
Sorin Iftene / Computing, 2003, Vol. 2, Issue 3, 49-55

 49

MODULAR EXPONENTIATION

Sorin Iftene 1)

1) Faculty of Computer Science, "Al. I. Cuza" University, Iasi, Romania

e-mail: siftene@infoiasi.ro

Abstract: Exponentiation is a fundamental operation in computational number theory. Primality testing and
cryptography are important working fields in which the exponentiation is heavily used. In this paper we survey the most
popular methods for modular exponentiation: basic techniques, fixed-exponent techniques, fixed-base techniques, and
techniques based on modulus particularities. Some aspects related to parallelism are also discussed.

Keywords: modular exponentiation, basic techniques, fixed-exponent techniques, fixed-base techniques, techniques
based on modulus particularities, binary fan-in technique.

1. INTRODUCTION
The exponentiation problem in a monoid (M, ·) is

to compute an, for some a∈ M and integer n > 0.
When M is a group, we may also raise the problem
of computing an for negative integers n. The naive
method for computing an requires n-1
multiplications, but as we shall see in this paper we
can do much better. This is very important because
exponentiation is heavily used in many working
fields such as primality testing, cryptography,
security protocols etc. In such fields, practical
implementations depend crucially on the efficiency
of exponentiation.

Although most of the methods we are going to
present can be applied to any monoid, we shall deal
only with modular exponentiation, that is
exponentiation in Zm where the multiplication is
ordinary multiplication followed by reduction
modulo m. Therefore, anything in this paper
referrers to integers a∈ Zm, n ≥ 1, and m ≥ 2.

 We shall mainly discuss four types of
exponentiation techniques:

• general techniques, where the base and the
exponent are arbitrary;

• fixed-exponent techniques, where the
exponent is fixed and arbitrary choices of
the base are allowed;

• fixed-base techniques, where the base is
fixed and arbitrary choices of the exponent
are allowed;

• techniques based on modulus particularities,
where special properties of the modulus are
exploited.

In general, there are two ways to reduce the time
required to do a modular exponentiation. One way is
to reduce the number of modular multiplications
used, and the other is to decrease the time required
by a single modular multiplication. In this paper we
shall focus on the first task.

 Some of the presented algorithms lead to parallel
implementations which will be discussed.

2. GENERAL TECHNIQUES

Most of the general exponentiation techniques,
i.e., techniques which do not exploit any
particularity of the exponent or of the base thus
being generally applicable, can be viewed as
particular cases or slight variants of the sliding
window method. This method is based on arbitrary
block decompositions of the binary representation of
the exponent.

More exactly, we shall be sometimes interested in
decomposing the binary representation of a positive
integer n in blocks of bits. Moreover, it may be the
case that we want that all the blocks have a given
length and thus, an eventual padding on the left with
0's will be required. For example, we may need that
the representation (10100)2 be decomposed into 3
blocks each of length 2. In this case we shall write
[01,01,00]2. In general, we shall write
n = [wl-1,K ,w0]2 for an arbitrary decomposition of
the binary representation of a positive integer n. The
blocks wi are usually called windows.

 There are several variants of this method,
depending on how the windows are built and

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Sorin Iftene / Computing, 2003, Vol. 2, Issue 3, 49-55

 50

scanned. Usually, the windows can have prescribed
values or can be built in an adaptive way. They can
be scanned from left to right or vice-versa.

Any left-to-right sliding window method is based
on a decomposition

20
0

21
2

21)(2)(2)())((wwwn aaaa
wlw

l ⋅=
−

− LL (1)

where n = [wl-1,K ,w0]2 is an arbitrary block
decomposition of the binary representation of n. We
can use a certain strategy of choosing the windows
such that the resulted windows values are in a fixed
set W. In this case, we obtain the following
algorithm.

LRSlidWind(a, n, m, W)

input: n ≥ 1, m ≥ 2, 0 < a < m, W ⊆ N;

output: x = an mod m;

 begin

1. for each i ∈ W do

 compute xi = ai mod m;

2. let n = (nk-1,K ,n0)2;

3. x := 1;

4. i := k-1;

5. while i ≥ 0 do

 begin

 6. find an appropriate bitstring niKnj

 such that (ni,K ,nj)2 ∈ W;

 7. for l := 1 to i-j+1 do

 x := x · x mod m;

 8. x :=
2),,(ji nnxx K⋅ mod m;

 9. i := j-1;

 end

 end

The computation of ai mod m, for all i ∈ W, can
be efficiently performed by using the technique of
addition sequences. In general, a addition sequence
for a sequence of positive integers n0,K ,nl-1 is a
addition chain (See Section 3) for max(n0,K ,nl-1)
which includes the sequence n0,K ,nl-1. We shall
discuss now some important possible choices of W:

• W = {0,1,3,K ,2w-1}, for some w ≥ 1. The
parameter w is referred to as the window
size. This variant has been proposed by
Thurber[3], by using two kinds of windows:
zero windows, formed by a single 0, and odd

windows, which begin and end with 1 and
have length at most w;

• W = {0,1,3,K ,2w+f }, for some w ≥ 1 and
odd f, 1 ≤ f ≤ 2w-3. This case has been
considered by Möller[4] as an alternative to
the sliding window method using only zero
and odd windows for limited memory
environments. Sometimes, the space
available is more than sufficient for the
mentioned sliding window method with the
window size w but it is not enough for the
case of window size w+1. In order to take
advantage of a larger window, we may try to
apply the above method with the window
size w+1 as long as the resulted window
values are in the pre-computed range. The
method obtained in this way is referred to as
the left-to-right sliding window method with
fractional windows;

• W = {0,1,2,K ,2w-1}, for some w ≥ 1. This
variant has been considered by Brauer[5] by
using only windows of length w. The
method obtained in this way is referred to
as the left-to-right 2w-ary method, or simply,
as the left-to-right window method for
exponentiation;

• W = {0,1}. In this case we use windows
formed by a single bit and obtain the so-
called left-to-right binary method for
exponentiation.

Any right-to left sliding window method is based
on the decomposition

 21
1

20
0)(2)(2)()(−

−= l
lkk wwn aaa L (2)

where n = [wl-1,K ,w0]2 is an arbitrary block
decomposition of the binary representation of n,

k0=0 and ∑
−

=

=
1

0
||

i

j
ji wk , for all 1 ≤ i ≤ l –1.

The last product can be re-arranged by grouping all
the terms with the same exponent:

 ∏ ∏∏
∈ =

−

=

=
Wj

j

jwi

l

i

w

i

ik
i

ik

aa)()(
})(|{

2
1

0

)(2

2

2 (3)

where W is the set of the predicted windows values.
Such grouping was first used by Yao[6]. All these
lead to the following algorithm.

RLSlidWindExp(a, n, m, W)

input: n ≥ 1, m ≥ 2, 0 < a < m, W ⊆ N;

output: x = an mod m;

Sorin Iftene / Computing, 2003, Vol. 2, Issue 3, 49-55

 51

 begin

 1. let n = (nk-1,K ,n0)2;

 2. y := a;

 3. for every i ∈ W do xi := 1;

 4. i := 0;

 5. while i ≤ k-1 do

 begin

6. find an appropriate bitstring njKni

 such that (nj,K ,ni)2 ∈ W;

7. yxx
ijij nnnn ⋅=

22),,(),,(: KK mod m ;

8.
12:

+−

=
ij

yy mod m ;

9. i := j+1;

 end

10. ∏
∈

=
Wj

j
jxx : mod m;

 end

The set W and the windows can be chosen as in
the left-to-right sliding method. Depending on the
set W, some tricks can be used for efficiently
computing ∏

∈ Wj

j
jx mod m from line 10:

• W = {0,1,3,K ,2w-1}, for some w ≥ 1. In this
case the mentioned product can be
expressed as in [7, answer to Exercise 4.6.3-
9]:

)()()(112
2

312
2

12
xxxxx www LLL

−−−
⋅ (4)

• W = {0,1,2,K ,2w-1}, for some w ≥ 1. This
variant has been considered by Yao[6] by
using only windows of length w. The
method obtained in this way is referred to
as the right-to-left 2w-ary method, or simply,
as the right-to-left window method for
exponentiation. In this case the mentioned
product can be expressed as in [8, answer to
Exercise 4.6.3-9]:

)()(112221212
xxxxx wwww LL

−−−−
⋅⋅ (5)

• W = {0,1}. In this case we use windows
formed by a single bit and obtain the so-
called right-to-left binary method for
exponentiation.

The step 7 and the step 8 of the previous
algorithm can be performed in parallel.

Moreover, the expression ∏
∈ Wj

j
jx mod m in line

10 can be evaluated in parallel as follows. Suppose
we have |W| processors. Each processor can
compute j

jx mod m and then, the resulted values can
be combined by using the so-called binary fan-in
multiplication technique (See, for example, [9]).
Thus, ∏

∈ Wj

j
jx mod m can be computed, using

 /2||W processors, following the next steps:

• Partition W in {W1,W2} so that |W1|≈|W2|

• Compute in parallel recursively

 P1=∏
∈ 1Wj

j
jx mod m

 P2= ∏
∈ 2Wj

j
jx mod m

• Return P1 · P2 mod m

3. FIXED-EXPONENT TECHNIQUES

In general, the problem of finding the smallest
number of modular multiplications required to
compute an mod m is very similar to the problem of
finding one of the shortest addition chains for n.

An addition chain of length t for a positive
integer n is a sequence of integers e0 < · · · < et such
that e0 = 1, et = n, and for all 1 ≤ i ≤ t, there are
0 ≤ j, h ≤ i-1 such that ei = ej + eh.

If e0 < · · · < et is an addition chain for n,
an mod m can be computed by evaluating, step by
step, ie

i ax = mod m, for all 2 ≤ i ≤ t, where, every
term xi is obtained as xi = xj · xh mod m, for some
0 ≤ j, h ≤ i-1, and x1 = a.

 As we can see, the required number of
multiplications is exactly the length of the addition
chain for n. Thus, the shorter the addition chain is,
the shorter the execution time for modular
exponentiation is. But one can remark that
minimizing the exponentiation time is not exactly
the same problem as minimizing the addition-chain
length, for several reasons:

• the multiplication time is not generally
constant. For example, the squaring can be
performed faster, or, if an operand is in a
given fixed set, pre-computation can be
used;

• the time of finding an addition chain should
be added to the time spent for
multiplications, and must be minimized

Sorin Iftene / Computing, 2003, Vol. 2, Issue 3, 49-55

 52

accordingly.
Nöcker[10] introduced the q-addition chains in

the context of exponentiation in finite fields nq
F ,

where the computation of a qth power is essentially
for free in case of normal basis representations.

 Let q ≥ 2. A q-addition chain of length t for a
positive integer n is a list of integers e0 < · · · < et
such that e0 = 1, et = n, and for all 1 ≤ i ≤ t, either
there are 0 ≤ j, h ≤ i-1 such that ei = ej + eh, either
there is 0 ≤ j ≤ i-1 such that ei = q · ej. Nöcker
proposed a parallel technique for constructing
q-addition chains. The algorithm is presented below.

 Parallel_q-addition_chain(n)

 input: a positive integer n ;

 output: L , a q -addition chain for n ;

 begin

1. represent n as n = (nk-1, K , n0)q ;

2. if n = 1 then L = {1} else

3. if q | n then

 begin

4. compute L' , a q-addition chain for
n/q by a recursive call on the same
processor;

5. L := L' ∪ {n} ;

6. end

 else

 begin

7. find an appropriate i , 0 ≤ i < k ;

8. compute the q-addition chains L1 , L2

 for, respectively,

 n1= ∑
=

i

j

j
jqn

0

 n2= ∑
−

+=

1

1

k

ij

j
j qn

 by recursive calls on two different
processors;

9. L := merge (L1,L2) ;

10. L := L' ∪ {n} ;

 end

 end

 For q = 2, the presented algorithm builds an
addition chain for n. In this case, only two
processors are required, one of them assigned to

compute the powers of two and the other one
assigned to combine these results.

In the case of a fixed exponent (that is, an
exponent which is going to be used for many
exponentiations), we may spend more time for
finding a good (q-)addition chain.

4. FIXED-BASED TECHNIQUES

In several cryptographic systems, a fixed element
a is repeatedly raised to many different powers. In
such cases, pre-computing some of the powers may
be an option to speed up the exponentiation.

Assume we pre-compute and store iaα mod m
for some positive integers α0,K ,αk-1. We write

i

i
aa α

α = mod m. If we can decompose the

exponent n as n = ∑
−

=

α
1

0

k

i
iin then

 an mod m=∏
=

α

1-

0
i

k

i

nia mod m (6)

There are some techniques for choosing α0,K ,αk-1
and for computing products as above.

• BGMW method
In case 0 ≤ ni ≤ h for some h and all 0 ≤ i ≤

k-1, Brickell, Gordon, McCurly, and Wilson[11] re-

iterated Yao's idea and expressed ∏
=

α

1-

0
i

k

i

nia mod m as

∏
=

h

d

d
dx

1

 mod m where xd = ∏
=dn|i i

i
aα mod m. They

also re-used a clever method presented in [8, answer
to Exercise 4.6.3-9] for efficiently computing

∏
=

h

d

d
dx

1

 as)()(11 xxxxx dddd LL−⋅⋅ .

The mentioned authors have also proposed two
parallel versions. In the first of them, using h
processors, the expressions d

dx should be separately
evaluated, and then the resulted values should be
combined using the binary fan-in multiplication
technique. One serious disadvantage of this variant
is that each processor may require access to each of
the pre-computed values

i
aα , so either a shared

memory is used or all the pre-computed powers are
stored at every processor.

The second version uses k processors, each of
them computing i

i

naα and then the resulted values are
combined using the same mentioned technique.

• De Rooij method

Sorin Iftene / Computing, 2003, Vol. 2, Issue 3, 49-55

 53

De Rooij[12] found an efficient algorithm for

computing the product ∏
=

α

1-

0
i

k

i

nia mod m when ni are

relatively small, for all 0 ≤ i ≤ k-1. The algorithm
recursively uses the fact that

 xn · ym = (x· ym div n)n· ym mod n (7)

• Lim-Lee Method

Lim and Lee[13] divide the binary representation
of the k-bit exponent n into h blocks wi of size α =
 k/h , for all 0 ≤ i ≤ h-1, and then each wi is
subdivided into v blocks wi,j, of size δ = б /v , for
all 0 ≤ j ≤ v-1. This can be easily done by first
padding the binary representation of the exponent on
the left with (h· v· δ - k) zeros. We obtain that

 mxma
v

j

h

i

w
i

n j
ji mod)(mod

1

0

2
1

0

)(2,∏ ∏
−

=

−

=

=
δ

 (8)

where x0 = a, mamxx
i

ii modmod 22
1

αα
== − , for all

1 ≤ i ≤ h-1. If we let (ei,α-1 ,K ,ei,0)2 be the binary
representation of (wi)2 , for all 0 ≤ i ≤ h-1 , then
(wi,j)2 can be binary represented, for all 0 ≤ j ≤ v-1,
as (ei,jδ +δ-1 ,K , ei,jδ)2 . From (8) we finally obtain
that

mxma
v

j l

h

i

e
i

n lj
lji mod))((mod

1

0

1

0

22
1

0

,∏∏ ∏
−

=

−δ

=

−

=

δ
+δ= (9)

Assume now that the following values are pre-
computed and stored:

X[0][i]= mxxxx eee
h

e
h

hh mod0121
0121 L−−

−−

X[j][i]= miX
j

mod])[0][(2 δ

, (10)

for 1 ≤ i ≤ 2h-1, i = (eh-1,K ,e0)2 , 0 ≤ j ≤ v-1.

From (9) we finally obtain that

mIjXma
l

v

j
lj

n l

mod)]][[(mod
1

0

1

0

2
,∏ ∏

−δ

=

−

=

= (11)

where Ij,l=(eh-1,jδ +l,K ,e0,jδ +l)2.

We obtain the following algorithm.

LimLeeExp (a, n, m, h, v)

input: n ≥ 1, m, h , v ≥ 2, 0 < a < m;

output: x = an mod m ;

pre-computation: X[j][i], for all 1 ≤ i ≤ 2h-1,
0 ≤ j ≤ v-1 computed as in (10)

begin

1. find the binary representation of n;

2. partition it into h · v blocks of size δ ;

3. arrange these h · v blocks in a h × v table

as in Fig. 1;

4. x := 1 ;

5. for l := δ -1 downto 0 do

 begin

6. x := x· x mod m ;

7. for j := v-1 downto 0 do

 x := x · X[j][I j,l] mod m ;

 end

 end

wh-1, v-1 ··· wh-1, j ··· wh-1, 0

M M M M M

wi, v-1 ··· wi, j ··· wi, 0

M M M M M

w0, v-1 ··· w0, j ··· w0, 0

 ⇓

eh-1, jδ +δ –1 ··· eh-1, jδ +l ··· eh-1, jδ

ei, jδ +δ -1 ··· ei, jδ +l ··· ei, jδ

e0, jδ +δ –1 ··· e0, jδ +l ··· e0, jδ

 ⇓
 Ij, l

Fig. 1 The exponent processing in the Lim-Lee
method

Ij,l is the binary value of the lth bit column of the
jth column of the mentioned table where the
numbering of the columns is from right to left and it
begins with 0.

The proposed method can be easily parallelized,

Sorin Iftene / Computing, 2003, Vol. 2, Issue 3, 49-55

 54

using v processors. Because

mIjXma
v

j l
lj

n l

mod]][[mod
1

0

1

0

2
,∏∏

−

=

−δ

=

= (12)

the result of the modular exponentiation can be

obtained by computing each ∏
−δ

=

1

0

2
,]][[

l
lj

l

IjX mod

m on a different processor and combining then the
resulted values using the binary fan-in multiplication
technique. Each processor has to store in its local
memory 2h-1 pre-computed values.

As Bernstein pointed in [14], Lim-Lee technique
has already been discovered by Pippenger.

5. TECHNIQUES BASED ON MODULUS

PARTICULARITIES
Suppose we have to compute an mod m and we

know a factorization of m, m = m1··· ml , where
m1,K ,ml are distinct primes of about the same size.
Such cases appear in the basic RSA decryption[15]

for l = 2, or in multi-prime RSA[16] for l = 3.

Because

i
mn

ii
n mmama i mod)mod(mod)1(mod −= (13)

for all 1 ≤ i ≤ l, an mod m can be computed using
the Chinese Remainder Theorem as the unique
solution modulo m1··· ml of the system:

≡

≡

ll mxx

mxx

mod

mod 11

M (14)

where i
mn

ii mmax i mod)mod()1(mod −= , 1 ≤ i ≤ l.

An efficient algorithm for the Chinese Remainder
Theorem was proposed by Garner[17]. The first who
used the Chinese Remainder Theorem for modular
exponentiation were Quisquater and Couvreur[18].

We shall present next an exponentiation
algorithm that can be used for the RSA-decryption,
and, thus, we shall also consider that the exponent is
fixed.

Mod2PrimeExp(a, n, m)

input: n ≥ 1, m ≥ 2, 0 < a < m, m = m1··· ml ,
where m1,K ,ml are distinct primes;

output: x = an mod m ;

pre-computation: n1 = n mod (m1-1) ,

 n2 = n mod (m2-1) ,

 m1 -1 mod m2 ;

 begin

1. 111 mod)mod(1 mmax n= ;

2. 222 mod)mod(2 mmax n= ;

3. x := x 1+m1((x2-x1)(m1 -1 mod m2) mod m2) ;

 end .

The exponentiations in lines 1 and 2 can be
performed using, for example, the sliding window
method. Moreover, these exponentiations can be
performed in parallel, using 2 processors.

6. CONCLUSIONS

In this paper we have presented the most
popular methods for modular exponentiation. First,
we present some techniques for general modular
exponentiation. The sliding window method using
only zero and odd windows is, for the optimal
window size, the best choice in case of variable
base and exponent. In the next section we consider
the case of the fixed exponent. Finding a good (q-
)addition chain may represent a serious option in
this case. Moreover, particular (q-)addition chains
can be combined with faster modular multiplication
methods. Next we consider the case of fixed base.
The BGMW method, De Rooij method and Lim-Lee
method give very good results with the cost of pre-
computing and storing some powers. Some
particular forms of modulus are exploited in the next
section. The key point is to perform more
exponentiations with smaller exponents and combine
the results using the Chinese Remainder Theorem.

 Many of the presented algorithms lead to
parallel implementations, the performance being
greatly improved even in the case of a small number
of available processors.

For a particular implementation, it must first
choose the method which best fits with the purpose
of the application and the available computational
power and storage, and then experiment with the
parameters to optimize performance.

Acknowledgements This work is part of the MpNT
Project on designing a multi-precision number
theory package. I am grateful to all members of this
project for useful discussions and suggestions.

7. REFERENCES
[1] S. Iftene. Modular exponentiation. Pre-
Proceedings of the NATO Advanced Research
Workshop “Concurent Information Proccesing and
Computing”, July 5-10, 2003, Sinaia, Romania, pp.
125-144
[2] F.L. Tiplea, S. Iftene, C. Hritcu, I. Goriac,
R.M. Gordan and E. Erbiceanu. MpNT: A Multi-

Sorin Iftene / Computing, 2003, Vol. 2, Issue 3, 49-55

 55

Precision Number Theory Package. Number-
Theoretic Algorithms (I). Technical Report TR03-02
(2003), Faculty of Computer Science “Al.I.Cuza”
University of Iasi. http://www.infoiasi.ro/~tr/tr.pl.cgi
[3] E.G. Thurber. On addition chains l(mn) ≤ l(n)-b
and lower bounds for c(r), Duke Mathematical
Journal 40 (1973), pp. 907-913
[4] B. Möller. Improved Techniques for Fast
Exponentiation. Proceedings of the Workshop
“Information Security and Cryptology ICISC 2002”,
pp. 298-312
[5] A. Brauer. On Addition Chains, Bulletin of the
American Mathematical Society 45 (1939), pp. 736-
739
[6] A. C. Yao. On the evaluation of powers, SIAM
Journal on Computing 5 (1976), pp. 100-103
[7] D.E. Knuth. The Art of Computer Programming.
Seminumerical Algorithms. Addison-Wesley, third
edition, 1997
[8] D.E. Knuth. The Art of Computer Programming.
Seminumerical Algorithms. Addison-Wesley, second
edition, 1981
[9] D.R. Stinson. Some observations on parallel
algorithms for fast exponentiation in GF(2n). SIAM
Journal on Computing 19 (4) (1990), pp. 711-717
[10] M. Nöcker. Some remarks on parallel
exponentiation. Extended abstract. Proceedings of
the Workshop “International Symposium on
Symbolic and Algebraic Computation ISSAC 2000”,
pp. 250-257
[11] E. F. Brickell, D. M. Gordon, K. S. McCurley
and D. B. Wilson. Fast Exponentiation with
Precomputation: Algorithms and Lower
Bounds,preprint,1995.
http://research.microsoft.com/~dbwilson/bgmw/
[12] P. De Rooij. Efficient exponentiation using
precomputation and vector addition chains.
Proceedings of the Workshop “EUROCRYPT
1994”, pp. 389-399
[13] C. H. Lim and P.J. Lee. More flexible
exponentiation with precomputation. Proceedings of
the Workshop“CRYPTO 1994”, pp. 95-107
[14] D. J. Bernstein. Pippenger's exponentiation
algorithm, preprint, 1991. http://cr.yp.to/papers.html
 [15] R. L. Rivest, A. Shamir and L. M. Adelman. A
Method for Obtaining Digital Signatures and
Public-key Cryptosystems. Communications of the
ACM 2 (21) (1978), pp. 120-126
[16] T. Collins, D. Hopkins, S. Langford and M.
Sabin. Public Key Cryptographic Apparatus and
Method. United States Patent 5, 848, 159 (1997)
 [17] H. Garner. The residue number system. IRE
Transactions on Electronic Computers EC-8 (1959),
pp. 140-147
 [18] J.-J. Quisquater and C. Couvreur. Fast
decipherment algorithm for the RSA public-key

cryptosystem. IEE Electronics Letters 8 (21)
(1982), pp. 905-907

Sorin Iftene has received his
M.Sc. and B.Sc. degrees at
Faculty of Computer Science,
"Al. I. Cuza" University, Iasi,
Romania, and is currently an
assistant professor at the same
faculty. He is interested in
algebraic foundations of
computer science, cryptography

and computer security.
He is presently engaged in the MpNT project at

the Faculty of Computer Science, Iasi. MpNT is a
free C++ library that offers high performance
computations on numbers with infinite precision. The
package will soon be released, and another phase
of the project will commence – the development of a
library offering cryptography primitives.

