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Abstract: The aim of this paper is twofold. First, we present the basic principles and point out the main difficulties in 
writing a library supporting operations with arbitrarily large numbers. Aspects such as library structure, number 
representation, algorithm selection, memory management, etc., are discussed and exemplified on the most efficient 
libraries developed. Secondly, we present work in progress regarding the design of a new multi-precision library, 
MpNT. Comparisons between our library and the existing ones show that it achieves high performance. 
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1. INTRODUCTION 
Cryptography applications and research require 

multiple precision computations at high speed. 
Internet security protocols, probabilities and 
statistics and numerical calculus are other domains 
where very large numbers are often involved. 
Therefore, computations with large numerical data 
(having more than 10 or 20 digits, for example) need 
specific treatment. 

Most programming languages, as C and C++, 
provide only limited precision numerical data types. 
This precision is architecture dependent and is often 
not high enough. Recent programming languages, 
like Java™ and Python, have build-in multi-
precision capabilities, but being highly portable 
often also implies an unacceptable efficiency loss. 

Mathematical software, such as Maple or 
Mathematica, also offers the possibility to work with 
unlimited precision. Such software can be used to 
easily prototype algorithms or to compute constants 
but it is usually neither very efficient nor portable. 

The most efficient solution for multiple precision 
computing is the use of a multi-precision library. 
Several such libraries have been proposed, most of 
them being free software released under the GNU 
General Public License. 

LIP [1] is one of the first libraries for arbitrary 
length integer arithmetic. It was originally written by 
Arjen K. Lenstra and was later maintained by Paul 
Leyland. Being written in pure ANSI C, it is highly 
portable but not very efficient. 

LiDIA [2] is a library for computational number 
theory, developed at the Technical University of 

Darmstadt and organized by Thomas Papanikolau. 
LiDIA provides a collection of highly optimized 
implementations of various multi-precision data 
types and time-intensive algorithms. 

CLN [3] was written by Bruno Haible and is 
currently maintained by Richard Kreckel. It is a C++ 
library that implements elementary arithmetical, 
logical and transcendental functions and has a rich 
set of classes. CLN is memory and speed efficient. 

NTL [4] is written and maintained mainly by 
Victor Shoup. It is portable and can be used in 
conjunction with GMP for enhanced performance. 

PARI [5] was developed at Bordeaux by a team 
led by Henri Cohen and is capable of performing 
formal computations on recursive types at high 
speed. It is primarily aimed at number theorists and 
has an extensive algebraic number theory module. 

GMP [2] was developed by Törbjord Granlund 
and the GNU free software group. GMP is a C 
library for arbitrary precision arithmetic with a 
general emphasis on speed. It uses highly optimized 
assembly code for the most common inner loops for 
a lot of CPUs. In fact GMP is generally faster than 
any other multi-precision library. 

MpNT is a multi-precision number theory 
package developed at the Faculty of Computer 
Science, "Al. I. Cuza" University of Iaşi under the 
guidance of Professor, Ph.D. Ferucio Laurenţiu 
Ţiplea. This new ISO C++ library was started as a 
base for cryptographic applications. However, it 
may be used in any other domain where efficient 
large number computations are required. For the 
time being the library supports integer, modular and 
floating point arithmetic with practically unlimited 
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precision. It is both speed efficient and highly 
portable without disregarding code structure and 
clarity. MpNT is freely available according to the 
GNU Lesser General Public License. Therefore, any 
criticism and suggestions are warmly welcomed. 

In this paper we present some basic principles in 
writing a multi-precision library. Three main goals 
are to be achieved when implementing such a 
library: efficiency, portability and functionality. 
Developing involves making a series of choices and 
tradeoffs that will essentially affect the 
characteristics of the final product. For a number 
theory library it is hard to completely satisfy all 
these requirements. Thus, many products of this kind 
have been developed, giving the user the possibility 
to choose. There is no unanimously accepted 
solution to this matter, and new approaches are still 
found every day. Nevertheless, certain common 
lines should be followed while designing such a 
library. 

The paper is organized into two parts. The first 
part presents basic principles for designing a multi-
precision number theory library. The second part 
provides comparisons between MpNT and four well-
known libraries: GMP, CLN, PARI and NTL.  

 
2. PROGRAMMING LANGUAGE 

A well-written program using only assembly 
code is very fast, but lacks portability and is very 
hard to maintain. On the other side, developing the 
same program in a high-level language will make it 
easily portable, easy to understand and maintain, but 
some efficiency will be lost. Therefore, a 
compromise solution is to use both. As a high-level 
language, C++ makes a good choice because it 
retains C’s ability to deal efficiently with the 
fundamental objects of the hardware (bits, bytes, 
words, addresses, etc.), while providing the 
flexibility of an object-oriented language. Assembly 
language should be used only for the most 
frequently called functions. 

Therefore, MpNT uses ISO C++ for the main 
part of the library because it is highly portable and 
the fastest high-level programming language 
available. A clean and intuitive interface was built 
using OOP. Classes provide data hiding, guaranteed 
initialization of data, implicit type conversion for 
user defined types and mechanisms for overloading 
operators. We also took advantage of the superior 
type checking, default arguments and inline 
substitution of functions, and the reference type 
provided by C++. 

Assembly language is used only for the small 
machine-dependent kernel that is intended to 
increase the performance of the library, because it is 
closest to what the hardware architecture really 

provides. For portability purposes, this set of 
routines is also available in plain C++. 
 

3. LIBRARY STRUCTURE 
Developing an easy to maintain and extend 

library requires some sort of modular structure. The 
best approach is to group the functions in layers, 
each of them having a different level of abstraction. 
It is desirable that only low-level functions have 
direct access to number representation.  

The MpNT library is structured into two layers: 
the kernel and the C++ classes. 

The MpNT kernel contains small, carefully 
optimized routines that are easy to rewrite for 
different architectures. Most of the kernel functions 
operate on arrays of digits, such as: comparisons, 
bitwise operations and basic arithmetical operations. 
However, they are risky to use because they assume 
that certain relations between operands hold and that 
enough memory has been allocated for the results. 
Special optimizations apply for the Intel IA-32 and 
compatible processors under Windows and Linux. 
Because of similarities in the number representation, 
the capability of using the GMP [6] or even CLN [3] 
kernel as an alternative may be easily added. 

The application programming interface is 
intended to be as intuitive, consistent, and easy-to-
use as possible. This can be achieved by providing 
the classes that best model the mathematical 
concepts, hiding the actual implementation. In our 
case, the C++ classes, such as MpInt, MpMod and 
MpFloat, provide a safe and easy to use interface. 
These classes also hide the functions of the kernel; 
therefore any code relying upon them will have a 
high level of independence. Backward binary 
compatibility throughout the library development is 
more than desirable. 

The MpInt class provides multi-precision integer 
arithmetic: addition, subtraction, multiplication, 
division, greatest common divisor, bit operations etc. 
All available operators for the int type are also 
defined for objects of the MpInt class; therefore 
they can be regarded as normal integers, but with no 
size restrictions. 

The MpMod class provides multi-precision 
modular arithmetic. Only one modulus can be used 
at a specific time, and the numbers are automatically 
reduced. Functions determining the multiplicative 
inverse and performing modular multiplication and 
exponentiation are provided along with other basic 
modular operations (addition, subtraction etc.). 

The MpModulus and MpLimLee classes offer 
high performance modular reduction, multiplication 
and exponentiation using pre-computed modulus or 
base information. 

The MpFloat class provides floating point 
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arithmetic with user-selectable precision. Each 
object has its own precision limited only by 
available memory. 

 
4. NUMBER REPRESENTATION 

Number representation highly depends on the 
features provided by the hardware architecture, 
including: registers’ dimensions, instruction set, 
cache sizes, parallelism level provided etc. 

MpNT uses signed-magnitude representation for 
its multi-precision integers (members of the MpInt 
class). The current implementation of the class 
includes four private attributes: 
- a field that uses every bit independently to store a 
logical value (a flag). One bit stores the sign of the 
number. Two more bits keep special status 
information to avoid unnecessary copying by the 
overloaded operators. The other bits are yet unused. 
- the magnitude of the number, an array of digits 
stored “little-endian”. For best performance digits 
have the size of the microprocessor’s word. 
- the number of digits used for the magnitude. The 
number zero is represented by setting this field to 
zero. 
- the number of digits allocated for the magnitude. 

This representation provides quick access to class 
information and is easily extendible; the yet unused 
flag bits may also store other information regarding 
a multi-precision integer. 

Floating point numbers (MpFloat class) currently 
have three private attributes: 
- the mantissa of the number, a multi-precision 
integer. 
- the precision of the number, a simple-precision 
integer, determining the location of the radix point. 
- the virtual precision of the number, a simple-
precision integer, determining the number of digits 
past the radix point used for further computations. 

This allows us to change the precision of the 
number very fast and without truncation. The use of 
whole digits also facilitates fast floating point 
computations. 

 
5. ALGORITHM SELECTION 

In many cases several algorithms may be used to 
perform the same operation depending on the length 
of the operands. Of course, the ones with the best O-
complexity are preferred when dealing with huge 
numbers, but on smaller operands a simpler, highly 
optimized algorithm may perform much better. This 
is why careful performance testing is required to 
find out the limits of applicability. 

Even though in MpNT we implemented more 
than one algorithm for some operations, the interface 
functions will use only the routines or the 

combination of routines proved to be most efficient. 
A detailed correctness and complexity analysis of 
the implemented algorithms can be found in [7]. 

Usually, while looking for efficient 
implementations various tricks are used and a new 
problem arises: the correctness of implementation. 
This can be regarded as an instance of a more 
general problem, the software validation problem. 
Much work has been devoted to this problem, 
especially to find automatic procedures for 
validation. The Coq proof assistant [8] is one such 
tool. It has been used, for instance, to validate the 
GMP implementation of the Zimmermann’s square 
root algorithm [9]. Proofs are developed using the 
correctness tool to deal with imperative features of 
the program. The formalization is rather large (more 
than 13000 lines) and requires some advanced 
techniques for proof management and reuse (see 
[10] for other attempts of GMP procedure 
validations). 

 
6. MEMORY MANAGEMENT 

The most frequently used memory allocation 
policy is on-demand allocation (allowing the user to 
explicitly allocate memory). Additional space may 
be transparently allocated whenever a variable does 
not have enough (e.g., GMP, NTL). This is easy to 
implement but the user has responsibilities in 
managing memory. This drawback may be 
eliminated by using a garbage collector (e.g., CLN), 
but the speed overhead could be unacceptable. 
Memory leaks may also be prevented by the use of 
class destructors. Some libraries give the user the 
possibility to choose the allocation technique that 
best suits his application or even to use his/her own 
memory management routines (e.g., LiDIA). 

The memory management policy adopted in 
MpNT is based on explicit allocation of memory. To 
avoid frequent reallocation, when the exact amount 
of necessary memory is known, the user may make 
such a request. For the same reason, whenever 
reallocation occurs, we provide a little more space 
than needed. Memory may be released either on 
demand or automatically by the class destructors. 

 
7. ERROR HANDLING 

The desirable approach is to signal the occurred 
errors, allowing the user to choose the actual 
handling policy. This involves supplementary 
checking, it is time consuming and can make the 
code harder to read and maintain. Therefore a 
frequent approach is to ignore errors, which surely 
involves some risks, but eliminates the overhead. 

We chose not to ignore errors so MpNT uses the 
throw-try-catch mechanism provided by C++ to 
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signal exceptions to the user. 
 

8. COMPARISONS 
The comparisons were performed on a small set 

of basic functions: multiplication (Fig.1), greatest 
common divisor (Fig.2), modular reduction (Fig.3) 
and modular exponentiation (Fig.4). The time versus 
operand size (measured in 32 bits digits) graphs 
below illustrate that the best results belong to GMP 
and CLN immediately followed by our library. 
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The versions of the libraries compared were: 

CLN 1.1.5, GMP 4.1, MpNT 0.1pre1, NTL 5.2 and 
PARI 2.2.4.alpha. Default options were used for 
building and installing these libraries from sources. 
The test system had an 800MHz AMD processor 
and was running Linux (Mandrake 9.0).  
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