
R. Iqbal, A. James, R. Gatward / Computing, 2003, Vol. 2, Issue 3, 105-112

 105

A COLLABORATIVE PLATFORM FOR HETEROGENEOUS CSCW
SYSTEMS: CASE STUDY OF ACADEMIC APPLICATIONS

Rahat Iqbal, Anne James, Richard Gatward

School of Mathematical and Information Sciences

Coventry University
CV1 5FB, UK

{r.iqbal, a.james, richardg}@coventry.ac.uk

Abstract: A variety of computer based information systems are used to support the activities in an academic
environment. These systems are used for conducting lectures, designing and reviewing modules, designing and writing
assignments, laboratory work, and computer based assessment. The systems are typically designed from scratch if the
existing systems do not meet the requirements. This incurs significant costs, and inconvenience. This paper reports on
work concerning the integration of existing computer based systems which is formally known as computer supported
cooperative work (CSCW) in order to support every day activities. A framework for CSCW integration is presented. A
integrative methodology based on this framework is proposed. An example application scenario involving integration of
asynchronous application of our university is discussed.

Keywords: - Collaboration, Coordination, Integration.

1. INTRODUCTION
Computer Supported Cooperative Work (CSCW)

emerged as an important research area, which
focuses on suitable forms of cooperation between
users or a group of users to perform a common task.
It is concerned with design, implementation and
realisation of computer support for cooperation to
achieve the common goals.

Generally, CSCW supports a range of
applications such as shared editors, audio/video
conferencing, computerized meeting rooms, group
design tools, co-authoring systems, shared calendars,
workflow system, voting tools, whiteboard and
message based conferencing [1]. Unfortunately, all
these application are closed and limited to registered
users. These applications do not get advantage of
each other as they are working in isolation.

An open CSCW system is required that supports
a wide range of applications and a variety of
cooperative users in order to get the advantages
communally [3]. To make all the applications work
together a platform is required that can contain a
collection of heterogeneous applications, paradigms
and models. This should provide interoperability
among different applications running locally or
remotely at different platforms supporting
synchronous or asynchronous activity. Such a
CSCW system can meet the requirements of all the

users [1]. This should allow the users of these
applications to register an activity or a group of
activities to share with other users and applications.

The following are some reasons for the
usefulness of interoperation:
• Support activities and share resources: Users

need to communicate with each other in order to
support their activities and to share resources.
For example, in our university, different
lecturers are working on various modules. They
are cooperating by sharing teaching modules,
revising and reviewing the contents of the
module etc.

• User preferences: CSCW systems are
heterogeneous and each offers a unique set of
benefits. Users may be using their preferable
system for long and they do not wish to give it
up and adopt a new system.

• User constraints and training: Users are trained
in constrained to use different CSCW systems.
They may not have the time, desire, or ability to
learn a new, common system in order to
collaborate with each other [2].

• Reduce cost and inconvenience: CSCW systems
are typically designed from scratch if the
existing ones do not meet the needs. This incurs
significant costs, and inconvenience.

• Improve efficiency and enhance functionality:

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

R. Iqbal, A. James, R. Gatward / Computing, 2003, Vol. 2, Issue 3, 105-112

 106

CSCW systems are heterogeneous and each
system offers limited functionality to its users.
The efficiency can be improved and
functionality can be enhanced if these system
can communicate with each other.The rest of the

paper is organised as follow. Section 2 describes
different levels of integration. Section 3 discusses
related work and presents our framework of
integration. This section also describes an integrative
methodology. Section 4 discusses heterogeneous
applications of our university. Section 5 discusses
integration process. Finally, section 6 discusses the
work and provides some conclusions.

2. LEVELS OF INTEGRATION

Different levels of integration are possible. At
one level two autonomous systems may interoperate
by passing data to each other either directly or
through a common “blackboard” area. Thus,
activities in one application may be affected by
information received from other applications but
integration here is at a loose level of coupling and
may be termed surface integration. A deeper level of
integration would involve merging or consolidating
some activities or resources. This process may
involve resolving conflicts between comparable
activities or resources in different systems. A
complete integration would involve making one
single system from underlying systems where all
conflicts among activities or application objects
have been resolved. At levels two and three, the
question of virtual or real integration arises. At
these levels, both real or virtual integration is
possible. In the case of the latter mappings would
need to exist from a conceptual integrated model to
underlying physical applications.

It is worth noting that surface integration can be
achieved fairly easily using current technology at the
level of service provision. A CSCW system that
wishes to make its functionality and information
available publicly can do so by participating in
distributed system services such as CORBA or Web
Services. However such systems provide integration
or interoperability only at a syntactic level. Semantic
detail concerning real-world understanding of what
the CSCW system does and what information it has,
is not supported. Thus the use of this type of
integration alone is limited. However middleware
such as CORBA and Web Services is likely to be
used at a lower infrastructure level upon which more
semantically driven integration can take place.

3. RELATED WORK
Although the problem for integration of CSCW

systems was identified in the early 90’s, it has not

yet been solved. There has been no work since then
on developing an integrative approach with the
exception of following work.
(i) Dewan’s work [2]: Dewan addresses some of the
basic issues in interoperating heterogeneous
collaborative systems. They include coupling,
semantic and some implementation issues. This
work mainly focuses on the integration of floor
control mechanism with locking system. The results
of this work show that it is possible to interoperate a
synchronously coupled, fully replicated, floor
control system with a flexibly coupled, partially
centralised, lock system. Floor control is the
simplest form of concurrency control which allows
only one user to input to the system at any given
time. The user who wishes to operate the system has
to request for floor control. The floor will be
granted if it is free otherwise request will be
discarded or enqueued. Different techniques are in
use such as turn-taking protocols. The problem with
this technique is that it does not allow multiple users
to perform actions in parallel even if their actions do
not conflict. Lock based concurrency control has
addressed these problems. It allows users to obtain
locks and work concurrently as long as they do not
wish to work on the same objects. This work adopts
an approach that assumes the source code and
internal knowledge of the groupware applications to
be interoperated is known.
(ii) Li’s work [4]: This work addresses the problem
called intelligent collaboration transparency (ICT),
in which the issues of interoperability between
single-user heterogeneous applications are
addressed.. This work adopts a ‘blackbox’
assumption, which assumes that the source code and
internal knowledge of the groupware applications to
be interoperated is unknown and no modification is
allowed. Using this approach, the applications
sharing infrastructure is interposed between the
applications to be shared and their window
environment at each site. Users can collaborate on
the common task using their favourite single-user
heterogeneous applications. The infrastructure
captures and replays user input to the applications.
(iii) LaMarca’s work [5]: This work provides
support for content as well as for coordination in
collaborative work. It considers coordination and
collaborative functionality as an aspect of the
collaborative artefact rather than a collaborative
application. Basically, this work considers
coordination and collaboration as separated and
independent of applications. This approach provides
a mechanism to monitor the application access to a
shared data repository and trigger user supplied
programs when interesting operations are performed.
It enables heterogeneous single user applications to
be interoperated and converted into groupware

R. Iqbal, A. James, R. Gatward / Computing, 2003, Vol. 2, Issue 3, 105-112

 107

without modification. This approach is limited and
not referred to as application sharing systems.
 None of the above approaches provides full
integration. They provide only partial solutions. The
proposed framework [6] focuses on an approach
leading to full integration. According to this work,
a CSCW system may be seen as consisting of an
ontological model, a co-ordination model and a user
interface model. The description of these models are
given below:
• The ontological model specifies all objects in

the application, their relationships and
terminologies.

• The co-ordination model specifies how
interactions occur within the system and
describes workflow.

• The user interface model describes how the
users see the system and how the system is
presented at an interface level.

In a fully integrated system all three aspects
would need to be integrated. Figure 1 shows the
different levels of integration from an architectural
viewpoint. The concept of the security model and
the transaction model is omitted in the above
description.

An integrative methodology is proposed based on
this framework. This methodology involves
decomposing the components of applications in
order to fully understand the underlying concepts
and analyzing them. It supports different levels of
integration including ontology, security,
coordination, transaction and user interface.
Furthermore, it emphasises the structural and
terminological transformation as well as encoding
and decoding in order to achieve different levels of
integration.

The methodology consists of five steps:
(i) selection of applications (which are based

on either same model or different model);
(ii) analysis of applications (in terms of the

ontological model, the security model, the
coordination model, the transaction model
and the user interface model);

(iii) finding common concepts (and resolve
conflicts between the concepts);

(iv) explanation of context and implicit
concepts;

(v) mapping specification (at three levels:
structural transformation, terminological
transformation and encoding & decoding).

The components of the methodology are shown
in figure 2.

Integrated Conceptual
Model

Integrated
Ontological

Model

Integrated
Coordination

Model

Integrated
User-Interface

Model

Conceptual
Model-System

A

Conceptual
Model-System

B

Mapping

UIM

OM

CM

UIM

OM

CM

UIM User interface Model
CM Coordination Model
OM Ontological Model

Fig 1: Framework for integration of CSCW

4. CASE STUDY

Education is a cooperative activity [7] where
different synchronous and asynchronous
applications work together in order to support on-
line lectures, designing and reviewing modules,
designing and writing assignments, laboratory work,
and on-line assessment. Here, we discuss the
following two heterogeneous applications of our
university.

5. DOCUMENT MANAGEMENT SYSTEM

Document Management System (DMS), is an
asynchronous collaborative application. This
application helps us monitor modules of different
disciplines in the university. This application
involves the following two main activities. Some
problems related to these activities are also
discussed in brief.
1. Revise Module: This is similar to editing a

document. More than one lecturer is involved in
revising the contents of each module. Mostly,
the lecturer who is teaching that module is
responsible to make changes in the contents of
that module if required. In case of brand new
modules, the administrator assigns the job to one
or more than one lecturers to write contents of
the module. Some of the issues are involved in
accomplishing this activity: (i) version control,
as more than one lecturers is involved in
revising the contents of a module and sending
different copies to the administrator time to

R. Iqbal, A. James, R. Gatward / Computing, 2003, Vol. 2, Issue 3, 105-112

 108

time. Later on, it becomes difficult to decide on
the version of the module and find out which
one is the latest. In most cases, the lecturer
concerned names a module according to his
wish and the administrator names it based on the
available version of the related modules; (ii) role
and responsibility, as more than one lecturer is
involved in revising or writing a module, so at
one stage, it becomes difficult to know who is
responsible for which part of the module or even
for which module;

Selection of
Applications

Same Model

Different Model

Mapping Specification

Explanation of Context
and Implicit Concetps

Finding Common
Concepts

Analysis of
Applications

Security Model

Common Concepts

Conflicts Resolution

Structural
Transformation

Terminology
Transformation
Encoding and

Decoding

Ontological Model

Transaction Model

Coordination
Model

User Interface
Model

Figure 2: Methodology for the integration of CSCW

 (iii) meeting deadlines, with a huge amount of
work in an academic institute, it becomes hard
for lecturers to revise the module on time and if
more than one lecturers are involved, they can
not get a time for face to face meeting.
Normally, this is not always the case, but it
happens sometimes;

2. Review Module: After the module has been
revised or written as a new module, it needs to go
to a member of Subject Quality Group (SQG) for
quality assurance, which is a necessarily required
in an academic environment. The following
issues are involved in this process: (i) version
control, what is the latest copy to send to SQG;
(ii) no record to keep track of the modules sent to
SQG. Some times SQG does not respond in time
about the acceptance or rejection of the module,
which delays the process and creates some other
problems which effects the activities involved in
Module Assignment System, another
asynchronous groupware application.
The above activities requires different actors to

perform some actions on them. These actions differ
and depends on the role played by an actor. The
actor has one or more of the following roles:
• The first role is of a writer who can edit a

document (module). The writer can make
necessary changes in the whole document or in
the part of the document. In this example, a
writer can be a module leader who is allowed to
modify or change an existing module or write a
new module.

• The second role is of a viewer who can view the
document but cannot modify it. In our example,
a viewer can be a lecturer who can view the
modules but can not modify it.

• The third role is of an administrator who can
assign different roles to other actors. The
administrator who is also a head of
department in our case provides different roles
to the lecturers. One lecturer can be a viewer at
one moment and at the second moment the same
can be a editor of a specified module.

7. MODULE ASSIGNMENT SYSTEM
Module Assignment System (MAS) is another

asynchronous collaborative application. This
application is used to assign different modules to the
lecturers. It involves the following activity. Some
issues related to this activity are also discussed
below:
1. Module Assignment: The administrator views

lecturers’ list and modules’ list and then assign
different modules to different lecturers but it is
not as simple as it looks. The following are
some of the issues related to this activity: (i)
updated module, the list of updated module must
be available when the administrator is assigning
the modules; (ii) updated list of lecturers, it
should also be made available at the time of
assignment; (iii) lecturers’ preference, the
lecturers have their own preference about the
module which they want to teach; (iv) working
load, the administrator must know how much
teaching load is to be allocated to each lecturer
keeping in view the other activiaties the lecturer
is involved in, which may include administration
duties, admission duties, supervision of research
students.

The above activities requires different actors to
perform some actions on them. These actions differ
and depends on the role played by an actor. The
actor has one or more of the following roles:
• The first and the most important role in this

application is of an administrator who is allowed
to view the modules and assign these modules to
lecturers.

• The second role is of a viewer who can view the

R. Iqbal, A. James, R. Gatward / Computing, 2003, Vol. 2, Issue 3, 105-112

 109

module but cannot modify it. In our example, a
viewer can be a lecturer who can view the
modules but can not modify it. The
administrator assign this role to the lecturer only
when he or she finishes his or her tasks which is
assigning modules to lecturers.

6. IMPLEMENTATION

This section addresses implementation of
heterogeneous DMS and MAS of our university by
building an integrated ontological model as shown in
figure 3. Mapper creates a map between the local
ontological model of both applications and represent
them using XML. We propose that an integration
model should contain some primitive concepts such
as‘actor’, ‘activity’ and ‘object’, as the building
blocks for the definition of other concepts [8], [9].
These concepts are based on the strengths and
commonalities of different models and theories i.e.,
coordination theory [10], activity theory [11], tasks
manager model [12], action/interaction theory [13]
and object oriented activity support model [14]. For
more detail, the reader is referred to [15]. We use
these concepts as the building blocks of our
integration model. These concepts are common
to all applications and the advantage is that they
are independent of target application [16].

Local Ontological
Model of DMS

Local Ontological
Model of MAS

Mapper

Integrated
Ontological

Model

Primitive
Concepts

XML

Figure 3: Integrated Ontological Model

The heterogeneous systems use integrated
ontological model (or shared ontology) to
communicate with each other in order to share
information to support activities. The concept of
shared ontology is not only limited to human actors
but agents also use ontology for communication
purposes.

Artificial intelligence and knowledge engineering
use different ways to represent an ontology such as
the logical, semantic, datalog, and frame-based. To
address an integration issue in CSCW we have
adopted the following ways.

An initial step towards building a shared

ontology is to develop a glossary of terms as used in
Unified Modeling Language (UML) or data
dictionary as used in database applications. Full
knowledge of the applications is required to develop
a glossary of terms. We have developed the glossary
of terms of both applications and described in table 1
and 2. The glossary of terms has been established
based on the available contextual information. The
contextual information is important because we aim
to achieve integration at semantic level. The
integration model should have a full knowledge of
context and implicit concepts used in the application
models. We have used the following terminology
classification to resolve the conflicts between the
two ontological models [8], [9] [17]:
• Identical concept: Same concept, same meaning

and same structure/constraints.
• Synonyms: Same concept (meaning) but

different name.
• Homonyms: Same name but different meaning.
• Compatible: Same concept, same meaning and

different structure/constraints but not
contradictory.

• In-compatible: Same concept, same meaning
and different structure/constraints but
contradictory.

• Complex concept: A group of one or more
concepts in one application corresponds to one
or more concepts in an integration model.

• Partitioned concepts: Two or more concepts in
one application corresponds to a single general
concept in an integration model.

Table 1: Glossary of terms in DMS

Name Type Description

Lecturer Actor Person who views and
edits the module and log
book

Administrator Actor Person who views, adds,
deletes, and archives
module and views log
book

SQG Actor Person who views log
book, and module and
accepts or rejects module

Module Object The document on which
different operations are
carried out by different
actors

Log Book
(this concept
is omitted in
the description

Object Book on which different
operations are carried out
by different actors to keep
record

R. Iqbal, A. James, R. Gatward / Computing, 2003, Vol. 2, Issue 3, 105-112

 110

for simplicity)

Monitor Activity Activity performed by
different actors to monitor
the module

Revise Activity Activity performed by
lecturer to revise the
module

Approval Activity Activity performed by
SQG to make decision on
the acceptance or rejection
of modules

Table 2.: Glossary of terms in MAS

Name Type Description

Administrator Actor The person who views
lecturer list and module
list and then assign
modules to lecturer

Module Object The document on which
different operations are
carried out by
Administrator

Lecturer Actor The person who is
assigned different modules

Assignment Activity Activity performed by
Administrator in which
modules are assigned to
lecturers and decision is
made on running modules

As a second step towards the design and
development of ontology, we employ XML to
represent ontologies because it provides a uniform
platform for representing heterogeneous concepts.

XML is considered a potential for information
exchange between different systems. For the
representation and exchange of information between
DMS and MAS, We have developed the following
three DTD (Data Type Definition) models. These
models are developed to represent the data only.
• DTD for representing domain ontologies based

on the primitive concepts discussed in previous
section.

• DTD for Document Management System
• DTD for Module Assignment System

<! - -PRIMITIVE CONCEPTS - ->
<! ELEMENT ACTIVITY (GOAL, STATE,
ACTION?, SUBACTIVITY*)>
 <! ELEMENT GOAL (# PCDATA)>
 <!ELEMENT STATE (#PCDATA)>
 <!ELEMENT ACTION (OBJECT, ACTOR)>
<! ELEMENT OBJECT (OBJECT NUMBER,

OBJECT NAME, SOURCE? DESTINATION?,
ACTORS?, ACCESSPATH?, PLACEIN,
MODIFIED, OBJECTCLASS, CONTENT)>
…..
…..
 <! ELEMENT SUBACTIVITY (GOAL, STATE,
ACTION)>
 ….
 ….
 <! ELEMENT ACTOR (ACTORNUMBER,
ACTORNAME)>

<! - -DTD MODEL FOR DMS - ->
<! ELEMENT ACTIVITY (NAME, STATUS,
ACTION)>
<! ELEMENT ACTIVITY NAME = MONITOR
MODULE>
<! ELEMENT MONITOR MODULE (MODULE
NAME, MODULE CODE, MODULE STATUS,
LECTURER, ADMINISTRATOR)>
<! ELEMENT MODULE NAME (#PCDATA)>
<! ELEMENT MODULE CODE (#PCDATA)>
<! ELEMENT MODULE STATUS (#PCDATA)>
<! ELEMENT LECTURER (LECTURER NAME,
LECTURER NUMBER, ADDRESS)>
<! ELEMENT LECTURER NAME (FIRST NAME,
MIDDLE NAME,LAST NAME>
<! ELEMENT FIRST NAME (#PCDATA)>
<! ELEMENT MIDDLE NAME (#PCDATA)>
<! ELEMENT LAST NAME (#PCDATA)>
<! ELEMENT LECTURER ADDRESS (STREET,
CODE, CITY)>
……
…....
<! ELEMENT ADMINISTRATOR
(ADMINISTRATOR NAME, NUMBER,
ADDRESS?)>
<! ELEMENT ADMINISTRATOR NAME (FIRST
NAME, MIDDLE NAME,LAST NAME>
<! ELEMENT FIRST NAME (#PCDATA)>
…..
…..
<! - -DTD MODEL FOR MAS - ->
<! ELEMENT ACTIVITY NAME = ASSIGN
MODULE>
<! ELEMENT ASSIGN MODULE (MODULE
NAME, MODULE CODE, LECTURER)>
<! ELEMENT MODULE NAME (#PCDATA)>
<! ELEMENT MODULE CODE (#PCDATA)>
<! ELEMENT LECTURER (LECTURER NAME,
TEACHING MODULE, ADDRESS?)>
<! ELEMENT LECTURER NAME (NAME, LAST
NAME?)>
<! ELEMENT FIRST NAME (#PCDATA)>…..
…..
<! ELEMENT ADMINISTRATOR
(ADMINISTRATOR NAME, ADDRESS?)>

R. Iqbal, A. James, R. Gatward / Computing, 2003, Vol. 2, Issue 3, 105-112

 111

<! ELEMENT ADMINISTRATOR NAME
(NAME, ADDRESS?)>

<! ELEMENT NAME (#PCDATA)>
…..

8. CONCLUSION AND FUTURE WORK
The need for open CSCW systems has been

discussed. To this end we have looked at generic
models for CSCW and developed our own model
based on previous work. A framework for
integration has been discussed. An integrative
methodology based on our framework has been
proposed and discussed. In this paper, we have
described an integrated ontological model, and
discussed its implementation using two applications;
DMS and MAS of our university. The novelty of the
proposed work is that no work in the integration of
CSCW has been done to our best knowledge with
the exception of those, which are quoted. Our further
work will include detailed development and further
evaluation of the framework.

9. REFERENCE
[1] Benford, S., J. Mariani, L.Navarro, W.Prinz
and T.Rodden, (1993): ‘MOCCA: An Environment
for CSCW Applications’, ACM Organizational
Computing Systems, Milpitas – California, Press,
PP.172-77.
[2] Dewan, P., and Sharma, A., (1999): “"An
experiment in Interoperating Heterogeneous
Collaborative Systems"”: In Proc. of Sixth
European Conference on Computer Supported
Cooperative Work - ECSCW'99, Copenhagen,
Denmark.
[3] Navarro, L., Prinz, W., and Rodden,
T.,(1993): ‘CSCW requires Open Systems’,
Computer Communications, Vol. 16, No. 5, pp. 288-
297.
[4] Li D., Li R., (2002): ‘Transparent sharing and
interoperation of heterogeneous single-user
applications’, ACM Conference on Computer
Supported Cooperative Work (CSCW'2002), pp.
246-255
[5] LaMarca A., Edwards K.W., Dourish P.,
Lamping J., Smith, I., Thornton, J., (1999), “Taking
the Work out of Workflow: Mechanisms for
Document-Centered Collaboration”, In Proc. of the
1999 European Conference on Computer Supported
Cooperative Work (ECSCW ’99).
[6] Iqbal, R., James, A., Gatward, R., (2002): ‘A
Framework for Integration of CSCW’, in Proc.

CSCWD02, Computer supported cooperative work
in design conference, IEEE, Brazil.
[7] Dewan, P., (1993): “A Survey of Applications
of CSCW Including Some in Educational Settings”.
Proceedings of ED-MEDIA'93, pp. 147-152.
[8] ISO TC184/SC4/WG10N320, (2000):
‘Industrial Automation Systems and Integration’,
Integration of Industrial data for exchange, access,
and sharing.
[9] ISO TC184/SC4/WG10N342, (2002):
‘Industrial Automation Systems and Integration’,
Integration of Industrial data for exchange, access,
and sharing.
[10] Malone, T. W. and Crowston, K.(1990):
‘What is Coordination Theory and how can it help
design cooperative work systems’ ACM Conference
on Computer Supported Cooperative Work
(CSCW'90).
[11] Kuutti, K.: (1991): ‘The concept of activity as
a basic unit of analysis for CSCW research’, in
Proc. of the Second European Conference on
Compute Supported Co-operative Work
(ECSCW’91), pp.249-264.
[12] Kreifel ts, T., Hinrichs, E. and Woetzel, G.:
(1993): ‘Sharing To-Do Lists with a Distributed
Task Manager’, in Proc. of the Third European
Conference on Computer Supported Cooperative
Work (ECSCW’93), pp.31-46.
[13] Fitzpatrick, G., Tolone, W.J. and Kaplan, S.:
M. (1995) ‘Work, Locales and Distributed Social
Worlds’, in Proc. of the 1995 European Conference
on Computer Supported Cooperative Work (ECSCW
’95).
[14] Teege, G.: (1996.): ‘Object-Oriented Activity
Support: A Model for Integrated CSCW Systems.
Computer Supported Cooperative Work (CSCW)’,
The Journal of Collaborative Computing, 5(1), pp.
93-124.
[15] Farias, C. R. G., Pires, L. F., and Sinderen,
M. van: (2000a):‘A Conceptual model for the
development of CSCW systems’. Fifth International
conference on the design of cooperative systems
(COOP 2000), Sophia Antipolis, pp.189-204.
[16] Farias, C. R. G., Pires, L. F., and Sinderen,
M. van: (2000): ‘A component-based groupware
development methodology’. In Proc. of the 4th Intl.
Enterprise Distributed Object Computing Conf.,
Makuhari, Japan.
[17] Batini C., Lenzerini M., and Navathe S.B., C.,
(1986): ‘A comparative analysis of methodologies
for database schema integration’, ACM Computer
Survey, Vol 18, No.4, 323-364.

R. Iqbal, A. James, R. Gatward / Computing, 2003, Vol. 2, Issue 3, 105-112

 112

Rahat Iqbal qualified with a
Master of Science degree in
IT/Computer Science from the
University Science Malaysia
(USM) in 1999. He started his
career as a research assistant in
the school of communication in
USM but it was only a short span.

During this time, he was also employed by IOMEGA;
the Multi-National Computer Hardware Company.
After three months, he joined INTI College Malaysia
as a lecturer. Rahat is now pursuing his PhD in
School of Mathematical and Information Sciences,
Coventry University. He is also teaching a range of
subjects from information systems to computer
science in the University. His research mainly
focuses on integration of CSCW including
ethnography. His research interests also include
HCI, Database, Software Engineering, System
Development Methodologies & Management and
Grid Computing.

Anne James obtained her

BSc from Aston University in
1980 and PhD from CNNA, UK in
1986. Since then she has been
working in academia specialising
in databases, data modelling and
information systems. She is
currently Associate Head of Computer Science at
Coventry University During her career Anne has
published around 60 academic papers in journals or
at conferences. She has also been a member of
various national and international programme
committees and has edited a number of conference
proceedings. As well as this, Anne has maintained
an interest in her profession through activities with
the British Computer Society of which she is a
member.

Richard Gatward became

involved in academic research in
1985 by undertaking a full-time
MSc course in Information
Systems Engineering, the project
component being in speech
recognition at LUCHI, in the

computer studies department at Loughborough
University. This established a long-term interest in
artificial intelligence in general, and computational
linguistics in particular.

Following this, a post as research assistant at
Aston University led directly to an appointment at
Coventry University (then polytechnic) where
teaching and research have concentrated on
Knowledge Based Systems in general.

Current research interests have expanded into
educational technology. This has also led to an
increased interest in teaching and learning issues
and being made leader of the Education Research
Group within the Computing subject group in the
school.

