
K. Mizoguchi, S. Furusho, T. Kitasuka, T. Nakanishi, A. Fukuda / Computing, 2003, Vol. 2, Issue 3, 6-11

 6

A PROPOSAL AND EVALUATION
OF THE FAST RECONNECT

AD-HOC NETWORK ROUTING PROTOCOL

Kazuhiro MIZOGUCHI1), Shinichi FURUSHO1), Teruaki KITASUKA1),
Tsuneo NAKANISHI1)2), Akira FUKUDA1)

1) Graduate School of Information Science and Electrical Engineering, Kyushu University,

Kasuga-koen 6-1, Kasuga-shi, Fukuoka, 816-8580, Japan,
{kazuhiro, furusho, kitasuka, tun, fukuda}@f.csce.kyushu-u.ac.jp

http://f.csce.kyushu-u.ac.jp
2) System LSI Research Center, Kyushu University,

Kasuga-koen 6-1, Kasuga-shi, Fukuoka, 816-8580, Japan,

Abstract: An ad-hoc network works without any infrastructures. It consists of wireless mobile nodes .In this paper, we
propose an ad-hoc network routing protocol, called FR-DSR(Fast Reconnect Dynamic Source Routing), which is an
improved DSR.When a route is disconnected, FR-DSR can reconnect fast by using prepared spare routes. During
communication, spare routes are prepared by sending route check packets through routes in a cache, and an additional
route request packet is sent if a spare route is broken. We show that FR-DSR gives better performance than DSR through
simulation experiments.

Keywords: – Ad-Hoc network, Wireless network, Routing, DSR, QoS

1. INTRODUCTION
Today, communication service form has been

changing with rapid progress of information and
communication technology. These services must
have infrastructure such as base stations and a
backborn network. Therefore the technology called
ad-hoc network has been researched. The ad-hoc
network is a collection of wireless mobile nodes
dynamically forming a temporary network without
the use of any existing network infrastructure. In the
ad-hoc network, if there is a long distance between a
source node and a destination node, nodes between
them must relay packets for them to communicate.
Each mobile node in the ad-hoc network operates not
only as a host but also as a router.

Since the ad-hoc network consists of mobile nodes,
the communication route is frequently changed.
Since the route change takes time, it causes
deterioration of quality in real-time communication
such as voice or video communication. In this paper,
we propose FR-DSR (Fast Reconnect Dynamic
Source Routing) which is an improved DSR so that
reconnection time at the route change is short.

2. DSR AND ITS ISSUES
2.1 DSR

DSR [1, 2, 3] is one of the typical ad-hoc network
routing protocols and has the features of both
on-demand routing protocol and source routing
protocol. In on-demand routing, looking for a route
starts when a source node wants to send packets. In
source routing, only a source node controls a route for
relay nodes to send packets according to this route
information. DSR consists of two mechanisms; route
discovery and route maintenance.

2.2 Route Discovery
At first, a node looks for a route when it wants to

send packets. Each node has a route cache. The route
cache contains routes to the node which has
communicated before. If the source node has routes
to the destination node, these routes are contained in
data packets to send them. If there is no route in the
cache, the source node broadcasts a RREQ (Route
Request) packet. A RREQ packet includes the source
node ID, the destination node ID, the request ID, the

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209
International Scientific

Journal of Computing

K. Mizoguchi, S. Furusho, T. Kitasuka, T. Nakanishi, A. Fukuda / Computing, 2003, Vol. 2, Issue 3, 6-11

 7

list of passed nodes, and so on. Receiving a RREQ
packet, each relay node adds the own ID to the list in
the RREQ packet and re-broadcasts it. In this way, a
RREQ packet is spread over network and reaches the
destination node. The destination node returns a
RREP (Route Reply) packet to the source node when
it received a RREQ packet. In this way, a route is
established and communication between the source
node and the destination one can start.

2.3 Route Maintenance
Each node does not have to periodically broadcast

update packets because DSR is an on-demand routing
protocol. Only source node maintains the route.
Consider that the source node, S, and the destination
node, D, are communicating through the route
S-A-B-D. When the link A-B is down, the following
action is done. After the node A transfers a packet to
the node B, it tries to confirm that the node B receives
the packet. This confirmation is used by a standard
part of the MAC protocol. The node A decides that
the link A-B is down if the node A can not confirm it.
The node A deletes this route from the route cache.
Then the node A sends a RERR (Route Error) packet
to the source node S. The RERR packet includes the
information that the link A-B is down. After
receiving the RERR packet, the node S deletes the
route including the link A-B from the route cache.
The node S sends packets to the node D through other
routes in the route cache, if there are other routes. If
there is no route to the node D in the route cache, the
node S looks for new route.

2.4 Issues of DSR
In the ad-hoc network, a route is cut in the case of

node movement, etc and communication becomes
impossible in many cases. When a route is cut, a
source node tries to reconnect by using route
maintenance and route discovery mechanism
described in Sec. 2.2 and 2.3. Then the source node
looks up a route to the destination node from the route
cache. However the reliability of cached routes is low
since the routes in the route cache may be old. When
the current route is broken, a possibility that the
cached routes are valid may be low.

We consider the case where the routes in the route
cache entirely becomes invalid. The source node tries
to send packets through a route in the route cache
when the current route is broken. When the source
node decides the link-down by using route
maintenance, it looks for a route from the route cache
again. If there are no routes to the destination node,
the source node broadcasts the RREQ packets. This
process wastes the time. In other words, it takes long
time to reconnect a route in this case.

3. FR-DSR PROTOCOL
3.1 FR-DSR

The cause of the problem described in Sec. 2.4 is
low reliable routes in a route cache. If a reliability of
routes in a route cache is high, communication will be

Fig.1 – FR-DSR

able to immediately restart even when a current
route is broken. Of course, the source node does not
have to look for a route.

From the discussions above, we propose an
improved DSR, called FR-DSR, so that a source node
prepares highly reliable spare routes in the route
cache by deleting invalid routes from the route cache
and getting new routes into the cache. Therefore
communication can immediately restart by using
these spare routes.

An outline of FR-DSR is shown in Fig.1. We
consider the case where the source node S sends
packets to the destination node D. It is supposed that
the node S does not know a route to the node D at first
and the route (c) becomes impossible to use during
communication.

Each node has a current route list to put the
destination node and the route into it. FR-DSR works
as follows.
1. The source node S broadcasts a RREQ packet to

find a route to the destination node D. The
destination node D receives RREQ packets and

K. Mizoguchi, S. Furusho, T. Kitasuka, T. Nakanishi, A. Fukuda / Computing, 2003, Vol. 2, Issue 3, 6-11

 8

returns RREP packets for all RREQ packets.
2. When the source node S receives RREP packets, it

starts communication to the node D with the route
(a).At that time, the node S stores the route (a) into
the route cache and sends the data packets through
this route. When the node S sends the data packets,
the node S puts ID of the destination node D and
the source route (a) into the current route list.

3. The source node S periodically checks the current
route list. Then the source node S takes a pair of the
destination node ID and its route from the current
route list. Then the node S searches spare routes to
the destination node from the route cache. The
node S finds the routes (b) and (c) to send RCHK
(Route Check) packets to the destination node D
through these routes.

4. The RCHK packet sent through the route (b)
arrives at the destination node D. The other side,
the RCHK packet sent through the route (c) can not
arrive at the destination node D due to down of the
route (c). After finding this, the node C returns a
RERR packet to the source node S.

5. When the source node S receiving the RERR
packet finds the route (c) is broken, it deletes the
route (c) from the route cache. If the number of
spare routes to the destination node becomes below
a fixed number, the source node S tries to get spare
routes by broadcasting a RREQ packet.
FR-DSR consists of three main mechanisms.

They are explained below.

3.2 Getting Spare Routes
As described in Sec. 2.2, with DSR, each node

broadcasts a RREQ packet when it looks for a route.
With original DSR, a destination node returns only
one RREP packet for a RREQ packet which is
received first. That is, the destination node ignores
existing other routes. With FR-DSR we propose in
this paper, the destination node returns RREP packets
for all received RREQ packets as in the same way of
[5].

3.3 Current Route List
The goal of this paper is to have reconnecting time

short by improving on-demand routing DSR. With
on-demand routing, a source node does not have to
send any periodic packets. Route check that will be
described in Sec. 3.4 later is only done during
communication. Therefore its advantage keeps.

In this paper, each node has a current route list to
keep above advantage. When the source node sends
data packets, it puts the destination node ID and the
source route which are included in data packets into
the current route list. Each node periodically checks
the current route list. If there are the destination node
ID and the source route in it, each node dose route

check described in Sec. 3.4 for a pair of the node ID
and its route. They clear the current route list after
route check.

3.4 Route Check

Confirmation of spare routes in a route cache is
done as follows.

Each node periodically checks the current route
list. In the case where there are some routes in the
current route list, the source node searches other
routes to the destination node from the route cache.
Then it sends RCHK (Route Check) packets through
these routes. When the destination node receives a
RCHK packet, this route can be used and the source
node keeps it as a spare route. In the case where the
route used by a RCHK packet is broken, a relay node
finding link-down returns a RERR packet. When the
source node receives this RERR packet, it deletes this
route from the route cache. This action is the same as
an original RERR packet of data packets. After that,
the source node counts the number of spare routes to
the destination node. It is the number of sending
RCHK packets. If the number of spare routes is
below the fixed number, the source node broadcasts a
RREQ packet to discover spare routes.

4. EVALUATION THROUGH THE
SIMULATION

We performed two simulation experiments using
the ns-2 network simulator [4]. In these simulations,
flow control which is an option of DSR is disabled.

4.1 Experiment-1
A situation that FR-DSR works most efficiently is

as follows, where Experiment-1 is performed. We use
Fig.1 to explain it. The source node S communicates
with the destination node D. First routes discovered
by route discovery are only the route (a) and (c). The
source node S communicates through the route (a).
After that, the route (b) can be used and the route (c)
cannot be used due to node movement. The route (a)
is broken at the time of the state that the route (b) is
valid and the route (c) is broken. We measure packet
delay and compare FR-DSR with DSR. The number
of spare routes which the source node prepares for
each destination node is set to be two.

Original DSR acts as follows. After the route (a) is
broken, the source node S receives a RERR packet.

The source node S sends data packets through the
route (c) in the route cache. Since the route (c) is
already broken, a node on the route (c) returns a
RERR packet to the source node S. The source node S
starts the route discovery process because there is no

route to the node D in the route cache. It gets the
route (b) by using route discovery, and sends data

K. Mizoguchi, S. Furusho, T. Kitasuka, T. Nakanishi, A. Fukuda / Computing, 2003, Vol. 2, Issue 3, 6-11

 9

packets through route (b).
On the other side, FR-DSR proposed in this paper

acts as follows. The source node S sends a RCHK
packet to the spare route (c). Then the source node S
starts the route discovery process because the number

0

0.05

0.1

0.15

0.2

0.25

31 31.5 32 32.5 33 33.5 34 34.5 35

Pa
ck

et
 d

el
ay

(s
)

Time(s)

FR-DSR
DSR

Fig.2 – Delay of each packet around the time when the route

(a) is broken

0.02

0.03

0.04

0.05

0.06

0.07

10 12 14 16 18 20

Pa
ck

et
 d

el
ay

(s
)

Time(s)

FR-DSR
DSR

Fig.3 – Delay of each packet before the route (b) is

broken

of spare routes is one below two. This action is
repeated during communication. After that, the node
S finds the route (b) by using route discovery. The
node S stops route discovery because there are two
spare routes, but the route check is continued. After
that, the node S finds that the route (c) is broken by
using route check. Then the node S restarts the route
discovery process because it has only one spare route.
The node S receives a RERR packet after the route (a)
is broken. The source node S uses route (b) to send
data packets.

An environment of Experiment-1 is described
below.

 Transport layer protocol : UDP
 Interval of sending packets : 0.05s
 Interval of route check : 1~1.1s
 Simulation time : 60s

4.2 Result of Experiment-1
Fig.1 and 2 show delay of each packet around the

time when the route (a) is broken and the time before
the route (a) is broken, respectively. The horizontal
axis is the time when packets were sent, and the
vertical axis is the delay until a sent packet reaches a

0

10

20

30

40

50

60

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
R

at
e

of
 th

e
nu

m
be

r
of

 p
ac

ke
ts

(%
)

Packet delay(s)

FR-DSR
DSR

Fig.4 – Histogram of the packet delay

Table 1. Rate of invalid packets

QoS restriction[s] FR-DSR[%] DSR[%]

0.20 46.71 52.91

0.15 49.24 54.00

0.20 53.37 55.65

0.05 64.76 61.92

destination node. Dropped packets are counted as

no delay packet in Fig.2.
The route (b) is broken at 31.9 seconds. We can

see certainly dropped packets and the rapid rise of
delay. With DSR, packets are dropped and the delay
rises rapidly. It takes about 1.1 seconds to converge
on the stable state. On the other side, with FR-DSR
one packet drops but next packet can reach. It takes
about 0.1 seconds to converge on the stable state.
This reason is that with FR-DSR the communication
restarts through route (b) immediately after the route
(a) is broken. Converging on the stable state means a
communicating route is not broken.

As shown in Fig.3, with DSR the packet delay is
almost fixed in the stable state. With FR-DSR, the
delay periodically increases. This cycle is the same as
the cycle (1~1.1 seconds) of route check and route
discovery. In the other word, RCHK and RREQ
packets are periodically sent and they make delay of
data packets a little long. Therefore the packet delay
increases. The packet delay before the route (a) is
broken is different from that after. This reason is the
difference of routes. The route (a) before down is 4
hops and the route (b) after down is 10 hops.

K. Mizoguchi, S. Furusho, T. Kitasuka, T. Nakanishi, A. Fukuda / Computing, 2003, Vol. 2, Issue 3, 6-11

 10

This packet delay in the stable state is less than the
reconnecting time by changing a route. Although the
maximum delay with DSR is 0.239 seconds due to
reconnection, with FR-DSR, it is 0.075 seconds.

From these results, FR-DSR is better than DSR
since the packet delay is short when a route is broken
and the communication can be immediately restarted.

4.3 Experiment-2
Experiment-2 is performed in the state where each

node moves at random. A source node and a
destination node are placed on the points (200, 200)
and (800, 800) in the simulation field (1000m ×
1000m), respectively. We suppose that these two
nodes do not move. In addition, there are 100 mobile
nodes in this field. The transmitting radius of each
mobile node is 250m. The source node communicate
with the destination node using these nodes. Mobile
nodes move at random where pause time is 0 second
and moving speed is 0~5m/s. The simulation is
performed 10 times, and we take the average of them.
Simulation time is 200 seconds. The other parameters
are the same as those in Experiment-1.

4.4 Result of Experiment-2
Fig.4 shows the histogram of the packet delay.

The horizontal axis is the packet delay, and the
vertical axis is the rate of the number of packets at
this packet delay. Packets of which delay is greater
than 0.2 seconds are shown as one of 0.2 seconds in
Fig.4. The QoS restriction time in this paper is
decided to be 0.2 seconds. Packets of which delay are
over 0.2 seconds are treated as invalid. This reason is
that packets which reached over fixed time may cause
deterioration of QoS of real-time restriction.

As shown in Fig.4, the rate of packets of which
delay are over 0.2 seconds are 46.7% with FR-DSR,
and 52.9% with DSR. These packets include packets
of which delay increases due to reconnection or
collisions, dropped packets, and packets left in the
queues of relay nodes. Packets left in the queues of
relay nodes are packets which are not sent by relay
nodes despite that there are routes to the destination
node. This is a fault of ns-2 network simulator used in
this paper. For this fault, there are packets left in the
queues until the end of simulation and of which delay
is over 100 seconds. Therefore packets delayed over
the QoS restriction 0.2 seconds increase. As shown in
Fig.4, the rate of these bad packets with FR-DSR
becomes less than one with DSR, from about 53% to
about 47%.

Table 1 shows the rate of invalid packets when the
QoS restriction time is changed between 0.05 and
0.20 seconds. The short is thought as more severe
communication in real-time restriction. As shown in
Table 1, DSR becomes better than FR-DSR when the

QoS restriction time is 0.05 seconds. FR-DSR is
better than DSR when the QoS restriction time is 0.10
seconds.

With DSR, when a route is changed, packets drop
continuously and the packet delaying over the QoS
restriction time increases. However with FR-DSR,
this bad event does not arise. On the other side with
FR-DSR, delay increases periodically due to route
check and route discovery, but it is below the QoS
restriction time. Delay at reconnecting is longer than
delay at route check and route discovery. Therefore a
performance of FR-DSR becomes lower than one of
DSR if the real-time restriction becomes severe. The
diverging time is 0.07 seconds in this simulation.

5. CONCLUSION
We have proposed FR-DSR which improves the

reconnecting delay. With FR-DSR, each node has the
spare routes in advance. Through simulation
experiment using the ns-2 network simulator, we
have shown that with DSR the reconnecting time by
route change becomes 1.1 seconds and one with
FR-DSR becomes 0.1 seconds. Moreover we have
shown that a performance of FR-DSR is better than
one of DSR in the case the QoS restriction time is
over 0.07 seconds. Future works include the
following.

 Congestion of network by RCHK packets and
RREQ packets

 Power consumption
 Selection of spare routes

6. ACKNOWLEDGMENT

This research has been partially supported by
JPSP Grant-in Aid for Young Scientists (B)
(KAKENHI 15700062) and NTT.

7. REFERENCES
[1] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and

J. Jetcheva, “A Performance Comparison of
Multi-Hic Wireless Ad Hoc Network Routing
Protocols,” Mobicom'98, pp.85-97, 1998.

[2] X.-Y. Hong, K.-X. Xu, and M. Gerla, “Scalable
Routing Protocols for Mobile Ad Hoc Networks,”
IEEE Network, Vol. 16, Issue 14, pp. 11-21,
July/August 2002.

[3] C. E. Perkins et al., Ad Hoc Networking,
Addison-Wesley, 2001.

[4] K. Fall and K. Varadhan (Eds.), ns notes and
documentation, The VINT Project, UC Berkeley,
LBL, USC/ISI, and Xerox PARC, April 2002.

[5] S. Furusho, K. Moriwaka, T. Kitasuka, T. Nakanishi,
and A. Fukuda, “Load Balancing Routing for
Wireless Ad-hoc Network,” IPSJ DICOMO2002,
pp.413-416, July 2002 (in Japanese).

K. Mizoguchi, S. Furusho, T. Kitasuka, T. Nakanishi, A. Fukuda / Computing, 2003, Vol. 2, Issue 3, 6-11

 11

Kazuhiro Mizoguchi received
the B.E. degree in computer science
from Kyushu University, Japan, in
2003. Since 2003, he has been a
master course student of Graduate
School of Information Science and
Electrical Engineering, Kyushu
University, Japan. His research

interests include mobile computing and ad-hoc
network.

Shinichi Furusho received the
B.E. degree in computer science
from Kyushu University, Japan, in
2002. Since 2002, he has been a
master course student of Graduate
School of Information Science and
Electrical Engineering, Kyushu
University, Japan. His research
interests include mobile computing
and ad-hoc network.

Teruaki Kitasuka received the
B.E. degree in information science
from Kyoto University, Japan, in
1993 and M.E. degree in
information science from Nara
Institute of Science and
Technology, Japan, in 1995. From
1995 to 2001, he worked for the

Sharp Corporation, where he developed the personal
computer. Since 2001, he has been a research
associate of Graduate School of Information Science
and Electrical Engineering, Kyushu University,
Japan. His research interests include mobile
computing, embedded systems, parallel and
distributed systems, compiler, and computer
architecture.

 Tsuneo Nakanishi received
the B.E. degree in communication
engineering from Osaka
University, Japan, in 1993; and
the M.E. and D.E. degrees in
information science from Nara
Institute of Science and
Technology, Japan, in 1995 and
1998, respectively. From 1996 to 1998, he was a
research fellow of the Japan Society for the
Promotion of Science. From 1998 to 2002, he was an
assistant professor of Graduate School of Information
Science, Nara Institute of Science and Technology,
Japan. Since 2002, he has been an associate
professor of Graduate School of Information Science
and Electrical Engineering, Kyushu University,
Japan. His research interests include compilers,
embedded systems and parallel computing. He is a
member of the ACM, the IEEE Computer Society and
the IPSJ.

Akira Fukuda received the
B.E., M.E., and PhD degrees in
computer science and
communication engineering from
Kyushu University, Japan, in 1977,
1979, and 1985, respectively. From
1977 to 1981, he worked for the
Nippon Telegraph and Telephone
Corporation, where he engaged in research on
performance evaluation of computer systems and the
queuing theory. From 1981 to 1991 and from 1991 to
1993, he worked for the Department of Information
Systems and the Department of Computer Science
and Communication Engineering, Kyushu University,
Japan, respectively. In 1994, he joined Nara Institute
of Science and Technology, Japan, as a professor.
Since 2001, he has been a professor of Graduate
School of Information Science and Electrical
Engineering, Kyushu University, Japan. His research
interests include embedded systems, system
software(operating systems, compiler, and run-time
systems), mobile computing, parallel and distributed
systems, and performance evaluation. He received
1990 IPSJ(Information Society of Japan) Research
Award and 1993 IPSJ Best Author Award. He is
currently the chair of SIG System Evaluation in IPSJ.
He is a member of the ACM, the IEEE Computer
Society, the IEICE, the IPSJ, and the Operations
Research Society of Japan.

