
S. Buraga, S. Alboaie, L. Alboaie / Computing, 2003, Vol. 2, Issue 3, 26-32

 26

THE USE OF XML TECHNOLOGIES FOR EXCHANGING INFORMATION

WITHIN A MULTI-AGENT SYSTEM

Sabin Buraga 1), Sînică Alboaie 2), Lenuţa Alboaie 1, 2)

1) Faculty of Computer Science, “A.I.Cuza” University of Iaşi,
Berthelot St., 16 – Iaşi, Romania, busaco@infoiasi.ro, http://www.infoiasi.ro/~busaco

2) Institute of Theoretical Computer Science, Romanian Academy, Iaşi branch, {abss,adria}@iit.iit.tuiasi.ro

Abstract: This paper presents different XML-based techniques for exchanging information between the constituents of
a multi-agent system. We expose a multi-agent infrastructure – called Omega – that can be considered as a hierarchical
space of distributed objects set those models the Web resources. We suggest an XML/RDF-based model that can be
used as a common approach for serialization and metadata description of the objects processed by the agents. Diverse
relationships that can be established between the entities of a multi-agent system will also be expressed by different
RDF constructs.

Keywords: Multi-Agent Systems, Web Resource, XML, RDF, Distributed Computing

1. INTRODUCTION
The primary objective of Tim Berners-Lee's

vision of the Semantic Web [4, 12] is to facilitate
intelligent queries for knowledge on the Web instead
of the conventional mechanisms to access the
WWW space’s resources. To accomplish this,
computer scientists need to understand the semantic
mechanism of all kinds of queries and what kind of
components the process of questioning the Web
formally consists of; and to rigorously capture,
represent or symbolize the knowledge existing on
Web.

To achieve this goal, we are designing and
implementing an infrastructure for agent software
development, called Omega [2], viewed as a tree-
like space of a set of dispersed objects that models
the Web resources by using XML/RDF statements.
The Omega system proposes a flexible framework
for building agent-oriented distributed applications
on the Web. To assure the Web scalability,
independently designed programs – especially Web
agents – must be able to exchange and process the
meaning of data and metadata in an independent
manner. Semantic interoperability can be completed
only if different users (agents, Web services, other
Web clients, etc.) interpret RDF statements in the
same way.

The Omega framework presents an addressing
space for the Web objects and a mechanism for
remotely accessing the Web distributed resources
(that can be viewed as objects). To enable the

flexible querying and accessing mechanisms about
the distributed Web resources, we have to offer
certain facilities for serialization – in an independent
manner – of the data and metadata (objects)
processed by the Omega multi-agent system. The
paper investigates various possibilities of
serialization given by the XML family [6, 23]. Some
of the drawbacks due of the lack of a description
language regarding the objects’ properties can be
elegantly resolved by XML.

The serialization of the Web objects presented in
section 3 can be considered as a supple approach to
exchange information between software agents.
Moreover, for each object, different metadata
constructs can be attached to denote several
semantic properties. These descriptions are
expressed as RDF statements and are presented in
section 4. Several relationships can be established
between the entities of the multi-agent system.
Following [8, 9], these relations can be easily
modeled by RDF assertions. This machine-
understandable approach can ease the development
of Web-oriented software applications for diverse
activities such as resource discovery.

2. OMEGA – A MULTI-AGENT
INFRASTRUCTURE

Context
We can consider as the primary resources that

computers expose to the software components (i.e.
operating system or/and applications) or users the

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

S. Buraga, S. Alboaie, L. Alboaie / Computing, 2003, Vol. 2, Issue 3, 26-32

 27

following items:
• computing capabilities,
• (volatile or non-volatile) memory,
• local and remote data (documents),
• metadata (diverse descriptions about some

properties of the resources: content, structure,
layout/interface, dynamics, security issues,
etc.).

Of course, there are other ways to describe these
properties without the use of XML-based assertions,
but with the penalty of the platform and software
independence. Clearly, these documents (including
XML resources) are made to be read and processed
in a (mobile) distributed system (the Web itself). To
easily access and obtain the knowledge contained by
a specific document, an XML-based mechanism
must exist to accomplish that. In fact, this is one of
the seminal ideas of the Semantic Web [4].

WWW as a Distributed Hypermedia System

The Web space can be viewed as a distributed
hypermedia system that uses Internet technologies –
a global system of heterogeneous networked
computers. Advances in networking and
Web/Internet technologies are leading to a network-
centric computing model, and the Web and Internet
itself are developing into the infrastructure for
worldwide network computing. By populating this
infrastructure with object-based components and
combining them in different ways, the development
and deployment of interoperable distributed object
systems is quick migrating on Web [22].

The object model gives the capability to mimic
real world processes in a fluid, dynamic and
expected manner. The WWW space allows for
objects to be distributed to servers thereby
centralizing access, processing, and maintenance,
provides a multiplexing interface to distributed
objects, and function as a catalyst for the rapidly-
growing world of thin-clients – i.e. mobile phones,
handheld devices, smart appliances. We can safely
now state that Web + Object integration is a viable
reality.

This is highlighted by diverse software
organizations and companies – especially in the
e-business field – that are using Web-enabled
distributed object technology, in the form of
intranets and extranets, to solve their computing
problems, and the emergence of an industry that
provides Web and object interfaces to distributed
object tools.

After the CGI (Common Gateway Interface)
standard, with the advent of Java, and the distributed
object infrastructures such as CORBA/IIOP and
OLE/DCOM, the stage was set to evolve the Web
from a document management structure to a
platform for distributed object computing and e-

business.
The actual legacy applications can still co-exist

with distributed objects through the use of object
wrappers [22]. The interface could either be the
client browser or browser-like with super-positioned
distributed object infrastructures.

Software Mobile Agents

An important step towards Internet/Web
Computing is represented by the mobile calculus. A
mobile object, usually called an agent when is
operating on behalf of a user, is a downloadable,
executable entity that can independently move (code
and state) at its will – the mobile agent is not bound
to the system in which it began the code execution
and can go from one node on a network to another.

Mobile agents have the following important
attributes:

• reactive (the capability to respond to
changes within agent environment),

• autonomous (the mobile agent is capable to
exercise control over its own actions),

• goal-oriented (the agents have a
premeditated itinerary, they do not simply
act in response to the environment),

• communicative (the skill to exchange
information/knowledge with other agents),

• mobile (the mobile agents can transfer
themselves from one host to another).

Mobile agents can be used to access and manage
information that is distributed over large areas (see
[5, 15, 16] for details).

The major advantage is that the software
components can be integrated into a logical and
consistent software system – e.g. a multi-agent
system – in which they work together to better meet
the needs of the whole application (utilizing
autonomy, responsiveness, pro-activeness and social
ability).

Existing mobile agent systems – available as
commercial or open-source applications – are
implemented in C++, Java, Tcl, Scheme, and Python
programming languages (to name only few).

Omega System’s Architecture

General Description

The Omega is an agent-based system that
presents an addressing space (considered as a tree)
for the Web objects and diverse techniques to
remotely access the Web distributed resources
(viewed as objects) – see [2] for more details.

Each object processed by Omega can be
considered as a group of objects included in that
one. The links (edges) between the vertices of the
tree are given by the aggregation relationship
exposed by the object-oriented methodologies.

S. Buraga, S. Alboaie, L. Alboaie / Computing, 2003, Vol. 2, Issue 3, 26-32

 28

To emphasize the aggregation relationship, we
add to each object a name or an index, and in this
way we can uniquely refer each object of the tree by
its name/index (viewed as an identifier). Each object
will have a single list of the identifiers that represent
its “address” in the addressing space used by the
Omega agents. An identifier can be considered as an
IName object. By using a object tree, we can
structure more easily the distributed resources for a
known local web (such as a cluster or an intranet).

Omega Functionality

We decide to use an interpreted environment for
our multi-agent model and distributed object
structure. Using such an environment, it was easier
to put into practice serialization and various
execution control mechanisms [10] which
contributed to the implementation of the Omega
distributed objects system.

Omega presents a distributed object structure,
and its initial goal was to determine some good
representations of data, types, instructions,
functions/procedures, and objects of an object-
oriented language that can be used as a
programming language for mobile agents. The
consequence of this effort is a system written in C++
language, system that is able to combine the notions
behind the object-actor duality, namely the duality
between passive and active objects.

Presently, Omega system offers to active
programs what the World-Wide Web space provides
by default for presentation of some static entities
(documents), i.e. an infrastructure able to support
Web-based distributed applications (such as agents
used in clusters or Grid [20]).

Omega Classes

The IObject class is the base-class for each
other class that has memory sections stored within a
local system. Each object and function that needs a
store space in Omega will use the IObject class
(see also Fig.1). In this way, the Omega system
offers a space model provided by a common
distributed memory. This model is based on the
existence of a given node of an IObject's tree,
which is easily addressable from the network.

The system includes a number of object types
which give functionality to the following classes:
String, Number, List, and Control agent-execution
(i.e. support for virtual threads or scripting
languages). Certain data is represented by different
classes such as IString, INumber,
IOmegaStack, IOmegaList that are derived
from the IObject basic class.

Omega offers two categories of data types [2]:
simple data types – have no components (i.e.

INumber, IString, etc.) – and compound data
types – signify a mix-up of two or more simple types
(e.g., IName, IOmegaList, IAThread).

Omega Language

Omega offers an execution part which act as an
implementation of a script-like language. In this
active part, we are trying to assimilate the object
space with notions such as execution thread,
function, instruction, data types to be modeled with
the help of IObject abstraction.

Therefore the Omega object environment and the
OmegaKernel mini-interpreter provide – this makes
Omega able to execute small scripting programs –:

• a data model (base type-system, the
construction of new objects),

• an address space (every object has its own
Internet-consistent address),

• certain techniques to implement the high-
level programming level statements.

The language provided by the Omega framework
may be easily extended with other instructions to
make a more complex computational model of the
developed agents. An significant step was to create a
mechanism for representing data structures,
statements and objects under the same abstraction
(IObject) that is a network shared entity.

Fig.1 – Omega Objects

3. SERIALIZATION MECHANISM
Several interactions between the Web agents

developed within Omega system can be
accomplished by using serialization mechanisms.

All classes derived from IObject must
implement the serialization (marshalling) and
deserialization (unmarshalling) methods. The
process of building of the new data types is based on
the fact that an IObject has a member of the
IOmegaList type. That member stores associated
links which are instances of the derived classes. In
this way, the serialization of the new types of objects
can be automatically accomplished by Omega via

S. Buraga, S. Alboaie, L. Alboaie / Computing, 2003, Vol. 2, Issue 3, 26-32

 29

members’ serialization and the call of the overloaded
own methods.

Of course, for certain object types (for example,
IOmegaSockets used for socket operations) the
serialization and deserialization actions can not be
viewed as a suitable solution.

The object serialization does not imply the
serialization of the entire sub-tree that has as root the
object in cause. For an object, only the serialization
of the object itself and of the IName list of its
children [1].

XML-based Serialization

As the best manner to serialize the Omega
objects, we prefer an XML-based representation. To
describe these objects, we could implement an RDF-
based model. The RDF assertions could offer the
possibility to express semantics of an Omega object.

We are using the XML namespaces defined by
the XML Schema specification [13] to keep the
primary types of the data exchanged by agents in the
serialization and deserialization processes. The
Omega encoding style is based on the usual XML
Schema’s data types. All data types used within the
Omega system of agents must either be taken
directly from the XML Schema or derived from
Omega data types.

An example follows [1]:

<element name="local_address_type" type="...">
 <simpleType
 name="local_address_type" base="xsd:string">
 <enumeration value="tree_id" />
 <enumeration value="unique_name" />
 </simpleType>

</element>
<element name="local_address" type="..." />

 <complexType name="local_address">
 <element
 name="la_type"
 type="local_address_type" />
 <element
 name="la_value"
 type="xsd:string" />
 </complexType>

</element>
<IName>

 <IOmegaDomain> ... </IOmegaDomain>
 <local_address>
 <la_type> tree_id </la_type>
 <la_value> 1 </la_value>
 </local_address>
 <local_address>
 <la_type> unique_name </la_type>
 <la_value> member_name </la_value>
 </local_address>

</IName>

SOAP-based Serialization
SOAP – or other protocols that use the RPC over

XML approach (e.g., XML-RPC) – can be used to
transfer the serialized data between the Omega
software entities.

SOAP (Simple Object Access Protocol) [14, 23]
is an effortless lightweight protocol used for
structured and strong-type information exchange in a
decentralized and distributed environment. The
protocol is based on XML and consists of three
parts: an envelope that describes the contents of the
message and how to use it, a set of conventions for
serializing data exchanged between applications, and
a procedure to represent remote procedure calls, that
is the way in which queries and the resulting
responses to the procedure are represented.

Similar to object distribution models (e.g., IIOP
and DCOM), SOAP can invoke methods, services,
components, and objects on remote servers. On the
other hand, unlike these protocols – which use
binary formats for the calls –, SOAP utilizes XML
to structure the nature of the data exchanges.

SOAP can generally function with several
protocols, such as FTP (File Transfer Protocol) or
SMTP (Simple Mail Transfer Protocol), but it is
particularly well-suited for the HTTP (HyperText
Transfer Protocol) [23]. It defines a reduced set of
parameters that are specified in the HTTP header,
making it easier to pass through proxies and
firewalls. Using SOAP over HTTP also enables
resources already present on the Web to be unified
by using the natural request/response model of
HTTP protocol.

We use an existing tool named gSOAP [21],
which is able to produce the code for serialization
from a user-defined specification. The gSOAP
compiler tools offer a unique SOAP/XML-to-C/C++
language binding to ease the development of
SOAP/XML Web services and clients in C and/or
C++ languages.

4. DESCRIBING

OMEGA OBJECTS IN RDF
Resource Description Framework

Resource Description Framework (RDF) allows
the description of the metadata associated of the
Web documents (resources). RDF consists of a
model for the representation of the named properties
and property values. This is proper to model objects
behaviors.

RDF properties may be thought of as attributes of
resources and in this sense correspond to traditional
attribute-value pairs. RDF properties can also signify
relationships between resources. Resources
correspond to objects and properties correspond to
instance variables [7, 18].

S. Buraga, S. Alboaie, L. Alboaie / Computing, 2003, Vol. 2, Issue 3, 26-32

 30

To ease the definition of metadata, RDF is based
on classes. A collection of classes, usually designed
for a specific purpose or domain, is called a schema
[7]. Also, RDF supports the reusability of metadata
definitions. The RDF schemas may themselves be
expressed in RDF. Of course, the RDF syntax is an
XML-based one.

The fundamental model of RDF consists of three
object types [18]:

• resources
All objects being described by RDF expressions

are called resources and they are denoted by
Uniform Resource Identifiers (URI). Using URI
standard schemas, each type of resource can be
identified in the same manner.

• properties
A property is a particular aspect, characteristic,

attribute, or relation to describe a resource. Each
property has a specific meaning, defines its
permitted values, the type of resources it can
express, and its relationship with other properties.

• statements
A specific resource together with a named

property, plus the value of that property for that
resource is an RDF statement. These three individual
parts of a statement are called, respectively, the
subject, the predicate, and the object. The object of a
statement (e.g., the property value) can be another
resource or a literal.

RDF also specifies three types of container

objects:
• Bag (an unordered list of resources or

literals),
• Sequence (an ordered list of resources or

literals),
• Alternative (a list of resources or literals that

represent alternatives for the single value of a
property).

The containers may be defined by a URI pattern.
RDF can also be used to make statements about
other RDF statements (higher-order statements).

The RDF data model provides an abstract,
conceptual framework for defining and using
metadata. Presently, there are several proposals of
model-theoretical semantics for RDF and RDF
Schema [11, 17, 23].

Expressing the Omega Objects’ State in RDF

For each object of the Omega multi-agent
system, we can attach different metadata. These
meta-descriptions will assure the control versioning
(the version and the last verification time-stamp for
each object) and the owner/parent of the created
objects. For security purposes, the object metadata
will keep the list of the associated object's
permissions. This approach is inspired from our

RDF-based model used for accessing resources of
the distributed file systems [8].

 The system maintains these descriptions as RDF
assertions that can be transported via SOAP to other
objects during the information updating activities
(object replication).

In the stub object of any shared objects, certain
metadata is available to inform other objects about
the object’s author and about the permission list to
access this object. The system verifies this
information to grant or to reject the access to
considered object. The meta-descriptions regarding
the permissions and the identity of the user who
intend to access Omega objects must provide a
certain cryptographic support.

Expressing Relations between Omega Entities

In order to catch the dynamics of the involved
agents built within Omega and the links between
them, a high-level RDF-based description of
temporal relations can be considered. The temporal
relationships between objects could be stored by
RDF constructs, too. This approach is comparable to
our model used to keep temporal relations
established between (fragments of) Web sites [9].

The proposed model is primarily focused on the
description of interval temporal relations. The
temporal structure introduced by Interval Temporal
Logic (ITL) is a simple linear model of time and is
detailed in [3].

For this, an XML-based language is proposed –
Temporal Relation Specification Language (TRSL)
[9]. For each time relation, TRSL offers an element
that corresponds to a particular relation (e.g.
<Meets> element for Meets relation from ITL
model). The beginning and ending of time periods
are represented by begin and end attributes,
respectively. Also, TRSL defines the dur attribute
for specifying a known or predictive time period
(this will allow Web agents to reason about different
actions that may need to be performed).

The full syntax and the semantics of TRSL
language is presented in [9].

Example

An object-maintainer Web agent is build to
discover different temporal relations between the
Omega objects distributed in an intranet and can
automatically produce the following TRSL
assertions:

<rdf:RDF>

 <rdf:Bag id="RecentlyChanged">
 <rdf:li resource="object1" />
 <rdf:li resource="object2" />
 </rdf:Bag>
 <rdf:Description

S. Buraga, S. Alboaie, L. Alboaie / Computing, 2003, Vol. 2, Issue 3, 26-32

 31

 rdf:aboutEach="#RecentlyChanged">
 <!-- spatial information -->
 <f:Location f:dns="www.site.org">
 193.231.30.1
 </f:Location>
 <!-- metadata information -->
 <f:Owner>
 <rdf:Description
 rdf:about="http://www.omega.site/">
 <f:Login f:uid="714">busaco</f:Login>
 </rdf:Description>
 </f:Owner>
 ...
 <!-- temporal information -->
 <t:link t:type="temporal" t:action="Serialize"
 t:end="Mon Nov 17 19:35:14 EET 2003">
 <t:Finishes t:dur="2sec" />
 </t:link>
 </rdf:Description>
</rdf:RDF>

A collection of objects to be serialized is denoted

by the RecentlyChanged identifier. These
objects are stored on www.site.org machine and
the serialization action is planned to be performed
on November 17, 2003 at a certain hour. The
metadata information describes the Omega’s host
and the login name of the system maintainer.

This approach can be used for the resource
discovery activities performed in a distributed
(mobile) environment, in a machine-understandable
way.

5. RELATED WORK

The building process of the agent-oriented
systems requires a different approach from that of
conventional software systems development [5, 15].

We are aware of numerous platforms developed
both in academia and software industry companies
[19]. This fact confirms that many computer
scientists are considering the agent-oriented software
as a potential paradigm, designed and implemented
especially in very dynamic environments (such as
the Web space). Though, the existing
implementations do not cover or provide certain
services desired by programmers or final users.
Some proprietary solutions, though well developed,
are not built as open systems and can not be easily
extended or modified. On the other hand, we were
not impressed by the existing open-source platforms.

The actual multi-agent platforms use diverse
approaches for communication between agents, by
using low-level communication protocols (e.g.
TCP/IP or HTTP) or standard high-level languages –
such as KQML (Knowledge Query Manipulation
Language) [5].

The Omega system presents a certain advantage,
by adopting an XML-based platform-independent
approach in serialization and exchanging
information between agents. The SOAP protocol is
more flexible and easy to use than CORBA or
DCOM solutions.

Some of the Omega’s facilities could be also
integrated in the actual multi-agent systems, such as
MAIS (Mobile Agents Information System) – a
platform for creating dynamic clusters [16].

6. CONCLUSION
Omega represents an infrastructure capable to

support the agent-oriented programming paradigm.
By this approach, we tried to emphasize a tendency
which is shaping the evolution of the software
development techniques for open distributed
applications.

This paper focused on presenting the different
platform-independent techniques of exchanging
information between the entities of a multi-agent
infrastructure. We proposed an XML/RDF-based
model that can be used as a general manner for
serialization and metadata description of the objects
processed by the Omega agents. Various properties
and relations established between the components
(i.e. agents, objects, processes, etc.) of a multi-agent
system can be expressed in a standardized and
machine-understandable way. This advance provides
semantic descriptions of the Web resources and
could be considered as an attractive solution for
exchanging knowledge between intelligent or/and
mobile agents.

In addition, we plan to design and experiment an
XML-based version of the Omega language that can
be used to exchange mobile code of the software
agents coded within the Omega framework.

7. REFERENCES

[1] S. Alboaie, S. Buraga, L. Alboaie, An XML-
based Serialization of Information Exchanged by
Software Agents, Proceedings of the 7th World
Multiconference on Systemics, Cybernetics and
Informatics – SCI 2003, Orlando, Florida, 2003.
[2] S. Alboaie, G. Ciobanu, Designing and
Developing Multi-Agent Systems, International
Symposium on Parallel and Distributed Computing
(ISPDC) Proceedings, Scientific Annals of the “A.I.
Cuza” University, Computer Science section, Tome
XI, “A.I.Cuza” University Press, Iaşi, 2002.
[3] J. Allen, P. Hayes, Moments and Points in an
Interval-based Temporal Logic, Computational
Intelligence, 5 (4), 1989.
[4] T. Berners-Lee, Weaving the Web, Orion
Business Books, London, 1999.
[5] J. Bradshow, Software Agents, AAAI Press,

S. Buraga, S. Alboaie, L. Alboaie / Computing, 2003, Vol. 2, Issue 3, 26-32

 32

1997.
[6] T. Bray et al. (eds.), Extensible Markup
Language (XML) 1.0 (Second Edition), W3C
Recommendation, Boston, 2000:
http://www.w3.org/TR/REC-xml
[7] D. Brickley, R. V. Guha, Resource Description
Framework (RDF) Schema Specification 1.0, W3C
Candidate Recommendation, Boston, 2000:
http://www.w3.org/TR/2000/REC-rdf-schema
[8] S. Buraga, A Model for Accessing Resources of
the Distributed File Systems, in Advanced
Environments, Tools and Applications for Cluster
Computing, D. Grigoraş et al. (eds.), Lecture Notes
in Computer Science – LNCS 2326, Springer-
Verlag, 2002.
[9] S. Buraga, G. Ciobanu, A RDF-based Model for
Expressing Spatio-Temporal Relations Between Web
Sites, Proceedings of the 3rd International
Conference on Web Information Systems
Engineering (WISE 2002), IEEE Computer Society
Press, 2002.
[10] C. Callsen, Open Distributed Heterogeneous
Computing, PhD Thesis, University of Illinois at
Urbana-Champaign, 1997.
[11] W. Conen, R. Klapsing, A Logical
Interpretation of RDF, Linkoping Electronic Articles
in Computer and Information Science, 5, 2000.
[12] S. Decker et al., Knowledge Representation on
the Web, in F. Baader (ed.), International Workshop
on Description Logic (DL'00):
http://www.cs.vu.nl/~frankn/abstracts/DL00.html
[13] D. Fallside (ed.), XML Schema Primer, W3C
Recommendation, Boston, 2001:
http://www.w3.org/TR/xmlschema-0/
[14] C. Gorman, Programming Web Services with
SOAP, O’Reilly and Associates, 2001.
[15] S. Green, F. Somers, Software Agents: A
Review: http://www.cs.tcd.ie/research_groups/aig/
iag/iag.html
[16] D. Grigoraş et al., MAIS – The Mobile Agents
Information System Support for Creating Dynamic
Clusters, Proceedings of ICA3PP, Beijing, 2002.
[17] P. Hayes (ed.), RDF Semantics, W3C Working
Draft, Boston, 2003:
http://www.w3.org/TR/rdf-mt/
[18] O. Lassila, R. Swick (eds.), RDF Model and
Syntax Specification, W3C Recommendation,
Boston, 1999:
http://www.w3.org/TR/REC-rdf-syntax/
[19] E. Mangina, Review of Software Products for
Multi-Agent Systems, AgentLink.org, 2002:
http://www.agentlink.org/
[20] L. Moreau, Agents for the Grid: A Comparison
with Web Services (Part I: the transport layer),
IEEE International Symposium on Cluster
Computing and the Grid Proceedings, Berlin,
Germany, 2002.

[21] * * *, SOAPware: http://www.soapware.org/
[22] * * *, Web Object Integration:
http://www.objs.com/survey/web-object-
integration.htm
[23] * * *, World Wide Consortium's Technical
Reports, Boston, 2003: http://www.w3.org/TR/

Sabin-Corneliu Buraga, MSc.,
is a lecturer at the Faculty of
Computer Science, "A.I.Cuza"
University of Iasi, Romania.
Currently, he is a PhD candidate
(in the final stage) at the same
University and his areas of
interests include Semantic Web,
distributed computing, and Web

technologies. He is the author of more than 30
articles published in the proceedings of different
international conferences or in the scientific journals,
published by Springer-Verlag, IEEE Computer
Society Press or Elsevier. Over the years, he served
as a member of the program committees or/and
organizing committees of different international
scientific events and summer schools. He is the
initiator and editor of Web series of books published
by Polirom Publishing House (Iasi, Romania).

Sinica Alboaie, MSc., is a
researcher at Institute of
Theoretical Computer Science of
the Romanian Academy - Iasi
branch. He is doing research in
distributed systems with agent
technologies (main theme),
cellular automata and
applications in software design-patterns,
programming languages. During the years, he also
gain a vaste experience in designing software
components for handheld devices.

Lenuta Alboaie, MSc., is an
assistant researcher at Institute of
Theoretical Computer Science of
the Romanian Academy - Iasi
branch. Currently, she is a PhD
student and her areas of interest
cover certain aspects of distributed
computing, such as agent-oriented,
peer-to-peer and Grid computing.

She also is interested on Web services, especially
on XML-based protocols (such as SOAP). She is a
member of the WebGroup - an young research
group on Web technologies at Faculty of Computer
Science, "A.I.Cuza" University of Iasi.

