
Violeta Felea, Bernard Toursel / Computing, 2003, Vol. 2, Issue 3, 33-38

 33

MIDDLEWARE-BASED LOAD BALANCING FOR COMMUNICATING
JAVA OBJECTS

Violeta Felea, Bernard Toursel

 LIFL (UMR CNRS 8022) - University of Science and Technology of Lille

59655 Villeneuve d’Ascq CEDEX - FRANCE
Ecole Polytechnique Universitaire de Lille (Polytech’Lille)

{felea, toursel}@lifl.fr

Abstract: In the context of heterogeneous networks, like clusters of workstations, the design of programming and exe-
cution environments aims to automatically adapt execution to fluctuations that may appear in the execution of distrib-
uted and parallel Java applications. ADAJ, Adaptive Distributed Applications in Java, addresses this problem, dealing
with both parallelism and distribution features. Ease of programming is achieved through an object and method paral-
lelism paradigm. The trade-off between transparency of such a parallelism expression and efficiency is solved by
application redeployment, meant to maintain a good performance level. This is the purpose of the load balancing in
ADAJ, a dynamic and transparent tool at the middleware level, which exploits information issued from observation of
the application, in order to consider both object activity and communication patterns. Communications generate
attraction relations between objects and this article presents the evaluation of the load balancing mechanism for a type
of asynchronous applications in which the communication aspect is important.

Keywords: − dynamic load balancing, load metrics, communication patterns

1. INTRODUCTION
Heterogeneous systems rise two kinds of

problems for distributed applications. The first
aspect concerns transparency: applications should be
designed as transparently as possible of the
heterogeneity of available resources (CPU, memory,
operating system). The second aspect concerns
execution, which is supposed to support
irregularities in the evolution of the application and
in availabilities of resources (share of CPU and/or
memory with other processes, new provided
resources). Java homogenises the heterogeneous
platforms through its virtual machine (JVM): issues
of operating systems, word size or endianness
disappear. However, another layer of abstrac-tion,
the resource consumption, is missing. Thus,
execution cannot be automatically adap-ted to
fluctuations which may appear during execution of
Java applications.

In the context of distributed execution platforms
formed by several Java virtual ma-chines, hosted by
a cluster of workstations, efficiency of execution
should be achieved not only through conceptual
tools (oriented towards distribution or parallelism),
but also through a load balancing mechanism.

The dynamic load balancing scheme in ADAJ
(Adaptive Distributed Applications in Java) is a
transparent tool at the middleware level which
makes the execution reactive to irregularities in the
evolution of the application and to changes in the
resource availabilities. This adaptability requires the
use of a monitoring tool, concurrent with the
execution of an application, and not prior to it.
Monitoring is done using an observation mechanism
[1] of the application which allows to predict its
evolution in future, depending on the recent past.
The ADAJ load balancing strategy uses this kind of
information in order to correct, dynamically,
detected load imbalances by good initial object
distribution or by object redistribution. The
JavaParty distributed object model [2] offers the
needed features to achieve our objectives: remote
creation and migration of remote objects.

Dynamic object migrations are requested when
changes in the evolution of the application are
detected, with the help of the observation
mechanism. Execution is thus made adaptive to
dynamic modifications. Similar work is presen-ted
in [3], where allocation decisions are made at
runtime, depending on the dynamic load measures.
Unlike ADAJ, the language defines directives that
specify allocation needs for application components.

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

Violeta Felea, Bernard Toursel / Computing, 2003, Vol. 2, Issue 3, 33-38

 34

The focus of this article is on the load balancing
strategy which considers only the evolution of the
application for good object redistribution, in the
context of communicating objects. We present the
approach of a dynamic and transparent intra-
application load balancing strategy in ADAJ and its
evaluation on a concrete application. The article is
organised as follows. The next section draws the
features of the ADAJ load balancing mechanism
and the interactions between its different
components. Section 3 makes a short overview of
the observation mechanism, while section 4
describes how information issued from the
application monitoring is exploited. Section 5
discusses implementation issues concerning the load
balancing architecture. Experimental results on a
communicating application are given next. Finally,
section 7 summarises.

2. LOAD BALANCING SCHEME

In ADAJ, efficiency in the execution of
applications is achieved through the use of a
profiling tool. This is aimed towards the application
behaviour: objects are observed in order to describe
their activity during execution. A distributed graph
of objects is drawn, dynamically, which reflects both
communi-cation links and object activity. The idea
of disposing of a graph of communicating objects is
not original: dynamic graph partitioning has been
proposed for load distribution [4], but in the context
of a one-unit graph. Load redistribution based on a
distributed graph is a more complex operation,
which needs either centralising information, or
diffusing it. Both of these solutions are expensive,
and consequently, in ADAJ, no optimal solution is
searched, but an improvement of object distribution,
in respect of load balance and communicating
objects locality (remote objects communicating
intensively should be brought close together).

The observation information is exploited by the
three components of the load balancing mechanism:

• the observation component,
• the decision component,
• the correction component.
The observation component contains a load

extractor and the object relation observer. The first
defines the load of a virtual machine, depending on
the observation information (offered by the second)
and the number of threads. Every machine load is
communicated periodically to the decision
component which analyses it and determines the
machines which are participating in the load
redistribution. The machines concerned are notified
and they apply, in a distributed manner, the
correction algo-rithm, which achieves the
redistribution process.

3. OBSERVATION MECHANISM OF
RELATIONS

Remote objects are particularly interesting in
load balancing mechanisms because they are able to
migrate. In ADAJ, the load balancing mechanism is
based on an observation tool [1] of the evolution of
the application. The observation concerns only the
remote objects, as they can balance load by
migration. The remote objects which are to be
observed are called global objects. The Java
standard objects, called local objects, are not remote
accessible, cannot migrate and are not observed.

The ADAJ observation mechanism of relations
maintains a history of the relations of every global
object with the environment. We distinguish three
types of relations:

• of a global object with another global object
(on the same, or different virtual machines),

• of a global object with all other local objects,
• of all other global or local objects with a

particular global object.
In object-oriented environments, these relations

are generated by method invocations. This remark
allowed us to quantify relation intensity by the
number of method invocations and not by the
method execution time or parameter size as in other
projects (Dome [5] or Isatis [6]). Method
invocations generate work on global or local objects,
and work can only be created through method
invocations.

For each of these relations, counters are
associated. Counter values are submitted to a
smoothing mechanism in order to take into account
both past evolution and present value. Smoothing is
required because the current behaviour should be
weighted with the previous ones, since sudden, not
persistent fluctuations are neglected.

This ingenious idea of relation quantification is
less costly and less complex than other techniques
and gives a rating of object activity.

4. EXPLOITING OBSERVATION

INFORMATION
Load Extractor. Load in a Java virtual machine is
generated by the activity of the objects which it
contains. Methods invoked on objects, generating
the activity, are executed in the main thread of the
virtual machine, or in the user threads. Thus, the
load of a virtual machine is generally measured by
the number of threads. In fact, in the JVM there is
only one thread running (on a mono-processor
machine), the other threads being runnable or not
runnable. The portable information which can be
extracted, from the virtual machine, is the number of
active threads, which can be either runnable or not

Violeta Felea, Bernard Toursel / Computing, 2003, Vol. 2, Issue 3, 33-38

 35

runnable. The difference between the two kinds of
threads is done in ADAJ using the workload of
JVMs, the two criteria defining the load of a JVM.
The workload of a JVM, noted WP, sums the
workloads of every global object the JVM contains.
As mentioned before, an object’s workload is
generated by method invocations. All input
invocations and also invocations towards local
objects characterise the workload of a global object.
Decision Component. The decision component
classifies JVMs as overloaded, normally loaded and
underloaded. The algorithm is the follo-wing:

• if there are a lot of threads,
o if WP is close to zero (not runnable threads),

then JVM is underloaded,
o if WP is important (running threads), then

JVM is overloaded,
• if there are few threads (no work in the JVM),

then JVM is underloaded,
• if there is a normal number of threads,
o if WP is close to zero (not runnable threads),

then JVM is underloaded.
Close to zero and important values are defined

using a customised K-Means algorithm: in a
preliminary phase, detection of their existence is
done (using statistical metrics, as variation
coefficient), and then, if it is the case, the values
having these properties are identified, using the K-
Means method. This identification forms three
classes of values: the class of values close to the
smallest value (associated to the close to zero
values), the class of values close to the biggest value
(associated to the important values), and the class of
values around the mean (associated to the normal
values). These associations are possible because
"close to zero"/"few" and "important"/"a lot"
characteri-sations (for the JVM workload and
respectively, for the number of threads) are relative,
and not absolute.
Correction Component. The correction compo-
nent concerns only the overloaded machines, which
decide on the objects to remove and on their
destination.

Between all global objects a virtual machine has,
some are particularly interesting to remove: objects
which do not have strong communi-cation links
towards the other global objects remaining on the
machine, and those which have an average
workload. The first feature avoids the generation of
new remote communi-cations, while the second
assures some work-load will be really removed.

The two constraints are simultaneously con-
sidered using an aggregation function, the weighted
sum [7]. This technique imposes that values were on
a same scale, that’s why relative values are
considered.

The best classified object, in the respect of the
previous function, is to be moved to another virtual
machine. This decision depends on its external
attraction (communication with global objects in
another address space), and on the workload of the
destination machine. The previous technique of
aggregation is used in order to take into account both
criteria.

5. TECHNICAL ISSUES

The three components of the load balancing
mechanism (see figure 1) are instances of the:
LocalLoad remote class (for the load extractor),
LoadDecision local class (for the decision
component) and LoadBal remote class (for the
correction component).

The LocalLoad object is responsible of extracting
load measures, from both the observation
mechanism (implemented by a local
AsynchObserver object, which is updated by a
remote LocalJVMObserver object), and the
execution environment of the Java Virtual Machine
(number of threads). The two measures are packed
in a local InfoLoad object, and transmitted to the
decision component.

The LoadDecision object is unique and has the
functionality of applying the decision algorithm for
the load measures gathered from all machines. It
activates, if necessary, the LoadBal object on every
overloaded machine, which applies the location
policy, implemented by a local Decision object.
Remote observation information is recovered from
the remote LocalJVMObserver objects of the
underloaded machines.

Fig.1 − Components of the ADAJ load balancing
scheme.

Decision

LoadBal

LocalLoad

LocalJVMObserver

AsynchObserver

Counter

observation
component

correction
component

decision
component

InfoLoad
 L

L

L

L
R

R

L

R LocalDecision

Legend
 processing activation

 asynchronous activation

 data recovery (local)

 data recovery (remote)

 R remote L local

Violeta Felea, Bernard Toursel / Computing, 2003, Vol. 2, Issue 3, 33-38

 36

6. EXPERIMENTAL RESULTS

The load balancing mechanism in ADAJ was
experimentally tested for a distributed and parallel
genetic algorithm solving the TSP (Travelling
Salesman Problem) problem. This algorithm uses the
island model, where the initial population is divided
into sub-populations, on which a classical genetic
algorithm is applied, in parallel, for a number of
evolutions. Afterwards, the best individuals are
exchanged between sub-populations. A possible
implementation in ADAJ makes the sub-populations
remote objects that can migrate.

Experiments consider the execution of the
algorithm on a cluster of workstations, with no
external load. Initial distribution of objects is
voluntarily unequal. Previous tests [8] show good
behaviour: gains up to 30% in execution times are
achieved, compared to a version which does not use
the load balancing mechanism. The tendency is to
approach to an equal distribution of objects on every
node, which minimises considerably the waiting
time in synchronisations.

The TSP application shows situations where the
quantity of processing to be executed is not
necessarily well distributed, because of unequal sub-
population distributions or because of diffe-rent sub-
population sizes. But communications are not taken
into consideration. The focus of this article is on
another kind of application, which makes use of
communication. It is the simulation of an algorithm
which solves numerical problems, using an iterative
wave-form method (see the Medico Akzo Nobel
problem [9]). The direct method finds the exact
solution after a finite number of operations, while
the iterative method gives an approxi-mative
solution, after a number of iterations, but has a lower
complexity.

The skeleton of this kind of algorithm consists of
local computing phases, in parallel over different
data, and of information exchange with the
neighbour, in a ring fashion.

In ADAJ, the simulation of such an algo-rithm
considers a number of global objects, every global
object executing a sequence of communication
towards the next global object, followed by a local
computation. The comm-unication consists of
requesting the same kind of computation, as the
local one.

Internal towards External Communication In an
object-oriented application, communication links are
generated by method invocations. Communication
between global objects placed on different virtual
machines includes seriali-sation and network passing
cost. When global objects are located on the same

virtual machine, the network cost is eliminated. The
difference between the two kinds of communication
induces the definitions of internal communi-cation,
corresponding to method invocations between global
objects in the same address space, and of external
communication, which is generated by method
invocations between global objects in different
address spaces.

The objective of the load balancing mecha-nism
is to take into account the communication links in
the correction algorithm in order to avoid creating
new external communications, and to replace
external communications with internal ones. Even if
an internal communi-cation is always remote (using
the serialisation mechanism), the execution time can
be im-proved eliminating the network traffic
overhead.

This results from a test which makes n
invocations between two remote objects. The
execution platform was made of two homogeneous
PIII machines, 733 MHz, having 128M RAM,
linked by 100 Mb/s throughput. Table 1 shows an
average slowdown of 22% for an external
communication, compared to an internal one1.

Table 1. Execution times and overheads of external
communications compared to internal ones

 internal external overhead (%)
 comm (ms) comm (ms)
 n=500 117 140 19.65
 n=1000 224.66 275.33 22.55
 n=5000 1094 1366 24.86
 n=10000 2217.66 2728.66 23.04

The network throughput has an important role in

these measurements: a slow traffic makes external
communication even slower.

The penalty induced by the external com-
munication is even more important if
communication optimisation can be introduced:
remote objects which are on the same virtual
machine can communicate locally (see the Java-
Party 0.98 version). In this case, a remote com-
munication can become an internal local one, using
object migration.
Communicating Application The communi-cation
pattern presented in figure 2 shows that every object
executes, concurrently, a compu-tation requested by
the previous object, through a communication, and a
local computation (ex-cept for the last one which
does not perform communication, and for the first
one which is not requested the computation). The
local pro-cessing is blocked during the
communication, because of the synchronous call.

1values are averages of 5 execution times, from
which the best and the worst time were removed

Violeta Felea, Bernard Toursel / Computing, 2003, Vol. 2, Issue 3, 33-38

 37

Fig. 2 − Skeleton of a communicating application.

Communications are considered by the correction
component. The load balancing mechanism in ADAJ
balances the load, targeted towards communication
optimisation, and does not react to communication
imbalances. Thus, the initial distribution of objects is
voluntarily unbalanced, and makes communications
random. For example, if objects are indexed from 0
to 12, their initial distribution on four machines is
shown in figure 3.

Fig. 3 − Initial deployment of the communicating
application.

This distribution generates 10 external
communications, and 2 internal ones. The load
balancing mechanism should react to the load
imbalance, correct object distribution, by a good
placement, which consequently increases the
number of internal communications.

Application Behaviour The objective of the
experiments on the communicating application was
to analyse the decisions of the load balancing
mechanism in respect of communi-cations. Three
cases were tested, concerning the choice of the
destination machine:
• both communication links and machine workload

are important,
• only communication links are important,
• only workload of destination machines is

important.

 In the first situation, two of the final distributions
in figure 4, show a good load balance, and external
communications were diminished from 10 to 6 (in
average).

Fig. 4 − Final deployments of the communicating
application.

If communications, only, are considered,
experiments show a similar behaviour, because the
destination machines are however chosen between
the least loaded. On the contrary, when
communications are not at all considered, in the
third case, loads are balanced, but there is no
improvement for external communications (figure
5), or worse, they may be increased.

Fig. 5 − Final deployment of communicating
application.

 These experiments testify that load balancing in
ADAJ is able not only to balance loads, but also to
reestablish a good communication pattern, lost
because of inadequate object deployment.

7. CONCLUSION
Efficiency of execution for distributed and

parallel object-oriented applications is an important
issue in designing execution environments. In this
article we have presented an approach to deploy
transparently and dyna-mically applications over a
cluster of work-stations. Our solution is a load
balancing mechanism at the middleware level which
uses profiling information on the application be-
haviour, in terms of object activity and com-
munication links. The main hypothesis is that
application behaviour in the near future re-sembles
to its behaviour in the recent past.

Our previous results [8] showed good per-
formances, compared to executions using no load

21 6 5 4 11 12 3 7 8 10 0 9

21 3 57 9 11 12 4 6 8 10 0

21 6 54 9 11 12 3 7 8 10 0

JVM JVM JVM
21 3 5 7 9 11 12 4 6 8 10

comm comm

comp

comp

i-2
i-1 i

comp
comm

i-2

comp
comm

i-1

JVM
0

Legend
comm = communication
comp comm i-1 = computation asked by the communi-

 cation with object i-1

Violeta Felea, Bernard Toursel / Computing, 2003, Vol. 2, Issue 3, 33-38

 38

balancing mechanism strategy. Gains up to 30% in
execution times were measured. This article is
focused on the behaviour of a com-municating
application, when load balancing is activated.
Random redistribution of objects may balance load,
but they cannot always improve communication
links, by bringing closer (on the same Java virtual
machine) remote communi-cating objects. The load
balancing mechanism in ADAJ considers
communication links during the correction policy
and thus is able to recover a good communication
pattern, by improving the number of internal
communications.

8. REFERENCES

[1] A. Bouchi, R. Olejnik, and B. Toursel. A New
Estimation Method for Distributed Java Object
Activity. In IPDPS 2002 - Workshop on Java for
Parallel and Distributed Computing, Fort
Lauderdale, USA, 2002.
[2] M. Phillippsen and M. Zenger. JavaParty -
Transparent Remote Objects in Java. In ACM 1997
Workshop on Java for Science and Engineering
Computation, Las Vegas, USA, June 1997.
[3] A. Corradi, L. Leonardi, and F. Zambonelli.
High-Level Directives to Drive the Allocation of
Parallel Object-Oriented Applications. In
Proceedings of HIPS’97, Amsterdam, Pays Bas,
1997.
[4] K. Schloegel, G. Karypis, and V. Kumar. Graph
Partititioning for High Performance Scientific
Simulations. Technical Report: TR 00-018, Dept. of
Computer Science and Engineering, University of
Minnesota, 2000. To be included in CRPC Parallel
Computing Handbook.
[5] J. Arabe, A. Beguelin, B Lowekamp,
E. Seligman, M. Starkey, and P. Stephan. Dome:
Parallel programming in a heterogenous multi-user
environment. Technical report, Carnegie Mellon
University, Avril 1995.
[6] M. Banâtre, Y. Belhamissi, V. Issarny, I. Puaut,
and J.P. Routeau. Adaptive Placement of Method
Executions within a Customizable
Distributed Object-Based Runtime System – Design,
Implementation, and Performance. ISSN 1350-2042
TR 64, IRISA and CRIN-Nancy, 1994.
[7] P. C Fishburn. A survey of multiattribute/
multicriteria evaluation theories. In S. Zionts,
editor, Multicriteria problem solving, pages
181–224. Springer Verlag, Berlin, 1978.
[8] V. Felea. Exploiting Runtime Information in
Load Balancing Strategies. In P. Kacsuk and D.
Kranzlmüller and Z. Németh and J. Volkert,
editor, Distributed and Parallel Systems – Clu-

ster and Grid Computing, pages 21–29, Linz,
Austria, 2002. Kluwer Academic Publishers.
[9] CWI - The National Research Institute for
Mathematics and Computer Science in the
Netherlands. Test Set for IVP Solvers.
http://www.cwi.nl/ftp/IVPtestset/descrip.htm.

Bernard Toursel is Professor
at the University of Science and
Technology of Lille, France. He
was vice-director of the Ecole Uni-
versitaire d’Ingénieurs de Lille
(nowadays Polytech’Lille), then
director of the Laboratory of Com-
puter Science (LIFL), UMR CNRS

8022. Today he is Vice-President in charge of Infor-
mation and Communication Technologies. His scien-
tific research concerns the field of parallel and dis-
tributed systems and processing.

Violeta Felea received her
B.A. degree in computer science
from “Al. I. Cuza” University, Iasi,
Romania, in 1998 and the M.S.
and Ph.D. degrees in the same
field at the University of Science
and Technology of Lille, France, in
1999 and 2003, respectively. Her
dissertation is a study of methodologies for the de-
sign of parallel and distributed Java applications and
of tools for the efficiency of execution. She joined
the PALOMA team at the Laboratory of Computer
Science of Lille, in 1998, and today she is ATER
(Research Assistant) at the Polytech’Lille. Her re-
search interests include distributed and parallel ob-
ject-oriented programming, scheduling algorithms,
tools for object migration.

