
C. Bulancea , M. Craus / Computing, 2003, Vol. 2, Issue 3, 21-25

 21

A GRAPH-BASED MODEL FOR THE INFECTION PHENOMENON

Cătalin Bulancea1) , Mitică Craus2)

1) Institute for Computer Science, Romanian Academy, catalinb@academie.is.edu.ro
2) “Gh. Asachi” Technical University of Iasi, Computer Engineering Department, craus@cs.tuiasi.ro

Abstract: A graph-based model is proposed for studying interactions and evolution in infection process. There are
defined and tested mutational and decisional structures for pathogen agents and a reaction mechanism for the host.
MPI and C# implementations were used to make some simulations. The results have shown that artificial system
evolution is closed to the evolution of the real system.

Keywords: artificial life, multi-agent system, message passing, graph model, leucocytes.

1. INTRODUCTION
Artificial life applications have nature as an

inspiration source. Many of the multi-agent systems
have functioning mechanisms and principles
inspired by natural collectivities behavior [1].
Simple life forms as seaweeds or bacteria, which
have almost no individual importance, can organize
themselves in complex social systems named
colonies. These simple structures were the starting
point for evolving to more complex multi-cellular
life forms. Here is the place were we can find the
basic principles of coexistence strictly connected on
adaptation, interaction and selection [2], which are
natural processes by excellence.

In our opinion, evolution is the most amazing
natural process. Only this very complex
development trend can metamorphose simple multi-
entity systems, mostly of them connected by
symbiosis relations, in very complicated organic
systems, which have command structures (the
nervous system), life support components (digestive
apparatus), etc. Finally, we will name the most
spectacular result of the evolution: the conscience.
From simple cohesion processes between
rudimentary life forms, the evolution has built the
actual multi-variable mixture of electromagnetic
fields and chemical reactions, which pushed us, the
humans, on the climax of the living creatures
pyramid.

In nature, the infection is a very complex
phenomenon, strictly applicable on evolved multi-
cellular life forms. We can identify the host, who is
invaded with foreign, usually elementary (not
necessarily unicellular) life forms. Of course, the
host has some protection mechanisms, composed on

white cells, antibodies, T-cells, etc. but, in some
cases, these can became relatively quickly obsolete
by the invader’s mutation capacity. For example, the
HIV virus should be a very simple problem for the
human immune system, if he wouldn’t have the
actual extraordinary mutation capacity, which makes
him very hard to be identified by immune system
detectors.

From a kinetic point of view, most infections
presume massive multiplications, and propagation
phases. There is a computational fight between
organism’s making new antibodies capacity and
invader’s mutation possibilities. As we can see, both
sides are searching for the optimum in separated
evolution processes.

In this paper we describe a multi-agent system
with two separated populations who interact inside
an environment which has the infrastructure
modeled as a graph. The graph’s nodes can be seen
as points with maximum concentration of resource
(we name resource substances indispensable for life
process, which are consumed by pathogen agents,
usually resulting toxins). The nodes are
interconnected using communications channels,
which can be, in real organisms, capillary blood
vessels or, much simpler, communications paths.
The entities (antigens and antibodies) are modeled as
messages, which can travel between nodes.

Initially, the infection is located in few nodes.
The graph should evolve to supra-infected stage, if
the reaction is not efficient, or to clear stage, in the
contrary situation. If no “living nodes” remain, the
graph becomes dead.

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

C. Bulancea , M. Craus / Computing, 2003, Vol. 2, Issue 3, 21-25

 22

2. PROBLEM STATEMENT
In nature, infectious agents are primitive life-

forms (usual viruses and bacteria). They have
considerable reproduction capabilities in a favorable
environment. They are also exposed to mutations.
The result is a better competition between them and
the immune system.

In few cases, the infection is focused on a single
point. Usually, the pathogen agents are grouped
around maximum concentration resource
(substances needed for their metabolism) points. If
the resource is consumed, they will migrate to
another places were it is possible to find resources.
In all this time, the immune system is trying to
reduce, and if it is possible to destroy them through
anti-viral self-made agents (leucocytes, T-cells,
antibodies).

3. MATHEMATICAL MODEL

In this section will be described the environment,
the mutation mechanism of the viral agents and the
reaction.

In order to model the environment infrastructure,
we consider a graph. As we’ve already mentioned,
the nodes can be considered the maximum
concentration resource points. In these points, this
substance(s) concentration gradient is zero or
doesn’t exist. Communication channels, represented
by the edges of the graph, link such points.

Some functions are assigned to the system and
they will measure stability and will correlate this
with reaction efficiency..

We can define a graph-based model for the
infection problem, as it follows:

A graph G=(V,E) represents the environment
infrastructure. V is the set of the nodes (|V|=n) and E
is the set of the edges. (|E|=m). Initially, a small
number of infectious agents are placed in a single (or
few) node(s).

Each node can host a certain number of entities,
different from one node to another. We call this the
node capacity. So, a node j has an associated
capacity cj.

The infection entities have associated a set of
characteristics: acidity (a), life (l), sensibility (s),
reproduction_value (rv). These characteristics can
be transferred to the next generation using
chromosomes (ch), composed by genes. The genes
can take numerical values and each of them
represents an entity characteristic.

In reality, genes are exposed to mutations, which
can change them and randomly modify
characteristics. It can be said that mutations are the
main engine of evolution. We have modeled this

process using a mutation operator, which is defined
as it follows:

(1)

where m is
the mutation operator, Ichromosome is the domain of the
chromosome indexes and Dgenes is the domain of the
gene values. This operator can be applied either in
the reproduction process or in some special
situations given by the local environment toxicity or
hostility. Let us denote by chi the i-th chromosome
belonging to the entity e. For the chromosome chI,
the operator m can be applied to one or more genes.
m is not a common multi-variable function. It will
randomly select genes (one or more) over which will
be applied the mutation [3]. There is a restriction in
considering rv<s (rv<<s is better). This can be
explained by the fact that the biological entities
(even they are or not pathogen agents) rarely
reproduce themselves in a hostile environment (with
no food). Reproduction is modeled using a multiply
operator, which is unary, acts over a single entity
(parent entity) and produce a child. In some
situations multiplication is accompanied by
mutations. This means that children entities are not
accurate copies of their parents and they could have
some different characteristics, which can make them
stronger (or weaker) than their parents. Consider a
bacteria population who is sensible to a certain
antibiotic. There can appear an individual, which is
immune to this substance. He will survive and he’ll
find a more favorable environment for reproduction

The decision structure of the pathogen agents is
very simple in nature. Simple life forms as bacteria
just follow a growing concentration gradient of the
resource, while viruses are moving randomly most
of the time (they reproduce themselves using host
cells).

The decision function is using a Monte-Carlo
strategy. This function is generating a partial random
number d (partial because there are some
dependencies on local environment, for example
current resource quantity). We can consider three
stages:
1. If the value d is lower than first threshold which

is considered the reproduction value, the entity
reproduces itself (multiply operator is applied);

2. If the value d is greater than first threshold and
lower than secondary threshold (sensibility
value) the entity is staying in current node and
waits for new events;

3. If d is greater than secondary threshold that
means this place is not friendly, or has no food
(resource) and entity will migrate to another
node.

The migrations mechanism can be defined in two
ways as it can be seen in Fig.1 and Fig.2.

geneschromosome DIm →:

C. Bulancea , M. Craus / Computing, 2003, Vol. 2, Issue 3, 21-25

 23

Fig. 1 - Deterministic migration process

In Fig.1 the entity (pathogen agent) is migrating
following an optimal way. It chooses the node with
maximum concetration of resource. This capability
is specific to the more evolved unicellular organisms
with self movement capacities (scourges).

The secondary way of migration is specific to
rudimentary life forms like viruses or primitive
bacteria forms (Fig.2). They do not feel any
concentration gradient and are moving themselves in
a random way. For this kind of migration we
developed a strategy to minimize the probability that
the migrating entity to turn back, in the origin node.

Until now, we’ve discussed only the infection
component of this system. The other part, the
reaction, is designed to simulate parts of the immune
system reactions in a normal infection case.

The natural immune system has an impressive
number of components. Many of them haven’t been
discovered yet. One of the most amazing
components is represented by the B-cells or memory
cells which can store information about previous
infection agents, so the efficiency of the immune
system is increased many times. The main limitation
is resulting from the only 108 combinations that can
be stored in memory cells, as compared to 1016
generating possibilities.

Let’s take the white cells (leucocytes). They have
some external receptors (tolls), which become
activated on pathogen agents. When these receptors
touch a certain cell, they are identifying a pattern in

constituent substances disposition on external cell
membrane.

Fig. 2 - Random migration process

If this cell is recognized as foreign, it is destroyed
otherwise nothing is happening. These anti-infection
agents are generated in such manner to not match
with body cells, named self. If this is happening,
then the white cell (who is still in a preliminary
stage) is destroyed. This generation mechanism is
shown in Fig.3.

Fig. 3 - Anti-infectious agent generation process

Each anti-infectious agent has a number of
receptors (tolls); these do not have to match with
another system elements (in our case – other white
cells entities). Those agents are generated in some
nodes, named active nodes, only in the case of a
local infection; they were not provided yet with a

Anti-infectious
agents generator

Match test

Self

Valid anti-
infectious agents

Rejected

yes no

current node

minimum
resource node

medium
resource node

maximum
resource node

entity who
has migrated
optimal

current node

entity which decides
to migrate

minimum
resource node

medium
resource node

maximum
resource node

entity who
has migrated
randomly

entity which decides
to migrate

C. Bulancea , M. Craus / Computing, 2003, Vol. 2, Issue 3, 21-25

 24

migration capacity; their life-time is limited and they
are generated with resource cost.

Only this part of reaction has been simulated in
our graph-based model.

4. EXPERIMENTS

In order to test our model we have used the
message-passing paradigm. The nodes were
considered processes and the entities were defined as
messages exchanged by the nodes.

We have built a C# simulator, with a statistic
module and we have made some tests.

 Fig. 4 - Main window of infection simulator

The generic algorithm for each node,

implemented as a separated process is described as it
follows:

for (each node) do in parallel
 if (entity.arrived()) then
 population.increase()
 endif
 if (node.state=infected) then
 node.activatereaction()
 endif

//lifecycle
 for (each entity in node) do
 if (entity.life=0) then
 entity.dies()
 population.decrease()
 endif
 entity.decreaselife()
 if (entity.type=white cell) then
 entity.interract()
 else
 entity.decide()
 if (decision=multiply) then
 entity.multiply()
 population.increase()
 else if (decision=stay) then

 entity.stay()
 else
 entity.migrate(neighbors)
 population.decrease()
 endif
 endif
 endfor
endfor

In Fig.4 is presented the main window of our C#
simulator. Here it can be seen “live” the infection
evolution and the reaction response.

The infectious agents either are traveling from
one node to another or are staying in current node
and multiply themselves.

The results can be seen using a special „statistic”
module after the simulation is over (Fig.5). This
module allows making comparisons between antigen
population and reaction intensity. The energy
variations can also be visualised.

This simulator was designed to be well balanced.
Different initial data sets can guide to different final
results (supra-infection or total elimination of
infectious agents).

Fig. 5 - Graphics from the statistic module

There were made ten simulations for every
mutation rate (the mutation probability to appear
after more reproductions). The correlation between
mutation rate, simulation time and graph state at the
end of simulation are summarized in Table 1. The
numbers from the table are average values of the ten
simulations results.

Table 1. Simulation results
Mutation

rate
Simulation time Graph

damage
0.1 450 cycles 12%
0.3 520 cycles 15%
0.5 670 cycles 28%
0.7 650 cycles 34%
0.9 800 cycles 42%

C. Bulancea , M. Craus / Computing, 2003, Vol. 2, Issue 3, 21-25

 25

It can be observed that a great value of the
mutation rate makes the infectious agents stronger
against the reaction. Over a mutation rate value of
0.7, the supra-infection cases (total graph
destruction) have a greater density.

This phenomenon is present in natural world too.
There was observed that highly mutating viruses or
bacteria infections are harder to eliminate by the
natural immune system.

5. FUTURE WORK
The improvement of the reaction model is a

future work. There are many unexplored aspects
concerning the host reaction.

Other future work is to make our graph-based
model more closed to some real type of infection
and to test it on some real data sets.

6. REFERENCES

[1] Y. Shi. and R. C. Eberhart, Parameter selection
in particle swarm optimization, Evolutionary
Programming VII: Proc. EP 98, Springer-Verlag,
New York, 1998, pp. 591-600
[2] J. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan Press, 1975
[3] D. Dumitrescu, Genetic Algorithms and
Evolutive strategies, Microinformatica, Cluj-
Napoca, 2002, p.53

Catalin Bulancea was born on
26 august 1978.

Education: 2002 -2003, Master
student in "Distributed Systems"

Department of Automatic
Control and Computer Engineering,

Technical University "Gh.
Asachi", Iasi; 1997 - 2002 , Faculty

of Automatic Control and Computer Engineering,
Technical University "Gh. Asachi", Iasi.

Computers specialization – software.
Employment: 2002 - present, research fellow at

Romanian Academy, Computer Science Institute,
Neural Nets and Image Processing Department.

Computer skills: Artificial Intelligence - OCR
Implemented in JAVA (using neural nets); ALife –
simulations.

Other - Load Balancing, Leader Election and
Graph Spanning Tree algorithms implemented in
MPI, Programming knowledge - C, C++, Visual C++,
JAVA, MPI, SQL/PL SQL – beginner.

Foreign Languages: English – good,
 French – medium.

Areas of Interests: Artificial Life simulations
including genetic and behavioral mechanisms.

Mitică Craus.
Education: 1975 – 1979 :

Student at the Faculty of
Mathematics - Computer
Science Department of the "Al.
I. Cuza" University of Iasi.

1999 : Ph.D. in computer
science.

Present job: Associated
professor at the Faculty of Automatic Control and
Computer Engineering, Department of Computer
Engineering.

Computer skills: Data structures, algorithm
design (sequential, parallel and distributed), C/C++,
Java, PASCAL and FORTRAN programming.

