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Abstract: Simultaneous perturbation stochastic approximation (SPSA) is a class of optimization algorithms which 
compute an approximation of the gradient and/or the Hessian of the objective function by varying all the elements of the 
parameter vector simultaneously and therefore, require only a few objective function evaluations to obtain first or 
second-order information. Consequently, these algorithms are particularly well suited to problems involving a large 
number of design parameters. In this study, their potentialities are assessed in the context of nonlinear system 
identification. To this end, a challenging modeling application is considered, i.e. dynamic modeling of batch animal cell 
cultures from sets of experimental data. The performance of the optimization algorithms are discussed in terms of 
efficiency, accuracy and ease of use. 
 
Keywords: - stochastic approximation, optimization, nonlinear identification, biotechnology. 
 
 

1. INTRODUCTION 
Process modeling requires the estimation of 

several unknown parameters from noisy 
measurement data. To this end, a least-squares or 
maximum-likelihood cost function (depending on 
the assumptions on the measurement noise) is 
usually minimized using a gradient-based 
optimization method. 

Several techniques for computing the gradient of 
the cost function are available, including finite 
difference approximations and analytic 
differentiation. This latter technique leads to 
backpropagation in neural networks or sensitivity 
equations in the case of conventional first-principles 
models. 

In the above-mentioned techniques, the 
computational expense required to estimate the 
current gradient direction is directly proportional to 
the number of unknown model parameters, which 
becomes an issue for models involving a large 
number of parameters. This is typically the case in 
NN modeling, but can also occur when estimating 
parameters and initial conditions in first-principles 
models. 

In contrast to standard finite differences which 
approximate the gradient by varying the parameters 
one at a time, the simultaneous perturbation (SP) 
approximation of the gradient proposed by Spall [5] 
makes use of a very efficient technique based on a 
simultaneous (random) perturbation in all the 
parameters. Hence, one gradient evaluation requires 

only two evaluations of the cost function. This 
approach has first been applied to gradient 
estimation in a first-order stochastic approximation 
(SA) algorithm [5], and more recently to Hessian 
estimation in an accelerated second-order SPSA 
algorithm [6]. 

In previous works [3, 7], the authors applied the 
above-mentioned first- and second-order SA 
algorithms (1SPSA and 2SPSA) to weights and 
biases estimation in NNs, and proposed several 
variations of the 1SPSA algorithm. These simulation 
studies were limited to relatively simple examples, 
but demonstrated the efficiency and modest 
computational costs of 1SPSA. The objective of this 
paper is to extend these studies by evaluating: 

•  variants of 1SPSA/2SPSA algorithms, in 
which scaling of the gradient/Hessian 
estimates is introduced to avoid potential 
large variations in the course of the 
optimization process; 

•  the performance of first- and second-order 
algorithms as applied to a challenging 
parameter estimation problem, namely 
identification of unknown parameters in a 
macroscopic model of batch animal cell 
cultures from experimental measurements of 
biomass, glucose, glutamine and lactate 
concentrations. 

This paper is organized as follows. Section 2 
introduces the basic principles of the first- and 
second-order SPSA algorithms used throughout this 
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study. In section 3, the algorithms are applied to the 
maximum-likelihood estimation of kinetic 
parameters and initial conditions of a bioprocess 
model from experimental measurements of several 
macroscopic component concentrations. Direct and 
cross-validation results demonstrate the good model 
agreement. Finally, section 4 is devoted to 
discussions and concluding remarks. 
 

2. SPSA ALGORITHMS 
Consider the problem of minimizing a, possibly 

noisy, objective function J(θ) with respect to a 
vector θ of unknown parameters 

1SPSA is given by the following core recursion 
for the parameter vector θ [5]. 

 
)(1 kkkkk ga θθθ −=+  (1) 

 
in which ak is a non-negative scalar gain coefficient, 
and )( kkg θ  is an approximation of the criterion 

gradient obtained by varying all the elements of kθ  
simultaneously, i.e., 
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where ck is a positive scalar and 

T
kpk1kk ),...,,(

2
∆∆∆=∆  with symmetrically 

Bernouilli distributed random variables }{ ki∆ . 
 

In its original formulation, 1SPSA makes use of 
decaying gain sequences {ak} and {ck} in the form 
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which ensure asymptotic convergence results. 
However, performance in finite samples can be 
different, and numerical experiments suggest that an 
adaptive gain sequence for parameter updating [3, 7] 
can enhance convergence and stability (this is 
particularly true when solving a non convex 
parameter identification problem), i.e. 
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In addition to gain attenuation when the value of 
the criterion becomes worse, "blocking" mechanisms 
[6] are also applied, i.e. the current step is rejected 
and, starting from the previous parameter estimate, a 
new step is accomplished (with a new gradient 
evaluation and a reduced updating gain). The 
parameter β in (4) represents the permissible 
increase in the criterion, before step rejection and 
gain attenuation occur. 

A constant gain sequence ck = c can be used for 
gradient approximation, the value of c being selected 
so as to overcome the influence of (numerical or 
experimental) noise. In the optimum neighborhood, 
however, a decaying sequence in the form (3) is 
required to evaluate the gradient with enough 
accuracy and avoid an amplification of the "slowing 
down" effect as an optimum is approached (note that 
this phenomenon is even more pronounced in the 
case of SP techniques since the gradient information 
is more delicate to "extract" in the – usually rather 
"flat" - neighborhood of the optimum). 

Finally, a gradient smoothing (GS) procedure is 
implemented, i.e., gradient approximations are 
averaged across iterations in the following way 
 

)()1(1 kkkkkk gGG θρρ −+= − , 10 ≤≤ kρ , 00 =G  (5) 
 
where ρk is decreased in a way similar to (4) when 
step rejection occurs (i.e. 1kk −ρµ=ρ  with 1≤µ ) and 
is reset to its initial value 0ρ  after a successful step. 

The use of these numerical artifices, i.e., adaptive 
gain sequences, step rejection procedure and 
gradient smoothing, significantly improves the 
effective practical performance of the algorithm 
(which, in the following, is denoted "adaptive 1SP-
GS") [3, 7]. 

As relatively large excursions in the parameter 
space can be achieved, convergence can also be 
enhanced through scaling of the gradient estimate 
(2) at each iteration. This new feature is 
implemented here by normalizing each direction of 
the gradient vector )( kkg θ  with respect to its 
largest component (infinity norm scaling) 
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This latter version is denoted 1SP-GSS (Gradient 

Smoothing and Scaling). 
Inequality constraints can also be taken into 

account by a projection algorithm introduced in [4], 
i.e. the current parameter estimate is projected onto a 
closed set included in the admissible region in such a 
way that no function evaluation is required outside 
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this latter region. In this study, bound constraints 
(e.g., positivity constraints) are handled in this way. 

The second-order algorithms 2SPSA are based on 
the following two core recursions, one for the 
parameter vector θ, the second for the Hessian H(θ) 
of the criterion [6] 
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where kH  is a per-iteration symmetric estimate of 
the Hessian matrix, which is computed from 
gradient approximations (or direct evaluations) using 
a simultaneous perturbation approach, kH  is a 
simple sample mean, and fk is a mapping designed to 
cope with possible non-positive-definiteness of kH . 

Again, the algorithm requires only a small 
number of function evaluations - at least four 
criterion evaluations to construct the gradient and 
Hessian estimates - independent of the number of 
unknown parameters. 

Several variants of the mapping fk have been 
considered in the literature: 

a) regularization through addition of a diagonal 
perturbation matrix with small positive 
elements [6]; 

b) a more elaborate regularization technique 
recently proposed in [8], in which the 
eigenvalue matrix kΛ  of kH  is first 
"corrected", i.e. negative elements are 
replaced by a descending series of small 
positive eigenvalues, and a new k

€Λ  matrix 
is defined. Then, the orthogonal matrix Pk of 
eigenvectors is used to define the mapping 

T
kkkkk PPHf Λ=)( ; 

c) a simplified version of the preceding 
approach in which the "corrected" 
eigenvalue matrix kΛ  is replaced by a 
constant diagonal matrix defined by the 
geometric mean of all the eigenvalues [8]. 

 
Mapping (a) is easy to implement, but relatively 

delicate to tune in practical situations (selection of 
the elements of the perturbation matrix). Mappings 
(b-c) are potentially more efficient, but more 
complex to implement. In addition, some tuning is 
still required (to select the small positive eigenvalues 
that are substituted to the negative elements of kΛ ). 
In this study, a simple, tuning-free, Hessian estimate 
is considered. Following an idea originally 

introduced in [7], a diagonal approximation of the 
Hessian is built,  
 

( ))2()).()(( kkkkkkkkkkk ccgcgdiagH ∆∆−−∆+= θθ  (10) 
 
where the notation (./) indicates a componentwise 
division of two vectors (in analogy with Matlab 
programming). 
 

The gradients )( kkkk cg ∆±θ  are obtained by 
one-sided approximations (in order to limit the 
number of function evaluations) 
 

























∆
∆±−∆+∆±

∆
∆±−∆+∆±

=∆±

kpk

kkkkkkkk

kk

kkkkkkkk

kkkk

c
cyccy

c
cyccy

cg

~~
)()~~(

...

~~
)()~~(

)(
1

θθ

θθ

θ
 (11) 

 
where kc~  is a positive scalar (the sequence { }kc~  can 
be chosen in a similar way as { }kc , e.g. Eq. (3)) and 

T
kpk1kk )~,...,~,~(~

2
∆∆∆=∆  with symmetrically 

Bernouilli distributed random variables }~{ ki∆  
(independent of }{ ki∆  in (2)). 

In the same spirit as Eq. (6), an infinity-norm 
scaling is introduced, i.e. 
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where )(abs •  is a regularization in which the 
absolute value of each of the (diagonal) elements of 

kH  is computed and 
∞kH  represents the largest of 

these elements. 
 

This latter algorithm is denoted "adaptive 2SP-
DHS" (2nd-order Simultaneous Perturbation 
algorithm with Diagonal Hessian estimation and 
Scaling). 

 
3. MODELING OF ANIMAL CELL 

CULTURES 
Consider batch animal cell cultures described by 

a simple macroscopic reaction scheme 
 

growth: X^lnG
g

lnG

ϕ

→ν  (14) 

maintenance: LXXG LXX

m

ννν
ϕ

+→+  (15) 
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where X, G, Gln and L represent biomass, glucose, 
glutamine and lactate, respectively, and lnGν , Xν  
and Lν  are pseudo-stoechiometric coefficients. The 
symbol " ^→ " means that the growth reaction is 
auto-catalyzed by X and the presence of "νX X" in 
both sides of the maintenance reaction means that X 
catalyzes this latter reaction. 

The growth rate ϕg and the maintenance rate ϕm 
are described by a general kinetic model structure 
proposed in [2] 
 

G
gg

G,glnG,gX,g elnGXln)G,G,X( β−γγα=ϕ       (16) 
X

mm
X,mG,mX,m eGX)G,X( β−γγα=ϕ             (17) 

 
Simple mass balances allow the following 

dynamic model to be derived : 
 

ln),,( GGX
dt
dX

gϕ=  X(0) = X0 (18) 

),( GX
dt
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mϕ−=  G(0) = G0 (19) 

ln),,(ln
ln GGX

dt
dG

gG ϕν−=  Gln(0) = Gln0 (20) 

),( GX
dt
dL

mLϕν=  L(0) = L0 (21) 

 
where X(t), G(t), Gln(t) and L(t) denote the 
respective component concentrations. 

Identification of bioprocess models is a delicate 
task and in [2], a systematic procedure is proposed, 
which allows the pseudo-stoechiometric coefficients 
to be estimated independently of the kinetic 
coefficients [1] by minimizing a maximum-
likelihood criterion. This procedure also considers 
the estimation of the most likely initial conditions 
(since the concentration measurements are corrupted 
by noise at each sampling time, including the initial 
one). 

In this study, it is assumed that the pseudo-
stoechiometric coefficients have already been 
estimated following the above-mentioned procedure 
and that only the kinetic coefficients and the initial 
component concentrations have to be inferred from 
rare and asynchronous measurements of biomass, 
glucose, glutamine and lactate concentrations. 

The measurement equation is given by 
 

)()()( iii ttxty ε+= ,   i = 1,…,N               (22) 
 
where x(ti) = [X(ti) G(ti) Gln(ti) L(ti)]T, y(ti) and ε(ti) 
are the state, measurement and noise vectors at time 
ti, respectively. The measurement errors are assumed 
to be normally distributed, white noises with zero 
mean and variance matrix Q(ti). 

 
Data are collected from seven batch experiments 

corresponding to different initial glucose and 
glutamine concentrations. Five of these experiments 
are used for parameter estimation, the two remaining 
ones being used for cross-validation tests. 

The 28 unknown parameters (8 kinetic 
coefficients and 20 initial concentrations) are 
estimated by minimizing a maximum likelihood cost 
function taking into account the measurement 
noises, i.e. 
 

∑
=

− −−=
N

i
iii

T
iiml xyQxyJ

1

1 ))(())((
2
1min)(min θθθ

θθ

 (23) 

 
where yi, Qi and )(x€i θ  are the measurement vector, 
the measurement error covariance matrix and the 
state estimate obtained by integration of the model 
equations (18-21) with the parameters θ  at time ti, 
respectively. 
 

The tuning parameters of 1SP-GS are selected as 
follows: c = 10-4, γ = 0.15 (a very slowly decaying 
sequence ck is used for gradient evaluation), a0 = 10-

6, η = 1.01, µ = 0.99, β = 0 (no relative increase in 
the criterion is allowed), ρ0 = 0.99. For 1SP-GSS, 
the same parameters are used, except a0 = 10-3. 
Starting with the measured initial concentrations 
(which are affected by measurement errors) and an 
initial guess for the kinetic parameters 
corresponding to a criterion value Jml = 65761, the 
minimization problem (23) is repeated 10 times with 
both algorithms. The evolution of the criterion value 
as a function of the number of iterations is 
represented in Fig. 1. Up to 50000 iterations are 
considered, which might appear quite large at first 
sight, but the computational cost is very modest as 
each iteration only requires two criterion evaluations 
(each of these evaluations involves 5 model 
simulations corresponding to the 5 experimental 
batches used in this identification phase). On the 
other hand, standard centered finite difference 
approximations would require 56 criterion 
evaluations per iteration ! 

From Fig. 1, it is apparent that the results 
obtained with 1SP-GSS are much less dispersed 
(202 < Jml < 221) than those obtained with 1SP-GS 
(233 < Jml < 5304). 

The parameter estimates corresponding to the 
best run (Jml = 202 with 1SP-GSS) are listed in Table 
1. Fig. 2 compares the measurement data of one of 
the five experiments used in the parameter 
identification procedure with the model prediction 
(direct validation), whereas Fig. 3 shows the same 
kind of comparison with the measurement data of 
one of the remaining two experiments (cross-
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validation). In these graphs, the circled points are the 
measured data and the bars represent the 99% 
confidence intervals. The solid lines are the 
concentration trajectories predicted by the identified 
model. These figures demonstrate the excellent 
model agreement. 
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Fig. 1 - Evolution of the criterion as a function of 
the iteration number 

(dashed lines: 1SP-GS; solid lines: 1SP-GSS). 
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Fig. 2 - Direct validation (experiment 4). 

 

Table 1. Parameter estimates 

gα = 0.0961 mα = 0.0321 

X,gγ  = 0.4127 X,mγ  = 1.2278 

lnG,gγ  = 0.2094 G,mγ  = 0.0748 

G,gβ  = 0.0098 X,mβ  = 0.1070 
 

For comparison purposes, cost function (23) is 
also minimized using 2SP-DHS, and the evolution 
of the criterion value as a function of the number of 
iterations is represented in Fig. 4, for 6 independent 

runs. The tuning parameters of 2SP-DHS are 
selected as follows: c = 10-4, c~ = 10-3, γ = 0.15, a0 = 
10-3, η = 1.01, µ = 0.99, β = 0, ρ0 = 0.99. 

The performance of 2SP-DHS is slightly better 
than for 1SP-GSS, both in terms of speed of 
convergence and  
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Fig. 3 - Cross-validation (experiment 1). 
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Fig. 4 – 2SP-DHS: evolution of the criterion as a 

function of the iteration number. 

accuracy. For instance, the final value of the cost 
function lies between 187 and 214 for the 6 
independent runs considered in Fig. 4, whereas 202 
< Jml < 221 when using 1SP-GSS (see Fig. 1). 
However, the benefits are small compared to the 
computational overhead (2 additional function 
evaluations/iteration are required to estimate the 
Hessian), so that we recommend the use of 1SP-GSS 
in most applications. 
 

4. CONCLUSION 
The simultaneous perturbation approach 

developed by Spall [5, 6, 8] is a very powerful 
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technique, which allows an approximation of the 
gradient of the objective function to be computed by 
effecting simultaneous random perturbations in all 
the parameters. Therefore, this approach is 
particularly well-suited to problems involving a 
relatively large number of design parameters. In this 
study, variants of first- and second-order SP 
algorithms are considered and applied to the 
identification of the kinetic parameters and the initial 
conditions of a bioprocess model from experimental 
measurements of a few macroscopic components. 
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