
W. Winiecki / Computing, 2003, Vol. 2, Issue 3, 98-104

 98

METHODOLOGY FOR DISTRIBUTED DESIGNING OF DISTRIBUTED
VIRTUAL INSTRUMENTS

Wieslaw Winiecki

Institute of Radioelectronics, Warsaw University of Technology

Nowowiejska 15/19, Warsaw, Poland, E-mail w.winiecki@ire.pw.edu.pl

Abstract: A generic architecture of a networked Distributed Virtual Measurement Instrument (DVI) is presented.
General assumptions for distributed design of networked DVI’s are described. The generic architecture of a distributed,
networked and platform-independent environment for DVI designing, together with the generic methodology for
distributed designing of networked DVI is proposed. Currently employed DVI design methodologies are presented and
assessed.

Keywords: - Networked Distributed Virtual Instrument, Internet, design method

1. INTRODUCTION
The development of telecommunication and

computer technologies inspires creation of new
device and system design methodologies. The
traditional model based on a fixed infrastructure is
being replaced by a new, virtual and flexible model
based on the distributed information infrastructure.
The new teleengineering methods are based
primarily on the global infrastructure supplied by the
dynamically developing Internet. The new designing
paradigm, aided by the access to the wide-band
Internet, can be called the distributed engineering
paradigm.

We’ll refer to the network-aware design aiding
environment for distributed virtual measurement
instruments (DVI) as the networked DVI design
environment. It contains a programming
environment together with the access mechanisms
for the DVI designer. A compound environment,
elements of which might be installed on different
computers on a common network will be called a
distributed networked design environment.

There are two primary groups of DVI design
methodologies:
• Using integrated programming environments

(e.g. LabVIEW, LabWindows/CVI, VEE),
• Using object-oriented languages (e.g. C++, Java),
• Other.

The most widely employed DVI design
methodology is the one proposed by National
Instruments [1]. Scarce non-commercial integrated
design solutions are usually based on commercial
products, e.g. [2], [3]. DVI projects written in C++

language are currently seldom encountered; on the
other hand, the number of Java language realized
projects rises owing to the language’s operating
system independence (platform independence) [3]-
[8].

Among other DVI design methodology
proposals, a method using state graphs [9] should be
mentioned, as well as an interesting method of
Internet-based simulator design, using the LabVIEW
environment core [10], enhanced in [11] at [12] with
elements allowing for designing not only simulators,
but real, distributed virtual measurement instruments
as well.

The synthetic comparison of the employed design
environments and the generic environment, as well
as the methodology of designing of the DVI’s using
these environments is presented in the tabular form
in Table.1. The following notation has been
assumed:

Y - denotes the presence of the option,
N - denotes the lack of the option,
[T] - denotes that the option might be present, but

it is not mandatory,
[N] - denotes the lack of the option while

requiring additional conditions to be true for the
application to work properly (usually using non-
standard solutions).

In the X/Y notation, the first symbol regards the
design environment used while designing the DVI,
while the second regards the completed DVI (the
stage of using the DVI)

The analysis of the gathered information leads to
a conclusion that none of the currently employed

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

W. Winiecki / Computing, 2003, Vol. 2, Issue 3, 98-104

 99

environments does not conform to the requirements
for the generic environment, either concerning the
architecture and the design methodology.

The current concept of DVI design assumed – in
the case of three-layer structure of the design
environment – the creation of the client application
on the server machine and provisioning it to the
client using a computer network, a WWW server
and a web browser. In the case of the classic client-
server environment architecture – designing the
client application on the client machine, which
requires the environment to be installed on the client
computer, or designing the application on the server
computer and installing it permanently on the client
machine after creating an executable version.

The majority of the available commercial
integrated design environments which can be used to

design DVI’s, has a few fundamental drawbacks:
they are operating system dependent on both server-
and client side, they require specialized runtime
environments to be installed on the client machine.
The advantage of these environments is a relatively
simple and rapid design process using visual tools
and the large number of specialized libraries.

Using general-purpose programming languages
such as C/C++ to design DVI’s significantly extends
the design time and therefore makes the project
more expensive. Furthermore, programs written in
C/C++ are still operating system dependent, so
preparing a multi-platform DVI software requires re-
compiling (and possibly modifying) the source code
for each of the target operating systems.

Table 1. The synthetic comparison of programming environments for DVI designing

Architecture elements
LabVIEW,

LabWindows/CVI
(with web
browser)

LabVIEW,
LabWindows/CVI

(without web
browser)

VEE
(with web
browser)

VEE
(without web

browser)

Designing/using the DVI client server client server client server client server

Web browser N/Y Y/[Y] N/N N/N N/Y Y/[Y] N/N N/N

Web server N/N [Y]/Y N/N N/N N/N [Y]/Y N/N N/N

Programming environment fixed
on the machine

N/N Y/[Y] Y/N Y/[Y] N/N Y/Y Y/Y Y/Y

Database N/N [Y]/[Y] N/N [Y]/[Y] N/N [Y]/[Y] N/N [Y]/[Y]

Client application fixed on the
client machine

-/N -/- -/Y -/- -/N -/- -/Y -/-

Environment engine fixed on
the machine

N/Y Y/Y Y/Y Y/Y -/- -/- -/- -/-

Measurement
application features

Measurement control -/Y -/[Y] -/Y -/[Y] -/N -/[Y] -/Y -/[Y]

Result visualisation -/Y -/[Y] -/Y -/[Y] -/Y -/[Y] -/Y -/[Y]

Application compilation
(creating executable version)

N/- Y/- [Y]/- Y/- N/- N/- N/- N/-

Remote application compilation
on the server

- N/- - N/- - N/- - N/-

Environment/ Generated code
operating system dependence

Y/Y Y/Y Y/Y Y/Y Y/Y Y/Y Y/Y Y/Y

Architecture elements
Other

environments
RAD

Java environment
with VJM

Environment [10-
12]

Generic
environment

Designing/using the DVI client server client server client server client server

Web browser N/[Y] N/[Y] N/[Y] [Y]/[Y] Y/Y [Y]/[Y] Y/Y [Y]/[Y]

Web server N/N N/[Y] N/N [Y]/[Y] N/N Y/Y N/N Y/Y

Programming environment fixed
on the machine

Y/[N] Y/N N/N Y/N N/N Y/Y N/N Y/N

Database N/N [Y]/[Y] N/N [Y]/[Y] N/N Y/Y N/N Y/Y

W. Winiecki / Computing, 2003, Vol. 2, Issue 3, 98-104

 100

Client application fixed on the
client machine

-/Y -/- -/[N] - N/N - N/N -

Environment engine fixed on
the machine

Y/Y Y/Y N/Y Y/Y Y/Y Y/Y Y/Y Y/Y

Measurement
application features

Measurement control -/Y -/[Y] -/Y -/[Y] -/Y -/[Y] -/Y -/[Y]

Result visualisation -/Y -/[Y] -/Y -/[Y] -/Y -/[Y] -/Y -/[Y]

Application compilation
(creating executable version)

[Y]/- Y/- N/- Y/- Y/- Y/- N/- Y/-

Remote application compilation
on the server

- N/- - N/- - N/- - Y/-

Environment/ Generated code
operating system dependence

Y/Y Y/Y N/[N] N/[N] Y/Y Y/Y N/N N/N

One of the operating-system independent

languages is the Java language. Software written in
this language requires a runtime environment to be
installed on the computer, yet it is supplied free of
charge by Sun Microsystems. Unfortunately, for the
purpose of DVI design the language has a significant
disadvantage of long application design time,
stemming from the lack of generally available,
complete, specialized libraries supporting the
measurement system and virtual instrument design.
The existing libraries (JavaBeans) contain a strongly
limited set of “measurement’ graphic components.
There are no complete pure Java design
environments allowing for remote designing of the
DVI software from any client machine without
installing a design environment on the computer.
Existing environments, such as NetAcquire [13],
allow only to supply server-side designed Java
applets to the client machines. The proposal of the
Java-based design environment presented in [10]-
[12] uses the LabVIEW environment downloaded
from the server to the client machine, which makes
the client application operating system dependent.
Furthermore, the distribution of linking and
compiling processes between the server machine and
the client machine, and particularly the necessity to
compile the client application on the Clint machine,
makes the design environment less universal and
flexible.

Given the situation it is advised to create a new
DVI design methodology, which would combine the
advantages of the commercial design environments
and the Java-based architecture.

2. THE PROPOSED GENERIC
ARCHITECTURE OF NETWORKED

DVI
The proposed generic architecture of a networked

DVI is shown in Fig. 1.

The architecture blocks should function as
follows:
Client application:
- Communication with the measurement server,

Fig. 1 - Generic architecture of networked DVI.

- Communication with the user, allowing for:
♦ Programming the hardware DVI part controls,
♦ Launching the measurement procedure,
♦ Displaying the measurement results,
♦ Interrupting the measurement process.

Measurement server application:
- Communication with the hardware DVI part,
- Communication with the client application,
- Communication with the database,
- Performing the measurement procedure

(controlling the hardware part and the result
acquisition).

Access server:
- Exposing the client application to the user

through a computer network, for the purpose of
temporarily setting up on the client computer

Database server:
- Storing the measurement data,
- Exposing the archived measurement data to the

users.

I
t

f
j

i
i

Client
application

(DVI
panel)

Operating
system

Client

DVI
hardware

part

Exa-
mined
object

Access
server

Provisione
d client

application

Measure-
ment server

Database
server

Server
Client

Compu-
ter

network

N
et

w
or

k
in

te
rfa

ce

N
et

w
or

k
in

te
rfa

ce

Operating
system

W. Winiecki / Computing, 2003, Vol. 2, Issue 3, 98-104

 101

Network interfaces:
- Allowing client and server computers to

communicate through a computer network.
Operating system:
- Client and server computer management.

In a general case, the creation of DVI software
requires the designing of:
- The communication between the server and the

DVI hardware part (local bus communication
protocol),

- The communication between the client and the
server,

- Server-side measurement procedures (together
with the software drivers for the DVI hardware
part),

- Communication between the client application
and the user (graphical user interface),

- Queuing or blocking different user originated
tasks,

- Data storage (optionally) together with the
mechanisms of exposing the data to the
measurement server and the user,

- User authorization.
The requirements for the generic networked DVI

might be expressed as:
Remote measurement execution and result

visualization form any designer (user) computer
connected to the network,

Communication between the client and the server
using standard, open communication protocols.

Lack of necessity to permanently install the client
software on the client computer (provisioning from
the server machine),

Operating system independence of the client
application (application portability),

Operating system independence of the server
application,

Possibility of concurrent server accesses for
numerous users.

3. THE PROPOSED GENERIC
ARCHITECTURE OF A DISTRIBUTED
NETWORKED ENVIRONMENT FOR

DVI DESIGNING
The generic networked DVI distributed design

methodology should allow for designing all the
specific software blocks building the DVI software,
using any client computer with any operating
system, with no need to permanently install the
client-side design environment, and additionally:

- the design environment might be set up on any
client computer with any operating system,

- the process of designing may be interrupted at
any moment, on any stage of the design, and
resumed at any time using any client computer.

The proposed generic architecture of a distributed
networked environment for DVI designing is
proposed in Fig. 2.

The fundamental elements of the architecture are
the two parts of the design environment:

I. Client part, provisioned to the client by the
access server through the computer network for the
purpose of temporarily installing on the client
computer

II. Server part, containing, among others,
procedures (software drivers) allowing for the
communication with the hardware part as well as a
compiler allowing for the remote compilation of the
client application on the server.

Fig. 2 - The proposal of a generic distributed
environment architecture for DVI designing.

Fig. 3 - Three-layer architecture of distributed
environment with the use of a web browser for DVI

designing.

The mentioned architecture might be realized in
two versions: as a classic client-server architecture
(without a web browser), or as a three-layer
architecture (with a web browser). The three-layer
architecture has significantly richer capabilities,
conforming to the assumptions for the generic
network DVI distributed design methodology.

DVI
hardware

part

I
t

f
j

i
i

Design
environ-

ment

Operating
system

Client
Access
server
Design
environ-

ment

Design
environment

Database
server

Server
Client

Compu-
ter

network
N

et
w

or
k

in
te

rfa
ce

N
et

w
or

k
in

te
rfa

ce

Operating
system

DVI
hardware

part

I
t

f
j

i
i

Operating
system

Client
WWW
server
Design
environ-

ment

Design
environment

Database
server

Server
Client

Compu-
ter

network

N
et

w
or

k
in

te
rfa

ce

N
et

w
or

k
in

te
rfa

ce

Operating
system

Web browser
WWW Design

environment
downloaded

from the
server

W. Winiecki / Computing, 2003, Vol. 2, Issue 3, 98-104

 102

The three-layer architecture of a distributed DVI
design environment, with a web browser installed on
the client machine and a WWW server as the access
server is shown in Fig. 3.

The generic architecture of a distributed DVI
design environment should allow for realizing all of
the assumptions for the generic distributed DVI
designing methodology.

4. THE PROPOSED GENERIC
METHODOLOGY FOR DISTRIBUTED
DESIGNING OF NETWORKED DVI’S

Given the generic distributed DVI design
environment architecture and the server-side
installed environment, it is possible to form the
following methodology for designing networked
DVI’s:

• Downloading the design environment to the
client computer from the server through a computer
network and running it on the client machine.

• Authorized project opening (either new one or
previously partially designed) by the designer on the
client machine.

• Designing a new graphical user interface (or
modifying previously designed one) on the client
machine, using objects available in the client design
environment.

• Designing a new measurement algorithm (or
modifying previously designed one) (meaning a
handling program for events generated by the user
using the DVI graphical panel, by the hardware part
or by the computer) on the client machine using
objects available in the client design environment.

Sending the RVMI design to the server through
the computer network and storing the project in
the database.

Sending the server-side compilation command to
the server through the computer network.

Downloading the compiled project to the client
computer and running the DVI project in the test
mode.

All of the mentioned design activities should be
strongly supported by the design environment.
Furthermore, there should be a possibility to
interrupt the design, to store it in the server-side
database and to resume the designing process on
another client machine.

5. VERIFYING THE PROPOSED

METHODOLOGY OF THE INTERNET-
BASED DVI DESIGN

To verify the validity of the proposed
methodology, a programming environment called
IBDT (Internet-Based Design Tool) has been

developed, which allows for designing and
executing distributed measurement applications.

The following assumptions were made for the
proposed Internet-based DVI design methodology,
inferred from the requirements for the generic
network DVI and the generic design methodology:

Client application operating system
independence,

Server application operating system
independence,

HTTP protocol based communication,
Remote DVI software programming from any

client machine,
Access to the uses projects from any client

machine,
Possibility to store the design state on the server

side,
Remote client application compilation on the

server,
An easy method to add new measurement device

drivers to the environment (lack of need to
recompile the environment after adding a new
hardware to the measurement server).

The possibility to meet the proposes assumptions
were checked. The client- and server application
platform independence can be supplied by using the
Java language. The remote DVI designing from any
client machine might be obtained by realizing the
measurement server software as a web application
accessible from typical web browsers, e.g. using
Java servlets. Usually using the software drivers for
the hardware DVI part is an obstacle to the operating
system independence; preparing wrapper libraries,
acquiring parameters from the input stream, placing
results in the output stream and error messages in the
error stream gives the possibility to overcome this
constraint. In the case of changing the operating
system, e.g. from MS Windows to UNIX, it is
sufficient to replace the wrapper program without
any modifications made to the DVI software.
Furthermore, this solution allows for easy addition
of the new instrumentation device drivers. After
adding a new device to the measurement server it is
sufficient to declare a wrapper name and its
parameters. The possibility to store the DVI design
state of the project works conducted on any client
machine on the server side, might be provided by a
database which would gather information
concerning measurement devices, their functions,
the users and their projects. The additional
advantage of this solution is the possibility to define
access rights to the particular measuring equipment.

The environment for designing of the networked
DVI’s has been created using Java language, which
allows the environment itself, as well as the
applications created with it, to be operating system
independent. The only constraint will be the

W. Winiecki / Computing, 2003, Vol. 2, Issue 3, 98-104

 103

necessity to install the JDK (Java Development Kit)
or the JRE (Java Runtime Environment)
environment, supplied free-of-charge by Sun
Corporation, on the client machine. The client
application of the network DVI created using an
environment conforming to the described
methodology is a Java applet. Designing the client
application involves designing the graphic DVI
panel and the DVI program, building complete DVI
software. The concept of the new approach to DVI
design has been presented in [7] and [8]. The
advanced version of the realized environment,
named IBDT, has been presented in [13].

The IBDT environment consists of two parts:
server-side environment and client-side
environment. The server-side environment is
responsible for communicating with the
measurement devices, the database containing the
information of the devices as well as for compiling
the projects. The client-side environment is used for
designing the panels of the virtual instruments and
generating the code responsible for the measurement
logic. The IBDT environment has to be installed on
the measurement server, where the DVI hardware
part of the DVI is connected. The client-side
environment is downloaded to the client computer
using web browser.

The scheme of the distributed design
methodology for the networked DVI is presented in
Fig.4.

The DVI control panel is created in a visual way,
by placing components representing graphical
control objects and graphical visualizing objects on
the client application’s main panel. The set of
graphical control and visualizing objects, known as
controls, includes: horizontal and vertical sliders of
integer and floating values, knobs of integer and
floating values, single- and double state switches,
light emitting diodes, numeric displays, graphic
displays etc.

The graphic environment supports creating the
DVI software by supplying the list of devices
currently attached to the server as well as their
functions. Inserting the function calls to the DVI
program is realized by wizards leading the user “by
hand” from the device and function selection,
through setting the parameters, up to the point of
inserting a complete call into the code.

The complete source code of the client
application is sent to the server and then compiled
and placed in the web server folder, from where it
can be downloaded and executed on the client
machine.

Fig. 4 - The methodology of internet-based DVI designing
with the use of the IBDT environment.

6. CONCLUSIONS

A new, generic architecture of networked DVI
design environment together with a generic
methodology of networked DVI designing is

Inserting calls to
functions operating on

the measurement
devices

Wizard contacting the
server to retrieve the list

of the devices

Manual source code
completion

Designing event
handling functions Automatic source code

skeleton generation

T

Storing the project on the
server

Project compilation

Placing the completed
project in the server
directory structure

Launching the application

N
Creating JAR and HTML

files

Errors?

Using web browser
downloading the client
environment from the
server and installing it on
the client machine

Launching the client
environment

Logging on to the
environment

Opening a new project

Placing controls on the
panel

Automatic source code
generation

W. Winiecki / Computing, 2003, Vol. 2, Issue 3, 98-104

 104

proposed. The new approach to DVI designing
enable one to remotely design DVI via the Internet,
giving an access to the user’s project from any client
machine, possibility to remotely compile the project
together with storing its state on the server side and
simple adding new measurement device drivers to
the environment without the necessity to recompile
the programming environment. None of existing
programming environments is compatible with the
proposed design methodology. Possibilities of
creating such an environment, which is compatible
with the proposed design methodology for DVI
designing, were shown.

A platform independent, Java-based
programming environment, called IBDT (Internet-
Based Design Tool), has been developed to verify
the validity of the proposed methodology. The three-
layer architecture of the distributed, networked
environment IBDT for DVI designing, with a web
browser installed on the client machine and a WWW
server as the access server, enables many users to
design independently DVIs from their client
computers in the same time. This feature is
especially useful for education purposes.

7. REFERENCES
[1] LabVIEW - User Manual, ver.6.1. National

Instruments Corp., Austin, 2002
[2] R. Wang, L. Wang , C. Geng, H. Zhou. The

design of VPP Software Development Environment.
Proc. IEEE IMTC 2002 Conf., Anchorage, AK, USA,
21-23 May 2002, pp. 403-408.

[3] M. Bertocco, M. Parvis. Platform
Independent Architecture for Distributed
Measurement Systems. Proc. IEEE IMTC 2000
Conf., Baltimore, USA, May 2000, CDROM.

[4] D. Grimaldi, L. Nigro, F. Pupo. Java-Based
Distributed Measurement Systems, IEEE
Transactions. on Instrumentation and Measurement,
Vol.47, No 1, February 1998, pp. 100-103.

[5] D. Grimaldi, M. Marinov. Distributed
Measurement Systems, Measurement, Vol.30, No 4,
Dec. 2001, pp. 279-287.

[6] P. Bobinski, R. Јukaszewski, W. Winiecki.
Designing Distributed DAQ Systems Using JAVA.
Proc. of XVI IMEKO World Congress, Vienna,
September 25-28, 2000, Vol. IV, pp. 45-48.

[7] M. Karkowski, W. Winiecki. A New Java-
based Software Environment for Measuring Systems
Designing. Proc. IEEE IMTC’99 Conf., Budapest,
Hungary, May 21-23, 2001, pp.397-402.

[8] W. Winiecki, M. Karkowski. A New Java-
based Software Environment for Measuring Systems
Designing. Proc. IEEE Trans. on I&M, Vol. 52, No
6, Dec. 2002, pp. 1340-1346.

[9] F. Zubillaga Elorza, C. Allen, I. Leggett. A
Design Automation Toolkit for Virtual
instrumentation. IEEE IMTC’98 Conf., Minnesota,
USA, May 18-21, 1998, pp. 338-341.

[10] A. Ferrero, V. Piuri. A Simulation Tool for
Virtual Laboratory Experiments in a WWW
Environment. IEEE Trans. on I&M, Vol. 48, No 3,
June 1999, pp. 742-746.

[11] L. Benetazzo, M. Bertocco, F. Ferraris, A.
Ferrero, C. Offelli, M. Parvis, V. Piuri. A Web-
Based Distributed Virtual Educational Laboratory,
IEEE Trans. on I&M, Vol. 49, No 2, April 2000,
pp. 349-355.

[12] L. Benetazzo, M. Bertocco, F. Ferraris, A.
Ferrero, A. Offelli, M. Parvis, V. Piuri. A Web-
Based Distributed Virtual Education Laboratory.
Proc. IEEE IMTC 2000 Conf., Baltimore, USA, May
2000. CDROM.

[12] htttp://netacquire.com
[13] W. Winiecki, T. Mielcarz. Internet-based

Methodology for Distributed Virtual Instrument
Designing. Proc. IEEE IMTC’2003 Conf., Vail,
Colorado, USA, May 20-22, 2003, pp. 760-765.

Wieslaw Winiecki received his
MSc and PhD degrees from the
Faculty of Electronics, Warsaw
University of Technology, in 1975
and 1986, respectively. Since
1975 he has been with the
Institute of Radioelectronics of that
university. Since the beginning of
his professional carrier he has

been involved in the activities of the Group on
Computer-aided Measurements concerning the
hardware and software for measuring systems.
Since 1987 he has worked as Assistant Professor
on the problems of measurement automation and
interface systems. He is the author of two books and
over 100 scientific publications. Head of the
Computer-Aided Measurement Laboratory; member
of the Measuring Systems Section of the Metrology
and Instrumentation Committee, Polish Academy of
Science; vice-president of the Measurement
Committee of the Polish Society for Measurement,
Automatic Control and Robotics POLSPAR; and
member of IEEE.

