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1. INTRODUCTION 
The exponentiation problem in a monoid (M, ·)  is 

to compute an, for some a∈ M and integer n > 0. 
When M is a group, we may also raise the problem 
of computing  an for negative integers n. The naive 
method for computing an requires n-1 
multiplications, but as we shall see in this paper we 
can do much better. This is very important because 
exponentiation is heavily used in many working 
fields such as primality testing, cryptography, 
security protocols etc. In such fields, practical 
implementations depend crucially on the efficiency 
of exponentiation. 

Although most of the methods we are going to 
present can be applied to any monoid, we shall deal 
only with modular exponentiation, that is 
exponentiation in Zm where the multiplication is 
ordinary multiplication followed by reduction 
modulo m. Therefore, anything in this paper 
referrers to integers a∈ Zm,   n ≥ 1, and m ≥ 2. 

 We shall mainly discuss four types of 
exponentiation techniques: 

•  general techniques,  where the base and the 
exponent are arbitrary; 

•  fixed-exponent techniques, where the  
exponent is fixed and arbitrary choices of 
the base are allowed; 

•  fixed-base techniques, where the base is 
fixed and arbitrary choices of the exponent   
are allowed; 

•  techniques based on modulus particularities, 
where special properties of the modulus are 
exploited. 

In general, there are two ways to reduce the time 
required to do a modular exponentiation. One way is 
to reduce the number of modular multiplications 
used, and the other is to decrease the time required 
by a single modular multiplication. In  this paper we 
shall focus on the first task. 

 Some of the presented algorithms lead to parallel 
implementations which will be discussed. 

 
2. GENERAL TECHNIQUES 

Most of the general exponentiation techniques, 
i.e., techniques which do not exploit any 
particularity of the exponent or of the base thus 
being generally applicable, can be viewed as 
particular cases or slight variants of the sliding 
window method. This method is based on arbitrary 
block decompositions of the binary representation of 
the exponent.  

More exactly, we shall be sometimes interested in 
decomposing the binary representation of a positive 
integer n in blocks of bits. Moreover, it may be the 
case that we want that all the blocks have a given 
length and thus, an eventual padding on the left with 
0's will be required. For example, we may need that 
the representation (10100)2 be decomposed into 3 
blocks each of length 2. In this case we shall write 
[01,01,00]2.  In general, we shall write                    
n = [wl-1,K ,w0]2 for an arbitrary decomposition of 
the binary representation of a positive integer n. The 
blocks wi are usually called windows. 

 There are several variants of this method, 
depending on how the windows are built and 
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scanned. Usually, the windows can have prescribed 
values or can be built in an adaptive way. They can 
be scanned from left to right or vice-versa. 

Any left-to-right sliding window method is based 
on a decomposition  
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where n = [wl-1,K ,w0]2 is an arbitrary block 
decomposition of the  binary representation of n. We 
can use a certain strategy of choosing the windows 
such that the resulted windows values are in a fixed 
set W. In this case, we obtain the following 
algorithm. 

LRSlidWind(a, n, m, W) 

input: n ≥ 1, m ≥ 2, 0 < a < m, W ⊆  N;  

output: x = an  mod  m;  

    begin  

1.          for each i ∈  W   do  

                   compute xi = ai mod m;  

2.          let  n = (nk-1,K ,n0)2;  

3.           x := 1;  

4.           i := k-1;  

5.           while i ≥ 0  do  

                   begin  

 6.                   find an appropriate bitstring niKnj  

                       such that (ni,K ,nj)2 ∈  W;  

 7.                   for l := 1  to  i-j+1  do  

                             x := x · x mod m;  

 8.            x :=  
2),,( ji nnxx K⋅ mod m;  

 9.                    i := j-1;  

                   end  

     end 

The computation of ai mod m, for all i ∈  W,  can 
be efficiently performed by using the technique of 
addition sequences. In general, a addition sequence 
for a sequence of positive integers n0,K ,nl-1 is a 
addition chain (See Section 3) for max(n0,K ,nl-1) 
which  includes the sequence n0,K ,nl-1. We shall 
discuss now some important possible choices of W: 

•  W = {0,1,3,K ,2w-1}, for some w ≥ 1. The 
parameter w is referred to as the window 
size. This variant has been proposed by 
Thurber[3], by using two kinds of windows: 
zero windows, formed by a single 0, and odd 

windows, which begin and end with 1 and 
have length at most w; 

•  W = {0,1,3,K ,2w+f }, for some w ≥ 1 and 
odd f, 1 ≤ f ≤  2w-3. This case has been 
considered by Möller[4] as an alternative to 
the sliding window method using only zero 
and odd windows for limited memory 
environments. Sometimes, the space 
available is more than sufficient for the 
mentioned sliding window method with the 
window size w but it is not enough for the 
case of window size w+1. In order to take 
advantage of a larger window, we may try to 
apply the above method with the window 
size w+1 as long as the resulted window 
values are in the pre-computed range. The 
method obtained in this way is referred to as 
the left-to-right sliding window method with 
fractional windows; 

•  W = {0,1,2,K ,2w-1}, for some w ≥ 1. This 
variant has been considered by Brauer[5] by 
using only windows of length w. The 
method obtained in this way is  referred to 
as the left-to-right 2w-ary method, or simply, 
as the left-to-right window method for 
exponentiation; 

•  W = {0,1}. In this case we use windows 
formed by a single bit and obtain the so-
called  left-to-right binary method for 
exponentiation. 

Any right-to left sliding window method is based 
on the decomposition 

           21
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where n = [wl-1,K ,w0]2 is an arbitrary block 
decomposition of the  binary representation of n, 
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The last product can be re-arranged by grouping all 
the terms with the same exponent: 
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where W is the set of the predicted windows values. 
Such grouping was first used by Yao[6]. All these 
lead to the following algorithm. 

 

RLSlidWindExp(a, n, m, W)   

input: n ≥ 1, m ≥ 2, 0 < a < m, W ⊆  N;  

output: x = an  mod  m;  
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    begin    

 1.     let  n = (nk-1,K  ,n0)2;  

 2.     y := a;  

 3.     for  every i ∈  W    do   xi := 1;   

 4.     i := 0;  

 5.     while  i ≤  k-1    do    

             begin    

6.             find  an appropriate bitstring njKni  

                such that (nj,K ,ni)2 ∈  W;  

7.      yxx
ijij nnnn ⋅=

22 ),,(),,( : KK  mod  m ;   

8.       
12:

+−

=
ij

yy mod  m ;   

9.             i := j+1;   

             end    

10.    ∏
∈

=
Wj

j
jxx :   mod  m;  

     end  

The set W and the windows can be chosen as in 
the left-to-right sliding method. Depending on the 
set W, some tricks can be used for efficiently 
computing ∏

∈ Wj

j
jx   mod  m from line 10: 

•  W = {0,1,3,K ,2w-1}, for some w ≥ 1. In this 
case the mentioned product can be 
expressed as in [7, answer to Exercise 4.6.3-
9]:  

        )()()( 112
2

312
2

12
xxxxx www LLL

−−−
⋅     (4) 

•  W = {0,1,2,K ,2w-1}, for some w ≥ 1. This 
variant has been considered by Yao[6] by 
using only windows of length w. The 
method obtained in this way is  referred to 
as the right-to-left 2w-ary method, or simply, 
as the right-to-left window method for 
exponentiation. In this case the mentioned 
product can be expressed as in [8, answer to 
Exercise 4.6.3-9]:  

        )()( 112221212
xxxxx wwww LL

−−−−
⋅⋅     (5) 

•  W = {0,1}. In this case we use windows 
formed by a single bit and obtain the so-
called  right-to-left binary method for 
exponentiation. 

The step 7 and the step 8 of the previous 
algorithm  can be performed in parallel.  

Moreover, the expression ∏
∈ Wj

j
jx  mod  m in line 

10 can be evaluated in parallel as follows. Suppose 
we have |W| processors. Each processor can 
compute j

jx  mod m and then, the resulted values can 
be combined by using the so-called  binary fan-in 
multiplication technique (See, for example, [9]). 
Thus, ∏

∈ Wj

j
jx  mod  m can be computed, using 

 /2||W  processors, following the next steps: 

•  Partition W in {W1,W2} so that |W1|≈|W2| 

•  Compute in parallel recursively 

 P1=∏
∈ 1Wj

j
jx  mod  m 

 P2= ∏
∈ 2Wj

j
jx  mod  m 

•  Return P1 · P2 mod  m 
 

3. FIXED-EXPONENT TECHNIQUES  

In general, the problem of finding the smallest 
number of modular multiplications required to 
compute an  mod m is very similar to the problem of 
finding one of the shortest addition chains for n.  

An addition chain of length t for a positive 
integer n is a sequence of integers e0 < · · · < et  such 
that e0 = 1, et = n, and for all 1 ≤  i ≤  t,  there are      
0 ≤  j, h ≤  i-1 such that ei = ej + eh. 

If  e0 < · · · < et is an addition chain for n,              
an  mod m can be computed by evaluating, step by 
step, ie

i ax = mod m, for all 2 ≤  i ≤  t, where, every 
term xi  is obtained as xi = xj ·  xh  mod m, for some    
0 ≤  j, h ≤  i-1, and x1 = a. 

 As we can see, the required number of 
multiplications is exactly the length of the addition 
chain for n. Thus, the shorter the addition chain is, 
the shorter the execution time for modular 
exponentiation is. But one can remark that 
minimizing the exponentiation time is not exactly 
the same problem as minimizing the addition-chain 
length, for several reasons: 

•  the multiplication time is not generally 
constant. For example, the squaring  can  be 
performed faster, or, if an operand is in a 
given fixed set, pre-computation can be 
used;  

•  the time of finding an addition chain should 
be added to the time spent for 
multiplications, and must be  minimized 
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accordingly. 
Nöcker[10] introduced the q-addition chains in 

the context of exponentiation in finite fields nq
F , 

where the computation of a qth power is essentially 
for free in case of normal basis representations. 

 Let q ≥ 2. A q-addition chain of length t for a 
positive integer n is  a list of integers e0 < · · · < et  
such that e0 = 1, et = n, and for all 1 ≤  i ≤  t, either 
there are     0 ≤  j, h ≤  i-1 such that ei = ej + eh, either  
there is 0 ≤  j  ≤  i-1 such that ei = q ·  ej. Nöcker 
proposed a parallel technique for constructing         
q-addition chains. The algorithm is presented below. 

 Parallel_q-addition_chain(n)    

 input:      a positive integer n ;  

 output:   L , a  q -addition chain for  n ;  

    begin    

1.   represent  n  as  n = (nk-1, K , n0 )q ;  

2.      if   n = 1   then   L = {1}  else   

3.          if   q | n      then   

           begin    

4.       compute L' , a  q-addition chain for                         
n/q by a recursive call on the same    
processor;  

5.               L  :=  L'  ∪  {n}  ;  

6.             end   

         else 

   begin   

7.                find  an appropriate  i ,  0 ≤  i < k ;  

8.                compute  the  q-addition chains  L1 ,  L2  

                   for, respectively,  

 n1= ∑
=

i

j

j
jqn

0
  

                     n2= ∑
−

+=

1

1

k

ij

j
j qn  

 by recursive calls on two different                           
processors;  

9.                L  :=    merge (L1,L2) ;  

10.              L  :=  L'  ∪  {n}  ; 

                end   

    end  

    For q = 2, the presented algorithm builds an 
addition chain for n. In this case, only two 
processors are required, one of them assigned to 

compute the powers of two and the other one 
assigned to combine these results. 

In the case of a fixed exponent (that is, an 
exponent which is going to be used for many 
exponentiations), we may spend more time for 
finding a good (q-)addition chain. 

 
4. FIXED-BASED TECHNIQUES  

In several cryptographic systems, a fixed element 
a is repeatedly raised to many different powers. In 
such cases,  pre-computing some of the powers may 
be an option to speed up the exponentiation.  

Assume we pre-compute and store iaα  mod m 
for some positive integers α0,K ,αk-1. We  write 

i

i
aa α

α =  mod m. If we can decompose the 

exponent n as n = ∑
−

=

α
1

0

k

i
iin then  

                  an mod m=∏
=

α

1-

0
i

k

i

nia mod m                     (6) 

There are some techniques for choosing α0,K ,αk-1 
and for computing products as above. 

•  BGMW method 
In case  0 ≤  ni ≤  h  for some  h  and all  0 ≤  i ≤  

k-1,  Brickell, Gordon, McCurly, and Wilson[11] re-

iterated Yao's idea and expressed ∏
=

α

1-

0
i

k

i

nia  mod m as 

∏
=

h

d

d
dx

1

 mod m where xd = ∏
=dn|i i

i
aα  mod m. They 

also re-used a clever method presented in [8, answer 
to Exercise 4.6.3-9]  for efficiently computing 

∏
=

h

d

d
dx

1

 as )()( 11 xxxxx dddd LL−⋅⋅ . 

The mentioned authors have also proposed two 
parallel versions. In the first of them, using h 
processors, the expressions d

dx  should be separately 
evaluated, and then the resulted values should be 
combined using the binary fan-in multiplication 
technique. One serious disadvantage of this variant 
is that each processor may require access to each of 
the pre-computed values 

i
aα , so either a shared 

memory is used or all the pre-computed powers are 
stored at every processor. 

The second version uses k processors, each of 
them computing i

i

naα and then the resulted values are 
combined using the same mentioned technique. 

•  De Rooij method 
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De Rooij[12] found an efficient algorithm for 

computing the product ∏
=

α

1-

0
i

k

i

nia  mod m when ni are 

relatively small, for all  0 ≤  i ≤  k-1. The algorithm 
recursively uses the fact that 

                xn · ym = (x· ym div n)n·  ym  mod n                  (7) 

•  Lim-Lee Method 

Lim and Lee[13] divide the binary representation 
of the k-bit exponent n into h blocks wi of size  α  = 
 k/h , for all 0 ≤  i ≤  h-1, and then each wi  is 
subdivided into v blocks wi,j, of size δ =  б /v , for 
all 0 ≤  j ≤  v-1. This can be easily done by first 
padding the binary representation of the exponent on 
the left with (h·  v· δ - k) zeros. We obtain that  

     mxma
v

j

h

i

w
i

n j
ji mod)(mod

1

0

2
1

0

)( 2,∏ ∏
−

=

−

=

=
δ

    (8) 

where x0 = a, mamxx
i

ii modmod 22
1

αα
== − , for all 

1 ≤  i ≤  h-1. If we let  (ei,α-1 ,K ,ei,0 )2  be the binary 
representation of  (wi)2 , for all  0 ≤  i ≤  h-1 , then  
(wi,j )2 can be binary represented, for all  0 ≤  j ≤  v-1, 
as  (ei,jδ +δ-1 ,K , ei,jδ )2 . From (8) we finally obtain 
that 

mxma
v

j l

h

i

e
i

n lj
lji mod))((mod

1

0

1

0

22
1

0

,∏∏ ∏
−

=

−δ

=

−

=

δ
+δ=   (9) 

Assume now that the following values are pre-
computed and stored: 

X[0][i]= mxxxx eee
h

e
h

hh mod0121
0121 L−−

−−  

X[j][i]= miX
j

mod])[0][( 2 δ

,                           (10) 

for 1 ≤  i ≤  2h-1,  i = (eh-1,K ,e0)2 ,  0 ≤  j ≤  v-1.  

From (9) we finally obtain that  

mIjXma
l

v

j
lj

n l

mod)]][[(mod
1

0

1

0

2
,∏ ∏

−δ

=

−

=

=     (11) 

where Ij,l=(eh-1,jδ +l,K ,e0,jδ +l)2. 

We obtain the following algorithm. 

LimLeeExp  (a, n, m, h, v)   

input:   n ≥ 1, m, h , v ≥ 2, 0 < a < m;  

output:  x = an mod m ;  

pre-computation:    X[j][i], for all 1 ≤  i ≤  2h-1,                     
0 ≤  j ≤  v-1 computed as in (10)  

begin    

1.       find  the binary representation of  n;  

2.       partition  it into  h ·  v  blocks of size  δ  ;  

3.       arrange  these  h ·  v  blocks in a  h ×  v  table     

as in Fig. 1;  

4.         x  :=  1 ;  

5.         for   l  :=  δ -1     downto   0      do    

                begin   

6.       x  :=  x·  x mod m ;  

7.         for   j  :=  v-1     downto   0     do   

                 x  :=  x ·  X[j][I j,l ]  mod  m ;  

            end    

         end 

wh-1, v-1 ··· wh-1, j ··· wh-1, 0 

M  M  M  M  M  

wi, v-1 ··· wi,  j ··· wi,  0 

M  M  M  M  M  

w0, v-1 ··· w0,  j ··· w0,  0 

          ⇓   

eh-1, jδ +δ –1 ··· eh-1,  jδ +l ··· eh-1,  jδ

     

ei,  jδ +δ -1 ··· ei,  jδ +l ··· ei,   jδ 

     

e0,  jδ +δ –1 ··· e0,  jδ +l ··· e0,  jδ 

                                            ⇓   
             Ij, l  

Fig. 1 The exponent processing in the Lim-Lee 
method 

Ij,l is the binary value of the lth bit column of the 
jth column of the mentioned table where the 
numbering of the columns is from right to left and it 
begins with 0. 

The proposed method can be easily parallelized, 
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using v processors. Because 

mIjXma
v

j l
lj

n l

mod]][[mod
1

0

1

0

2
,∏∏

−

=

−δ

=

=    (12) 

the result of the modular exponentiation can be 

obtained by computing each ∏
−δ

=

1

0

2
, ]][[

l
lj

l

IjX  mod 

m on a different processor and combining then the 
resulted values using the binary fan-in multiplication 
technique. Each processor has to store in its local 
memory 2h-1 pre-computed values. 

As Bernstein pointed in [14], Lim-Lee technique 
has already been discovered by Pippenger. 

 
5. TECHNIQUES BASED ON MODULUS 

PARTICULARITIES 
Suppose we have to compute an  mod m and we 

know a factorization of m, m = m1··· ml , where 
m1,K ,ml are distinct primes of about the same size. 
Such cases appear in the basic RSA decryption[15] 

for l = 2, or in multi-prime RSA[16] for l = 3.  

Because  

i
mn

ii
n mmama i mod)mod(mod )1(mod −=  (13) 

for all 1 ≤  i ≤  l, an  mod m can be computed using 
the Chinese Remainder Theorem as the unique 
solution modulo m1··· ml of the system: 

                            








≡

≡

ll mxx

mxx

mod

mod 11

M                        (14) 

where i
mn

ii mmax i mod)mod( )1(mod −= , 1 ≤  i ≤  l. 

An efficient algorithm for  the Chinese Remainder 
Theorem was proposed by Garner[17]. The first who 
used the Chinese Remainder Theorem for modular 
exponentiation were Quisquater and Couvreur[18]. 

We shall present next an exponentiation 
algorithm that can be used for the RSA-decryption, 
and, thus, we shall also consider that the exponent is 
fixed. 

Mod2PrimeExp(a, n, m)    

input:     n ≥ 1, m ≥ 2, 0 < a < m,  m = m1··· ml ,   
where m1,K ,ml are distinct primes; 

output:   x = an mod m ;  

pre-computation:   n1 = n  mod  (m1-1) ,  

                                 n2  = n  mod  (m2-1) ,   

                                 m1 -1   mod  m2 ;   

   begin    

1.      111 mod)mod( 1 mmax n=  ;  

2.      222 mod)mod( 2 mmax n=  ; 

3.       x := x 1+m1((x2-x1)(m1 -1   mod  m2)  mod  m2) ;  

     end . 

The exponentiations in lines 1 and 2 can be 
performed using, for example, the sliding window 
method. Moreover, these exponentiations can be 
performed in parallel, using 2 processors. 

 
6. CONCLUSIONS 

In this paper we have presented the most 
popular methods for modular exponentiation. First, 
we present some techniques for general modular 
exponentiation. The sliding window method using 
only zero and odd windows is, for the optimal 
window size, the best choice in  case of variable 
base and exponent. In the next section we consider 
the case of the fixed exponent. Finding a good (q-
)addition chain  may represent a serious option in 
this case. Moreover, particular (q-)addition chains 
can be combined with faster modular multiplication 
methods. Next we consider the case of fixed base. 
The BGMW method, De Rooij method and Lim-Lee 
method give very good results with the cost of pre-
computing and storing some powers. Some 
particular forms of modulus are exploited in the next 
section. The key point is to perform more 
exponentiations with smaller exponents and combine 
the results  using the Chinese Remainder Theorem. 

  Many of the presented algorithms lead to 
parallel implementations, the performance being 
greatly improved even in the case of a small number 
of available processors. 

For a particular implementation,  it must first 
choose the method which best fits with the purpose 
of the application and the available computational 
power and storage, and then experiment with the 
parameters to optimize performance. 
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