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Abstract: In up-to-date information and communication systems (ICS) 
cryptography is used for ensuring data confidentiality. The symmetric block 
ciphers (BC) are implemented in different ICS including critical applications. 
Today theory of analysis and security verification of BC with fixed substitution 
nodes against linear and differential cryptanalysis (LDC) is developed. There are 
also BC with substitution nodes defined by round keys. Random substitution 
nodes improve security of ciphers and complicate its cryptanalysis. But through 
it all, quantitative assessment is an actual and not simple task as well as the 
derivation of formulas for practical security verification for BC with random 
substitution nodes against LDC. In this paper analytical upper bounds of 
parameters characterized practical security of BC with random substitution nodes 
against LDC were given. These assessments generalize known analogs on BC 
with random substitution nodes and give a possibility to verify security 
improving against LDC. By using the example of BC Kalyna-128, it was shown 
that the use of random substitution nodes  allows  improving upper bounds of 
linear and differential parameters average probabilities in 246 and 290 times 
respectively. The study is novel as it is one of the few in the cryptology field to 
calculate analytical upper bounds of BC practical security against LDC methods 
as well as to show and prove that using random substitutions allows improving 
upper bounds of linear and differential parameters. The security analysis using 
quantitative parameters gives possibility to evaluate various BCs or other 
cryptographic algorithms and their ability to provide necessary and sufficient 
security level in ICS. A future research study can be directed on improving 
analytical upper bounds for analyzed LDC in context to practical security against 
LDC, as well as practical cryptographic security assessment for other BC with 
random substitutions against LDC and other cryptanalysis methods including 
quantum cryptanalysis (Shor, Grover, Deutsch-Jozsa algorithms). 

Copyright © Research Institute for Intelligent Computer Systems, 2020. 
All rights reserved. 

 
 

1. INTRODUCTION 

In modern information and communication 
systems (ICS) the most popular and effective 
methods for confidentiality (privacy) ensuring is 
symmetric cipher using. The symmetric block 
ciphers (BC) are implemented in different ICS 
including critical applications. The BCs are 
deterministic algorithms operating on fixed-length 
groups of bits (blocks), each BC consists of two 
related (paired) algorithms – one for data encryption 
and the other for ciphertext decryption. The most of 

BCs are vulnerable to linear and differential 
cryptanalysis (LDC) [1-3] and this theory is 
developed as well as BC practical security 
verification [4-6]. Linear cryptanalysis based on 
finding affine approximations to the action of a 
cipher [3]. Differential cryptanalysis (in the case of 
BC) refers to a set of techniques for tracing 
differences through the network of transformation, 
discovering where the cipher exhibits non-random 
behavior and exploiting such properties to recover 
the secret key [1, 2]. 
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2. ANALYSIS OF RELATED WORKS 

Many BCs during encryption use few different 
substitution tables with apriori fixed order of using 
(e.g., former Soviet encryption standard GOST 
28147-89, modern Ukrainian encryption standard 
Kalyna, etc.). In research studies [7-9] authors have 
given analytical upper bounds of parameters 
characterized practical security of mentioned 
algorithms [10, 11] against LDC methods. There are 
also block ciphers with substitution nodes defined by 
round keys, for example ADE algorithm [12]. 
Logically, random substitutions using complicates 
BC cryptanalysis, but its quantitative assessment is 
hard task. From these considerations, the derivation 
of formulas for practical security verification for BC 
with random substitution nodes against linear and 
differential cryptanalysis is actual scientific task. 
The solving of this task will allow quantitative 
assessment of similar BC efficiency. 

 
3. PROBLEM STATEMENT 

In the paper [7] analytical upper bounds of 
average probabilities for linear and differential 
parameters of BC designed by Kalyna-128 scheme. 
Let us show the efficiency of random substitution 
nodes (the source of randomness can be true random 
as well as pseudo random) using for cipher designed 
by Kalyna-128 scheme with the additional round key 
in each round that influences on substitution tables 
choosing. Let us take a closer look at r -round BC 
  with random substitutions nodes, a set of plain 

(cipher) texts  0,1 n

nV , a set of round keys 

 n qK V  and family of encryption transformation 

 

1, 1,...  
rk r k kF f f , 1( , ... , )  r

rk k k K , (1) 

 
where 2 1r r  , n pt , q pq , 4 p p , t , 

p , r , q  are natural numbers, parameter 2  qb  
defines quantity of different substitution tables, used 
in BC.  

Round transformation  ,i kf x  for any  nx V , 

k K , 1,i r  describes as follows 
 

 

   

 

 

(1) (2)

(1) (2)
,

(1) (2)

, ,  i 1 mod2 ,

, , i 0 mod2 ,

, ,  i r

i k

x k k if i r

f x x k k if i r

s x k k if

   

       
 

  





 , (2) 

 
where (1)k  and (2)k  are parts of round key 

k  (  (1) (2),k k k , (1)  nk V , (2)  qk V ). 

 
Substitutions   and s  are defined by formulas 

(3) – (4): 
 

   , ,x y s x y M ,  nx V ,  qy V ,     (3) 

      1 01 y 0, s , ... ,
 

py ps x y x s x , 

 1 0, ... , px x x ,  1 0, ... , py y y ,  (4) 

 

where j tx V , j qy V , 
jys  is substitution on the 

set tV  (by the index jy  is chosen one substitution 

table from possible b ), 0, 1 j p , M  is 

invertible p p -matrix over the field  GF 2t , 

multiplication  ,s x y  and M  in formula (3) 

performed over this field with binary vectors 

unification  
jy js x  with its elements. 

In the formula (2) symbols “ ” and “


” are 
compatible with operations of coordinatewise adding 
for binary vectors with length n  and following the 
algebraic operation  

 

        1 1 4 4, ... ,   


x k x k x k , (5) 

 

where     1 4, ... ,x x x ,     1 4, ... ,k k k , 

   , v v
tpx k V , 1,4v , and “ ” is the symbol of 

addition mod 2 tp  operation on the set tpV . 

As a reminder, the probability of differential 

parameter      1

0 1ω ,ω , ... ,ω \ 0


  
r

r nV  for 

BC   with encryption key 1( , ... , )rk k  is defined 

by following formula [13]: 
 

     1, ...,
0

1

P ω | ω


        
 
r

r
k k

i i i
i

DP X X X X ,(6) 

 

where X X  are independent random equiprobable 
binary vectors with length n : 
 

  
1, 1,...  

ii i k kX f f X , 

  
1, 1,...   

ii i k kX f f X , 1,i r . 

 

The average value (6) for all 1( , ... , ) r
rk k K  is 

called the average probability of differential 
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parameter    (EDP) and it can be defined by 
following formula [13]: 

 

     
 

1

1

, ... ,

, ... ,





   r

r
r

r k k

k k K

EDP K DP . (7) 

 
Also, in accordance with [13, 14], the average 

probability of linear parameter  0 1ω ,ω , ... ,ω  r  

(ELP) for BC   is defined by formula (8): 
 

     1
1

ω ,ω


 
r

i
i i

i

ELP l ,  (8) 

 

where for any ,  nV  , 1,i r  

 

         ,

2

, 2 2 1


  

 

 
  

 
  i k

n q n

x f xi n q n

k V x V

l
   . (9) 

 
Therefore, the main target of this study is 

practical cryptographic security assessment for BC 
with random substitution nodes (described by (1) – 
(5) formulas) against LDC methods by the 
derivation of analytical upper bounds of parameters 
(7) – (8). Target achieving will define the novelty of 
this work and show the efficiency of random 
substitution nodes using in BCs as well as it will 
prove that using random substitutions allows 
improving upper bounds of linear and differential 
parameters (and as a consequence improving 
practical security against LDC methods). Moreover, 
the security analysis using quantitative parameters 
will give possibility to evaluate various BCs (or 
other cryptographic algorithms) and their ability to 
provide necessary and sufficient security level in 
ICS. 

 
4. UPPER BOUNDS OF DIFFERENTIAL 

PARAMETERS AVERAGE 
PROBABILITIES 

As a reminder in accordance with [7] for any 
differential parameter   of BC   with family of 
encryption transformation (1) following inequation 
is performed: 

 

     1
1

max ,


 
n

r
i

x i i
x V

i

EDP d   , (10) 

 

where for any , ,  nx V  , 1,i r  
 

        1

, ,, ,




  i
x i k i k

k K

d K f x f x     . (11) 

Let us consider BC , described by formulas (1) 
− (5). From the viewpoint of round key for this BC 

described by equation  (1) (2),k k k , (1)  nk V , 

(2)  qk V , let us transform (11) in the following 

manner 
 
          , ,, 2 ,



 



   
n q

i n q
x i k i k

k V

d f x f x    

       (1) (2) (1) (2)
(2) (1)

, , , ,
2 2 , 

 

         
 

q n

q n

i k k i k k
k V k V

f x f x   . 

(12) 
 
For finding upper bounds of parameter 

 EDP  let us assess every multiplier of right part 

of inequation (10). Firstly, let us consider some 
designations. For any natural l  designate u v  the 

sum by modulo 2 l  of binary integer numbers 
presented as vectors u  and v  ( ,  lu v V ); symbol 

 ,u v  designate bit of carrying in l -th bit by 

adding numbers u  and v  in the ring Z. 

For any 0, 1 j b , in accordance with [7], let 
us designate the following parameters: 

 

        , 2 ,




  j

t

s t
j j

k V

d s k s k     (13)

        , 2 ,




  j

t

s t
j j

k V

d s k s k     (14) 

      max , : , \ 0 , 0, 1     js

td V j b    (15)

      max , : , \ 0 , 0, 1     js

td V j b    ,(16) 

 max ,     .    (17) 

 
Additionally, let us consider the following 

parameters: 
 

      1
1

0

max , : , \ 0



 



  


j
b

s

t
j

b d V    ,(18) 

      1
1

0

max , : , \ 0



 



  


j
b

s

t
j

b d V    ,(19) 

 max ,    
  

,  (20) 

     
1

1

0

, ,



 



  j
b

s

j

d b d    , (21) 

     
1

1

0

, ,



 



  j
b

s

j

d b d    , (22) 
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    max , : , \ 0
 

    td V    ,   (23) 

    max , : , \ 0
 

    td V    ,   (24) 

 max ,
  

     .  (25) 

 
As a reminder, in accordance with [7] the value 

of vector  1 0, ... , px x x  can be defined by the 

following formula: 
 

   # 0, 1: 0   jwt x j p x , (26) 

 

where GF(2 ) t
jx , 0, 1 j p . Index of matrix 

M  ramification can be defined as follows [15, 16]: 
 

        1min : 2 \ 0  
pt

MB wt x wt xM x GF (27) 

 
Let us establish the following lemma. 
Lemma 1. Let us consider BC  , described by 

formulas (1) − (5). While for any  nx V  the 

following assertions are performed: 

1) if  1 mod 2i , i r , then 

 

   
1( )

1,





   
 

iwt M
i

x i id


  ; (28) 

 
2) if i r , then 

 

   
( )

1,



   
 

iwt
i

x i id


  ; (29) 

 

3) if  0 mod 2i , i r , then 

 

   
1( )

1,





   
 

iwt M
i

x i id


  ; (30) 

 

4) if i r , then 
 

   1
1


i iwt M wt  ;  (31) 

 
5) if i r , then 

 

   1r rwt wt  .  (32) 

 

Establishment. Let us consider  1 mod 2i , 

i r . Taking into account (2), formula (12) can be 
transformed as follows: 

 

 
 

From this by using formulas (4), (13) and (21) 
can be obtained the following 
 

 

.
      (33) 

 

Considering that     1
1 , 1




 i ij j
d M  , the 

maximal value of (33) is received if 

   1
1 0
  i ij j

M  , in this case 

    1
1 , 1




 i ij j
d M   (if only for one j

   1
1 , 0
 i ij j

M   ( 0, 1 j p )). Based on 

this, by using formula (23), it follows correctness of 
formulas (28) and (31): 

 

          11
1

1 1
0

, ,




  


 


   
 

iwt Mp
i

x i i i ij j
j

d d M


    , 

   1
1


i iwt M wt  . 

 
In similar manner formulas (29) and (32) can be 

established. 
Let us establish the formula (30). Let us consider 

 0 mod 2i , i r . Taking into account formula 

(2), formula (12) can be transformed as follows: 
 

 

  (34) 
 
In research study [7] was established that for any 

fixed substitutions on the set tV , 

      1 1 0 0, ... ,  m ms x s x s x , 

 1 0, ... , mx x x  by any ,  mtV   following 

inequation is correct: 
 

        
(2) (1)

(1) (2) (1) (2)
1 1, 2 2 , , ,

q n

i q n
x i i i i

k V k V

d k k k k       
 

 

 
     

 
 

          
( 2) (1)

1 2 1 2 1
12 2 , , , .

q n

q n
i i

k V k V

s k k s k k M    


 

 
    

 
 

           ( 2) (2)

( 2) (1)

1
(1) (1) 1

1 1
0

, 2 2 ,
j j

j q j t

p
i q t

x i i j i j ijk k j
j k V k V

d s k s k M    



  

 
  

  
     

    
 

         (2)

(2)

1 1
1 1

1 1
0 0

2 , ,
k j

j q

p ps
q

i i i ij jj j
j jk V

d M d M   



       
 

 

               
 

     
( 2 ) (1)

(1) (2) (1) (2)
1 1, 2 2 , , ,

q n

i q n
x i i i i

k V k V

d x k k x k k       
 

 

                     
 

 

          
( 2) (1)

1 2 1 2 1
12 2 , , , .

q n

q n
i i

k V k V

s k x x k s k k M    


 

                 
 

 
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            def

, 2 ,
 



    
mt

wts mt

k V

d s k s k
     .

      (35) 
Analogically formula (35) can be transformed for 

the case when the table of substitutions s  will be 
dependable on parameter y  (see formula (4)). 

Let us consider 

      
1 01 0, , ... ,
 

my m ys x y s x s x  is random 

substitution on the set mtV ,  1 0, ... , mx x x , 

 1 0, ... , my y y , j tx V , j qy V , 0, 1 j m  

(parameter jy  defines the substitution table on the 

set tV  will be used, one of 2 q  the possible tables is 

chosen). Then for any ,  mtV   the following 

inequation is correct: 
 

. 
  (36) 

 
Let us establish inequation (36) by the method of 

mathematical induction by parameter m . For 1m  
let us check correctness of inequation (36). Based on 
formulas (14), (22) and (24) can be obtained: 

 

        , 2 2 ,


 


 

 
    

 
 

q t

s q t
y y

y V k V

d s k s k    

 

      
 

2 , ,


 





     
 

 y

q

wt
sq

y V

d d


     

 
Next, let us make allowance for formula (36) is 

correct for all substitutions 

    
1 11 1, ... ,
 my m ys x s x , where 

jys  is substitution 

on the set tV , j qy V , 1, 1 j m . 

For any  1 0, ... , m mtx x x V , 

 1 0, ... ,  m mqy y y V  let us designate 

 

 1 1, ... ,


mx x x ,  1 1, ... ,


my y y , 

    
1 11 1, , ... ,
 

   
 

  

my m ys x y s x s x . 

 

Taking into account the equation 

 0 0 0 0, ,      
 

 
k k k k     , ,  mtk V , 

the following formula is correct: 
 

 

 

 

 

.
   (37) 

 

Considering that 1,

        


        
   


  wts

d


   

and ,

        


       
   


  wts

d


   by the hypothesis of 

induction, based on the formula (37), it is 
established correctness of inequation (36): 

 

     
   0

0 0, ,

   
         

  
                
     

 
wt wt wt wt

sd d
   

    , 

 
and it was the target of our establishment. 

Let us transform equation (34), taking into 
account inequation (36): 

 

       
 1

1
1 1, ,





  

          
   

 iwt M
i s

x i i i id d x x M


     

 
By this means inequation (30) is correct. Lemma 

1 is established. 
Next, let us define an analytical upper security 

parameter (7) for BC, described by formulas (1) − 
(5). 

Theorem 1. Let us consider r -round BC  , 
described by formulas (1) − (5). In this case the 
following inequation is correct: 

 

 
1 1

1
  

       
M M

M

r B r B
r BEDP . (38) 

 

        
 def

, 2 2 , , ,
mq mt

wt
s mq mt

y V k V

d s k y s k y


    



 


 

          
  

 

        
0 0

0 0

0 0 0 0, 2 2 ,
q t

s q t
y y

y V k V

d s k s k    


 


 

 
    

 
 

     0 02 2 , , , ,

mq q mt t

mq q mt t

y V k V

s k k y s k y    
  

    

 

                    
 

 

       

 
     

0 0
0 0

, 1
, 2 2 1, , ,

mq q mt t

mq q mt t

k
y V k V

d s k y s k y
 

    
  


    




 

                     
 

 

       

 
     

0 0
0 0

, 0
, 2 2 , , ,

mq q mt t

mq q mt t

k
y V k V

d s k y s k y
 

    
  


    




 

                    
 

 

       

 
 

 
 

0 0 0 0
0 0 0 0

, 1 , 0
, 1, , ,

s s

k k
d d d d

   
       

   
    

   
  

 

          
   

 
   
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Establishment. On the basis of formulas (10), 
(23) − (25), (28) − (30) the following assessment is 
correct: 

 

 
   

1
1

1







  

r

i r
i

wt M wt

EDP
 

.   (39) 

 
While by the formulas (13) − (25) 

1


     


, then right part of inequation will be 

maximal only when    
1

1

1







r

i r
i

wt M wt   will 

be minimal. In research study [7] authors showed 

that    
1

1

1

1






  
r

i r M
i

wt M wt r B  , and on 

this basis formula (38) is correct. Theorem 1 is 
established. 

 
5. UPPER BOUNDS OF LINEAR PARA-
METERS AVERAGE PROBABILITIES 

For any ,  tV  , 0, 1 j b , taking into 

account [7], let us designate: 
 

       
2

, 2 2 1
  

 

 
  

 
 j j

t t

s x s x kt t

k V x V

l
   , (40) 

       

  

2

0,1 : ,

, 2 2 1
  

   

 
    

 
  j j

t t

s x s x kt t

k V a x V v x k a

  

      (41) 
      max , : , \ 0 , 0, 1    js

tl V j b   

(42) 
      max , : , \ 0 , 0, 1      js

t tV V j b   

      (43) 

 max ,     .  (44) 

 
Additionally, let us consider the following 

parameters: 
 

      1
1

0

max , : , \ 0







  


j
b

s

t
j

b l V    (45) 

      1
1

0

max , : , \ 0







    


j
b

s

t t
j

b V V   

      (46) 

 max ,    
  

,  (47) 

     
1

1

0

, ,






  j
b

s

j

l b l    ,    (48) 

     
1

1

0

, ,






   j
b

s

j

b    ,     (49) 

    max , : , \ 0
 

   tl V    , (50) 

    max , : , \ 0
 

    t tV V    ,  (51) 

 max ,
  

     .  (52) 

 

For finding upper bounds of parameter  ELP   

let us assess every multipliers of right part of 
inequation (8). Let us establish the following lemma. 

Lemma 2. Let us consider BC  , described by 

formulas (1) − (5). While for any  nx V  the 

following assertions are performed: 

1) if  1 mod 2i , i r , then 

 

   
( )

1,



   
 

iwt M
i

i il


  ; (53) 

 
2) if i r , then 

 

   
( )

1,



   
 

iwt
i

i il


  ; (54) 

 

3) if  0 mod 2i , i r , then 

 

   
( )

1,



   
 

iwt M
i

i il


  ; (55) 

 

4) if i r , then 
 

   1i iwt M wt  ;  (56) 

 

5) if i r , then 

   1r rwt wt  .  (57) 

 

Establishment. Let us consider  1 mod 2i , 

i r . Taking into account equation (2), let us 
transform formula (9): 
 

 

       (1) (2 )
1

(2 ) (1)

2

,

1, 2 2 2 1 i i

nq n

x x k ki q n n
i i

x Vk V k V

l
       


 

  
       

  
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. 
 

Based on formulas (4), (40) and (48) can be 
obtained: 
 

 

. 
   (58) 

 

Considering that     1 , 1


 i ij j
l M  , the 

maximal value of (58) is received if 

   1 0  i ij j
M  , in this case 

    1 , 1


 i ij j
l M   (if only for one j

   1 , 0 i ij j
M   ( 0, 1 j p )). Based on this, 

by using formula (50), it follows correctness of 
formulas (53) and (56): 

 

        
 1

1 1
0

, ,
  

 


    
 

iwt Mp
i

i i i ij j
j

l l M


   
 

   1i iwt M wt  . 
 

In similar manner formulas (54) and (57) can be 
established. 

Let us establish the formula (55). Let us consider 

 0 mod2i  , i r . Taking into account formula 

(2), formula (9) can be transformed as follows: 
 

 

. 
  (59) 

 

Let us consider 

      
1 01 0, , ... ,

my m ys x y s x s x
   is random 

substitution on the set mtV ,  1 0, ... , mx x x , 

 1 0, ... , my y y , j tx V , j qy V , 0, 1 j m  

(parameter jy  defines the substitution table on the 

set tV  will be used, one of 2 q  the possible tables is 

chosen). Then for any ,  mtV   the following 

inequation is correct: 

. 
  (60) 

 
Let us establish inequation (60) by the method of 

mathematical induction by parameter m . For 1m  
let us check correctness of inequation (60). Based on 
formulas (41), (49) and (51) can be obtained: 
 

 

. 
 

Next, let us make allowance for formula (60) is 
correct for all substitutions 

    
1 11 1, ... ,
 my m ys x s x , where 

jys  is substitution 

on the set tV , j qy V , 1, 1 j m . 

For any  1 0, ... , m mtx x x V , 

 1 0, ... ,  m mqy y y V  let us designate: 

 

 1 1, ... ,


mx x x ,  1 1, ... ,


my y y , 

    
1 11 1, , ... ,
 

   
 

  

my m ys x y s x s x . 

 
In accordance with equation 

 0 0 0 0, ,      
 

 
x k x k x k x k , , mtk V , the 

following formula is correct: 
 

 

 

, 
 
and it was the target of our establishment. 

Based on inequation (60), the formula (55) is 
correct:  

 

     (1) (2)
1

(2) (1)

2

,
2 2 2 1 i i

nq n

x M s x k kq n n

x Vk V k V

      

 

  
      

  

             




    


  

              
   i j i j jj j kj

j tj q j t

p
x M s x ki q t t

i i
x Vj k V k V

l
(1)

1 (2)

(2) (1)
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       
 

1 1, ,


    
iwt M

i s
i i i il l M



    . 

 
Lemma 2 is established.  
Theorem 2. Let us consider r -round BC  , 

described by formulas (1) − (5). In this case, the 
following inequation is correct: 

 

 
1 1

1
  

       
M M

M

r B r B
r BELP .    (61) 

 
Establishment. Based on formulas (8), (50) − 

(55) the following assessment is correct: 
 

 
   

1

1





 
  

r

i r
i

wt M wt

ELP
 

.    (62) 

 

While by the formulas (40) − (52) 

1


     


, then the right part of inequation will 

be maximal only when    
1

1






r

i r
i

wt M wt   will 

be minimal. In research study [7] authors showed 

that    
1

1

1




  
r

i r M
i

wt M wt r B  , and on this 

basis formula (61) is correct. Theorem 2 is 
established. 

 

6. EXPERIMENTS AND DISCUSSION 

The main target of experimental study is 
efficiency assessment of random substitution nodes 
using in proposed and known BCs. Let us consider 
that in the paper [7] was described r -round BC   
(designed based on Kalyna-128 cipher) with random 
substitutions nodes, a set of plain (cipher) texts 

 0,1 n

nV , a set of round keys  nK V  and family 

of encryption transformation 
 

1, 1,...  
rk r k kF f f , 1( , ... , )  r

rk k k K ,   (63) 

 

where t , p , r  are natural numbers, 4 p p , 

2 1 r r , n pt . 

Round function ,i kf , for any  nx V , k K , 

1,i r  can be described as follow: 
 

   

 

 

,

,  i 1 mod 2 ,

, i 0 mod 2 ,

,  i r

i k

x k if i r

f x k if i r

s x k if

   

       

 
  





 . (64) 

 

Substitutions   and s  can be defined by 

formulas: 
 

   x s x M ,  nx V , (65) 

      1 1 0 0s , ... ,  p ps x x s x ,  1 0, ... , px x x ,

      (66) 
 

where j tx V , js  is substitution on the set tV , 

0, 1 j p , M  is invertible p p -matrix over 

the field  GF 2t , multiplication  s x  and M  in 

formula (65) performed over this field with binary 

vectors unification  j js x  with its elements. 

Symbols “ ” and “


” are compatible with 
operations of coordinatewise adding for binary 
vectors and mentioned algebraic operation (5). 

In [7] it was established that for BC  , 
described by (63) − (66), the following inequations 
are correct:  

 

  1    Mr BEDP ,  (67)

  1    Mr BELP .  (68) 

 

If the round function ,i kf  of BC  , described 

by (63) − (66), increased by additional round key 
influenced on substitution forming (see formula (4)), 
BC   will transform to BC  , described by (1) − 
(5). Taking into account equations (13) − (25) and 
(63) − (66), as well as inequations (38) and (61) 
analytical upper bounds of linear and differential 
parameters average probabilities of BC   will 

improve in 
1    

 

Mr B

 and 
1    

 

Mr B

 times 

respectively. It is important to note, the more 
quantity of substitution tables for BC  , the better 
upper bounds of practical security against LDC [17]. 

Let us show the efficiency of random substitution 
nodes using in the context of BC Kalyna-128 [11] 
(the example of BC   with parameters 8t , 

4 p , 5 r , 16p , 11r  , 128n , in every 
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rounds eight different substitution tables on the set 

8V  are used (Table 1)). 

Table 1. The parameters of substitution tables for BC 
Kalyna-128 

Subs 
table 

 


js
  


js

  


js
  


js

 

1 0,03125 0,0273438 0,0625 0,0425324 

2 0,03125 0,03125 0,05493 0,0297253 

3 0,03125 0,03125 0,0625 0,0297267 

4 0,03125 0,0273438 0,0625 0,0551662 

5 0,03125 0,03125 0,0625 0,0356412 

6 0,03125 0,03125 0,0625 0,0353937 

7 0,03125 0,03125 0,0625 0,0296712 

8 0,03125 0,03125 0,0625 0,0625 

In Table 1, there are parameters (15), (16), (42) 
and (43) for every substitution tables of BC Kalyna-
128. In accordance with equations (15) − (17), (42) 
− (44) as well as inequations (67) and (68) can be 
obtained the following parameters: 0,031250  , 

0, 0625  ,   2302EDP   ,   1842ELP    (

5r  , 9MB  ). 
Let us admit that BC Kalyna-128 increased by 

round keys, and it defines each substitution tables 
for round. In this case BC   can be obtained with 
parameters 3 q , 48q , and 8b . For this BC 
inequations (38) and (61) can be used to calculate 
analytical upper bounds of practical security against 
LDC methods. Based on formulas (21) − (25), for 
described in BC Kalyna substitution tables [23], 
parameters (23) − (25) were calculated: 

0,015625


  , 0,0107422


   and 

0,015625


  . For the same substitution tables 
based on formulas (48) − (52), parameters (50) − 

(52) were also calculated: 0,0159302


  , 

0,0143183


   and 0,0159302


  . 

Because 5r  , 9MB  , based on inequations 
(38) and (61), upper bounds of practical security for 
improved BC Kalyna-128 with random substitution 
nodes were calculated in context of LDC 
respectively:   2762EDP    and   2742ELP    

[19-22]. As it is clear from calculations, upper 
bounds of linear and differential parameters average 
probabilities for improved BC Kalyna-128 (with 
random substitution nodes) is better in 462  and 902  
times than original BC respectively. 

Accordingly, analytical upper bounds of BC 
practical security against LDC methods were 
calculated as well as hypothesis that using random 
substitutions allows improving upper bounds of 

linear and differential parameters was proved. This 
proven hypothesis defines novelty of this work and 
practical value for modern cryptology. 
 

7. CONCLUSIONS 

In the paper analytical upper bounds of 
parameters, characterized practical security of BC 
  with random substitution nodes against LDC 
methods were obtained. 

It was established that random substitution nodes 
using in BC allow improving analytical upper 
bounds of linear and differential parameters average 

probabilities in 
1    

 

Mr B

 and 
1    

 

Mr B

 

times respectively compared to analog assessments 
for similar BC with fixed substitution nodes. 

By using the example of BC Kalyna-128, it was 
shown that the use of random substitution nodes 
allows improving upper bounds of linear and 
differential parameters average probabilities in 462  
and 902  times respectively. 

The study is novel as it is one of the few in the 
cryptology field to calculate analytical upper bounds 
of BC practical security against LDC methods as 
well as to show and prove that the use of random 
substitutions allows improving upper bounds of 
linear and differential parameters. The security 
analysis using quantitative parameters gives 
possibility to evaluate various BCs or other 
cryptographic algorithms and their ability to provide 
necessary and sufficient security level in ICS. 

A future research study can be directed on 
improving analytical upper bounds for mentioned 
BC in context to practical security against LDC, as 
well as practical cryptographic security assessment 
for other BCs with random substitutions [25-29] 
against LDC and other cryptanalysis methods 
including quantum cryptanalysis [30-32] (Shor, 
Grover, Deutsch-Jozsa algorithms). Apart from these 
cases, the efficiency of the randomness source and 
its impact on the BC security can be studied.  
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