the block basis.

In the experiment, there are two parameters to be
set. They are the DBB size and the program block
size. We set the DBB size as 1K Bytes, which is the

Initialization
Code

User

Program
(Compresse

Decompressor
Interrupt

L1 Cache
Or

On-Chip-

CBAT

Fig. 5 - Instruction Memory
Layout of the software CCTP. - Instruction Memory Layout of the software

CCTP.

Fig. 5 - Instruction Memory Layout of the
software CCTP.

Xianhong Xu, Simon Jones / Computing, 2004, Vol. 3, Issue 2, 7-12

 12

smallest memory page size under the ARM
architecture. The block size was set as 256 bytes.
This means that 4 decompressed blocks can be
accommodated in the DBB.

We took a number of examples of user programs
to test our software CCTP architecture. The user
programs were running smoothly when the data
decompression was avoided. As expected, the
performance was much slower (10-40 times) than
the normal system. The major reason is the slow
cache line replacement, where the page table
mapping between the VA space and the DBB was
frequently modified therefore the CPU must spend a
great amount of time on the address seeking [12].

6. CONCLUSION AND FUTURE WORK

This paper proposes the code compression
architecture to yield the memory saving on THUMB
code. Implementing this architecture in software was
experimented by a prototype running on ARMulator.
The experiment result shows that the concept of
CCTP is practical.

Software CCTP needs supports from some
simple hardware mechanisms. As the ARMulator
cannot provide the requested support, the software
prototype runs slowly in the current experiment. The
next step of our work will be to build up a new
simulation model to precisely evaluate the timing
performance of the CCTP architecture and explore
the overall memory saving efficiency.

7. ACKNOWLEDGEMENT

ARM Ltd provided the benchmark programs and
their technical support. We would like to express our
thanks.

8. REFERENCES

[1] A. Wolfe, A. Chanin. Executing Compressed
Programs on an Embedded RISC Architecture.
Proceedings of 25th Ann. International Symposium
on Microarchitecture, pages 81-91, December 1992.

[2] H. Lekatsas, W. Wolf. Code Compression for
Embedded Systems. Proceedings of the 35th Design
Automation Conference, June 1998.

[3] T. Kemp et. al. A decompression core for
PowerPC. IBM Systems Journal. Res. Dev. 42(6),
Nov. 1998

[4] C. Lefurgy, P. Bird, I-C. Chen, T. Mudge.
Improving code density using compression
techniques. Proceedings of the 30th Annual
International Symposium on Microarchitecture,
December 1997.

[5] S. Liao, S. Devadas, K. Keutzer. Code
Density Optimization for Embedded DSP Processors
Using Data Compression Techniques. Proceedings

of the 15th Conference on Advanced Research in
VLSI, March 1995.

[6] Advanced RISC Machines Ltd. An
Introduction to THUMB, March 1995.

[7] K. Kissell. MIPS16: High-density MIPS for
the Embedded Market, Silicon Graphics MIPS
Group, 1997.

[8] G. Held, T.R. Marshall. Data and Image
Compression Tools and Techniques. 4th Edition,
John Wiley & Sons Ltd, UK, 1996.

[9] J. Nunez, S.R. Jones. The X-MatchPRO 100
Mbytes/second FPGA-based Lossless Data
Compressor. Proceedings of Design, Automation
and Test in Europe, DATE Conference 2000, Pages
139-142, March 2000.

[10] J.L. Hennessy, D.A. Patterson. Computer
Architecture A Quantitative Approach. 2nd Edition,
Morgan Kaufmann Publishers, Los Altos, CA, 1996.

[11] C. Lefurgy, T. Mudge. Fast Software-
managed Code Decompression. Presented at
CASES-99 (Computer and Architecture Support for
Embedded Systems), pp. 139-143, October 1999,
presented at 10th Annual IPoCSE Review,
University of Michigan.

[12] D. Seal. ARM Architecture Reference
Manual. 2nd Edition, ISBN 0-201-737191, Pearson
Education Limited.

Xianhong Xu was born in
Luoyang, China. He holds a BSc
degree in Computer Science
from a national key university in
China and is currently in his PhD
study in the Electronic
Engineering filed while he works
as a Research Officer for the

University of Bath in UK. His research interests
include data and memory compression and the low
power embedded microarchitecture.

Simon Jones was born in

Llanelli, Wales. He is Managing
Director of Media Lab Europe,
based in Dublin, Ireland, a 100
strong private research and
innovation laboratory. He holds
the BSc and MSc degrees in
Microelectronic Systems Design
and Ph.D and D.Sc degrees in Computer
Engineering.

In addition to his role at Media Lab Europe, he is
a visiting scientist at the MIT Media Lab. Previously
he was Dean of Engineering at the University of
Bath UK and ARM/Royal Academy of Engineering
Research Professor in Embedded Microelectronic
Systems at Loughborough University in the UK.

